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Abstract: Telomere maintenance is key during cancer development. Malignant cells can either use
telomerase or an alternative lengthening of telomere (ALT) pathway to maintain their telomere
length. In Hodgkin’s Lymphoma (HL), the presence of telomerase activation is established. The
activation of ALT has been reported recently. Our data confirm this notion describing co-localization
of the phosphorylated form of telomeric repeat-binding factor 1 (pT371-TRF1) with ALT-associated
promyelocytic leukemia bodies. Surprisingly, to our knowledge, there are no published studies
targeting both telomere maintenance pathways in HL. Consequently, we investigated, for the first
time, the effects of both telomerase and ALT inhibition on HL cell viability: We inhibited telomerase
and/or ALT, given either individually, simultaneously, or consecutively. We report that the inhibition
of telomerase using BIBR1532 followed by ALT inhibition, using trabectedin, caused a decrease of
greater than 90% in cell viability in three patient-derived HL cell lines. Our results suggest that HL
cells are most vulnerable to the consecutive inhibition of telomerase followed by ALT inhibition.

Keywords: telomerase; alternative lengthening of telomeres (ALT); BIBR 1532; trabectedin; promye-
locytic leukemia bodies (PML); telomeric repeat-binding factor 1 (TRF1)

1. Introduction

Hodgkin’s lymphoma (HL) is a B-cell malignancy characterized by the presence of
mononucleated Hodgkin (H) and multinucleated Reed–Sternberg (RS) cells [1,2], with
the RS cell representing the diagnostic cell of the disease [2]. In 2020, more than 83,000
people globally were diagnosed with classical Hodgkin’s Lymphoma (cHL), and more than
23,000 deaths were registered for the same period [3]. HL can affect all age groups [4,5].
There are high cure rates for cHL when diagnosed at early disease stages or in patients
presenting with low-risk disease [4,6]. However, patients diagnosed at advanced disease
stage have poor prognosis and unfavorable disease outcome [6]. The 5-year relative survival
rate is 89.1% (seer.cancer.gov).

Telomeres are protective heterochromatic structures found at the ends of linear eukaryotic
chromosomes. Mammalian telomeric DNA is composed of repetitive TTAGGG tandem repeats.
The number of times most normal human somatic cells can divide is linked to the status of their
telomeres. Telomeric DNA shortens during each round of DNA replication, in part because
DNA polymerase is unable to completely replicate the 3′ overhang of the chromosomal ends
(the “end replication problem”) [7–10]. Once telomeric DNA reaches a critical short length, the
cells stop dividing and enter a state called senescence. This state of a limited life span was first
defined by Hayflick [11,12] and it has also been coined as the Hayflick limit.
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In stark contrast to normal cells, tumor cells escape the Hayflick limit of lineage-
dependent limited life span. This step involves mutations inactivating cell cycle checkpoint
proteins, increased cell divisions and therefore further telomere shortening. These events
trigger a “crisis” event where sister chromatin fusions, end-to-end fusions and breakage-
bridge-fusion cycles events occur, leading to chromosomal rearrangements and ongoing
genome instability. While most cells die during crisis, some survive and activate telomere
maintenance mechanisms. These telomere maintenance pathways permit the cells to
continue cellular division despite the presence of critically short telomeres. There are
two telomere maintenance pathways, telomerase activation and alternative lengthening
of telomeres (ALT) [13–15]. Telomerase activation is the most common pathway and
is employed by 85–90% of all tumor cells, while ALT is used by the remainder. Some
tumors, albeit rare, show the co-activation of both pathways. These include rare cases
of renal cell carcinoma [16], breast cancer [17] and classical Hodgkin’s Lymphoma [18].
The consequence of continued cell proliferation of tumor cells despite their critically short
telomeres allows for ongoing genomic instability and its dynamic propagation to the next
generation of cells.

Genomic instability is an enabling hallmark of cancer [19]. The contribution of telom-
eres to this dynamic process of genomic instability is genomic remodeling through sis-
ter chromatid fusion, end-to-end chromosomal fusion, and breakage-bridge-fusion cy-
cles [20,21]. This dynamic process of telomeric changes is also called telomere dysfunction
and is a key factor in creating cell-to-cell genetic heterogeneity in cancer and enables tumor
cell and clonal evolution [22]: For example, a single telomeric end-to-end chromosomal
fusion will generate, following cell division, due to the formation of an anaphase bridge
and chromosomal breakage in telophase, one daughter cell with a terminal deletion and
one with an unbalanced translocation. Both daughter cells are then genetically distinct and
due to the presence of double-strand breaks at the chromosomal break points, they will
engage in further fusion/recombination events with other chromosomes. This process will
continue and lead to the genetic divergence of the cells and, upon selective pressure, to the
generation and survival of clones [22,23].

Hodgkin’s Lymphoma exhibits telomere dysfunction [24], telomerase activation [24,25]
and ALT activation [18]. Since tumor cells evolve to become resistant and overcome
telomerase inhibition by activating the ALT pathway [26], it is expected that the dual
inhibition of both pathways will be more effective than the single pathway inhibition.
While the single inhibition of one of the two telomere maintenance pathways has been
reported [27–29], there is no published work to date demonstrating the dual inhibition of
both pathways. Telomerase inhibition is effective in telomerase-activated cancer cells [30,31].
However, as a result of this treatment, the cells commonly become resistant [26]. Inhibition
of ALT is currently offered to patients with soft tissue sarcoma [32] and ovarian cancer [33].

The degree of telomere dysfunction in Hodgkin’s Lymphoma [24] is associated with the
aggressiveness of disease and response to treatment [34,35]. As we showed, telomere dys-
function (measured by three-dimensional (3D) telomere imaging and dedicated software)
in mononucleated Hodgkin’s cells leads to the formation of the diagnostic Reed–Sternberg
cell [2,24,36]. Telomere dysfunction in HL includes critically short telomeres, telomeric
aggregates, altered telomere numbers and a different 3D spatial organization [24,34]. In
addition, the severity of the 3D telomere dysfunction in HL is associated with response to
treatment and recurrent/refractory disease [24]. The higher the level of telomere dysfunc-
tion, the greater the chance of poor outcome [34–36].

The current study was initiated to explore the addiction of Hodgkin’s Lymphoma
cells to telomere maintenance. Using the small molecule inhibitor BIBR1532 to inhibit
telomerase [37,38] and the alkylating agent trabectedin to inhibit the ALT pathway [27]
alone and in combination, as well as with a consecutive addition of either drug, we report
that telomerase inhibition for 72 h, followed by ALT inhibition for 72 h exhibits the strongest
negative effects on cell viability of HL cells.
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2. Materials and Methods
2.1. Cell Lines and Cell Culture Conditions

Three different human-derived HL cell lines were used for this study: HDLM-2,
L-428 and L-1236 (DSMZ, Braunschweig, Germany). The HDLM-2 and L-428 cell lines
were grown in RPMI-1640 medium, supplemented with 20% fetal bovine serum (FBS),
1% L-glutamine, 1% sodium pyruvate, and 1% penicillin–streptomycin (reagents from
Invitrogen/Gibco, Burlington, ON, Canada). The L-1236 cell line was grown in RPMI-
1640 medium, supplemented with 10% FBS, 1% L-glutamine, 1% sodium pyruvate, and
1% penicillin–streptomycin. Cells were incubated at 37 ◦C in a humidified atmosphere
containing 5% CO2. A concentration of 5 × 106 cells/tissue culture well in 6-well plates
(NuncTM Cell Culture Treated Multidishes, ThermoFisher Scientific, Waltham, MA, USA)
were used for all cell lines during the inhibition of telomere maintenance pathways assay.
This cell number was chosen to simulate the overall number of lymphocytes residing in a
regular lymph node [39].

2.2. Fluorescent Immunocytochemistry
2.2.1. Antibodies

Antibodies used include: primary anti-TRF2 (rabbit polyclonal, Novus (NB110 57130)
1:500 dilution); secondary goat anti-rabbit Alexa 488 (Molecular Probes, Waltham, MA, USA,
1:1000 dilution); primary anti-pT371-TRF1 [40] (rabbit polyclonal, 1:500 dilution); primary
anti-PML (mouse monoclonal, Santa Cruz, sc- 966, 1:100 dilution), and sheep anti-mouse
Cy3 (AC111C, Sigma Chemical, St. Louis, MO, USA, 1:500 dilution). The antibodies used
for immunocytochemistry analyses were diluted in 4% BSA/4X SSC (blocking solution).

2.2.2. Immunocytochemistry

The cells were fixed in 3.7% formaldehyde/1× PBS for 10 min at room temperature
(RT) and immunostained as previously published [24,36]. Cell nuclei were counterstained
with DAPI 0.1µg/mL (D9542, Sigma Chemical, St. Louis, MO, USA) for 3 min. The slides
were mounted in Vectashield® (Vector Laboratories, Inc., Burlingame, CA, USA).

2.2.3. Three-Dimensional Image Acquisition

Three-dimensional conventional imaging of 90 cells from each cell line was performed
using a ZEISS Axio Imager Z2 (Carl Zeiss, Toronto, ON, Canada) with a cooled AxioCam HR
B&W, FITC, Cy3 and DAPI filters in combination with a Planapo 63×/1.4 oil objective lens
(Carl Zeiss, Jena, Germany). For every fluorophore, 60 z-stacks were imaged with a 200 nm
distance between each stack. Images were obtained using ZEN blue 2.3 edition software
(Carl Zeiss, Jena, Germany) in multichannel mode, and deconvolved using the constrained
iterative restoration algorithm [41] with theoretical PSF and automatic normalization.

2.3. Inhibition of Telomere Maintenance Pathways

The initial drug concentrations were selected based on prior studies reporting the
inhibition of ALT and telomerase pathways in different cancer cell lines [27,42]. To define
the drug working concentration, the HL cell line HDLM-2 was subjected to individual
treatment with telomerase inhibitor BIBR1532 (EMD MilliporeSigma, San Luis, MO, USA)
using the following concentrations: 125, 150, 175, 200 µM from 0–144 h and treatment with
ALT-pathway inhibitor trabectedin (Apexbio Technology, Houston, TX, USA) using the
following concentrations: 0.25, 0.5, 0.75, 1, 1.25 nM from 0–240 h [27]. The concentrations
determined with HDLM-2 were applied to the other HL cell lines L-1236 and L-428.

2.4. Cell Viability

The HL-derived cell lines (HDLM-2, L-428 and L-1236) were seeded in 6-well plates
(NuncTM Cell Culture Treated Multidishes, ThermoFisher Scientific, Waltham, MA, USA) at
5 × 106/well. The cells were treated with DMSO to a final concentration of 0.02% (control
condition), 200 µM of telomerase-inhibitor BIBR1532 and 4 nM of ALT-pathway inhibitor
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trabectedin in various combinations and orders as shown in Figure 1. The trabectedin
and BIBR 1532 treatment concentrations were determined using the HDLM-2 cell line
(Figure A1).
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Figure 1. Inhibition of telomere maintenance pathways in HL cell lines. (A) Individual treatment of
HL cell lines with 200 µM of BIBR1532 and 4 nM of trabectedin for 144 h. (B) Simultaneous treatment
of HL cell lines with 200 µM of BIBR1532 and 4 nM of trabectedin for 144 h. (C) Consecutive treatment
of HL cell lines with BIBR1532 and trabectedin treatment, the latter was added after the first 72 h of
BIBR1532. Consecutive treatment of HL cell lines with trabectedin followed by BIBR 1532, which was
added at the 72 h time point.

The cell viability before and during treatments was evaluated by trypan-blue exclusion
assay every 24 h. Briefly, aliquots containing 15 µL of the cells were taken every 24 h, mixed
with 15 µL of trypan blue (1:1 ratio) and submitted (11 µL) to manual counting using a
hemocytometer (Hausser Scientific, Horsham, PA, USA).

2.5. Statistical Analysis

Two-way ANOVA followed by Tukey’s test were used to analyze the impact on cellular
viability of the HL cell lines (HDLM-2, L-428 and L-1236) treated with telomerase and ALT
inhibitors. Significance levels were set as p ≤ 0.05. PRISM Graph Pad v8.0 (San Diego, CA,
USA) software was used for illustration.

3. Results
3.1. Hodgkin’s Lymphoma (HL) Shows Hallmarks of an Alternative Telomere Lengthening
(ALT) Pathway

As previously reported by us and others, HL cells activate telomerase [24,25]. Recent
work described the alternative lengthening of telomeres (ALT) pathway, which involved the
presence of promyelocytic leukemia (PML) bodies [18,43]. Since PML bodies can be found
in non-malignant cells [44], we examined the presence of both PML and pT371-TRF1 protein
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in HL cells. The latter does not bind normal telomeres [40] but interacts specifically with
dysfunctional telomeres, forming distinct foci in ALT cells [45]. In addition, pT371-TRF1 is
a component of APBs, a hallmark of ALT [45].

We performed immunofluorescent analysis of PML and pTRF1 in three HL cell lines
(HDLM-2, L-1236 and L-428). First, the presence of PML bodies was confirmed in all HL
cell lines, and observed in both mononucleated Hodgkin’s (H) cells and multinucleated
Reed–Sternberg (RS) cells as shown in Figure 2A. The presence of the phosphorylated
form of the telomeric repeat-binding factor 1 (pT371-TRF1) was also confirmed in all HL
cell lines, in both H and RS cells, as shown in Figure 2B. In addition, colocalization of
pT371-TRF1 and PML bodies was observed in all HL cell lines (Figure 2C and Appendix A,
Figure A2), suggesting the presence of APBs, hallmarks of ALT, in all HL cell lines.
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Figure 2. Hodgkin’s Lymphoma (HL) shows hallmarks of an alternative telomere lengthening (ALT)
pathway. (A) HL cell lines show promyelocytic leukemia bodies (PML) in both HL cell phenotypes
(Hodgkin cells and Reed–Sternberg cells). (B) HL cell lines show phosphorylated form of telomeric
repeat-binding factor 1 (pT371-TRF1) in both HL cell phenotypes. (C) HL cell lines show colocalization
(white zoom boxes) of pT371-TRF1 and PML bodies in both HL cell phenotypes. (D) HL cell lines
show presence of telomeric repeat-binding factor 2 (TRF2) around PML bodies in both HL cell
phenotypes. PML—Red (Cy3), pT371-TRF1—Green (A-488), TRF2—Green (A-488) and DNA—Blue
(DAPI). A total of 90 cells were examined in three independent experiments for each of the HL cell
lines, and all showed both colocalized (yellow) as well as free signals for pT371-TRF1 and PML in
addition to TRF2 and PML in both H and RS cells. For additional information, see Appendix A
Figure A2.

The telomeric repeat-binding factor 2 (TRF2) protein is associated with ALT telomere
synthesis and works to maintain ALT pathway activity [46,47]. TRF2 protein is seen in all
HL cell lines and, in both H and RS cells (Figure 2D). APBs are present in all HL cells.

Analysis of colocalization to pT371-TRF1 and PML as well as of TRF2 and PML in
90 cells and three independent experiments showed for each of the HL cell lines that
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each cell exhibited both colocalized and free signals of pT371-TFR1/PML and TRF2/PML
(Figure 2C,D). The reasons for the heterogeneous signal localization are currently unknown.

3.2. HL Is Sensitive to the Inhibition of Both Telomere Pathways

We hypothesized that the inhibition of both telomere maintenance pathways might be
lethal to HL cells. We therefore treated the HL cells with telomerase inhibitor alone, ALT
inhibitor alone, both telomerase and ALT inhibitors at the same time or sequentially.

3.3. Independent and Simultaneous Inhibition of Telomere Maintenance Pathways

Exposure of HDLM-2, L-428 and L-1236 HL cell lines to 4 nM of trabectedin [27] (ALT
pathway inhibitor) or 200 µM of BIBR1532 (telomerase inhibitor) [48] for 144 h led to a
time-dependent decrease in cell viability. As shown in Figure 3, all three cell lines exhibited
a reduction in cell viability. At 144 h, trabectedin triggered 60%, 40% and 50% survival
of HDLM-2, L-428 and L-1236, respectively. BIBR1532 reduced cell viability by ≥ 90% in
all three cell lines during the same period. The simultaneous treatment with both drugs
elicited survival similar to the BIBR1532 treatment regimen alone (Figure 3).
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Figure 3. Combinatory inhibition of telomere maintenance pathways. HL cell lines show decrease
in cellular viability upon treatment with trabectedin 4 nM (ALT pathway inhibitor). The effect was
time-dependent in all HL cell lines. Incubation of HL cell lines with 200 µM BIBR 1532 (telomerase
inhibitor) showed significant time-dependent decrease in cell viability. The combined inhibitory
effect on both telomere maintenance pathways resulted in a remarkable time-dependent decrease
in cellular viability, in all HL cell lines. Data expressed as mean ± SEM. * p < 0.05, ** p < 0.001 and
*** p < 0.0001. TBDN—trabectedin.
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3.4. Consecutive Inhibition of Telomere Maintenance Pathways

The consecutive exposure of HDLM-2, L-428 and L-1236 to trabectedin and BIBR1532
for 72 h each (Figure 1) was performed to determine the effects of dual but consecutive
telomere maintenance pathway inhibition on HL cells. Trabectedin treatment followed by
BIBR1352 treatment induced cell death at 75%, 90% and >95% in HDLM-2, L428 and L-1236,
respectively. This effect was stronger than that of trabectedin alone (Figure 4). However,
the consecutive treatment of BIBR1352, followed by trabectedin decreased cell survival to
10%, <5% and <5% in HDLM2, L-428 and L-1236, respectively. This consecutive treatment
order reduced the viability of HL most dramatically. Collectively, our results indicate that
telomerase inhibition followed by ALT inhibition leads to the most potent induction of HL
cell death.
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Figure 4. Consecutive inhibition of telomere maintenance pathways. HL cell lines show pronounced
reduction in cellular viability over cell sensitization with trabectedin 4 nM and BIBR 200 µM for 72 h,
followed by consecutive treatment with trabectedin 4 nM and BIBR 200 µM for 72 h. Data expressed
as mean ± SEM. *** p < 0.0001. TBDN—trabectedin.

4. Discussion

Telomerase activation is key to maintaining an unlimited proliferation potential, which
is characteristic of malignant cells [49,50]. However, not all tumor cells express telomerase.
Some tumor cells instead activate an alternative pathway for lengthening of telomeres (ALT)
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and, in some cases, malignant cells activate both pathways [14,49,51–53]. In Hodgkin’s
Lymphoma, the presence of telomere maintenance pathways through telomerase and ALT
was reported for human-derived lymph node samples as well as HL cell lines [18,24,25].
However, only promyelocytic leukemia bodies (PML) were investigated as an ALT marker,
and a high frequency of cell-to-cell heterogeneity was observed [18]. Moreover, the presence
of PML proteins is also observed in non-malignant cells [44], highlighting the need for
further characterization of ALT activation in HL.

Here, we show the presence of ALT-associated promyelocytic leukemia bodies (APBs),
TRF2, pT371-TRF1 and for the first time the colocalization of pT371-TRF1 and PML in three
patient-derived Hodgkin lymphoma cell lines in both HL and RS cells. Association of TRF2
and APBs are hallmarks of ALT activation in HL [18,53].

The phosphorylation of TRF1 protein on T371 residue promotes its interaction with
APBs, therefore causing activation of ALT [45]. Moreover, loss of TRF1 phosphorylation or
TRF1 deletion impairs formation of APBs, disrupting ALT pathway activity [45,54]. Here,
we show the presence and colocalization of pT371-TRF1 with APBs in HL cells and confirm
ALT activation in HL and RS cells of HL.

The activation of telomere maintenance pathways has been correlated with malignant
transformation and cancer progression and is also associated with poor prognosis and
reduced overall survival [55–58]. The characterization of telomere maintenance pathways
has been used to assess cancer aggressiveness and stratify malignant subgroups [27,56,58].
Although several studies have been targeting telomere maintenance pathways in cancer
cells, these inhibitors are not currently used to treat HL in clinical practice [27,32,59–61].
Importantly, targeting telomerase alone was shown to induce activation of ALT in cancer
cells [26,62], highlighting the need for new therapeutical approaches that target telomerase
in addition to ALT.

Here, we show that consecutively targeting telomerase and the ALT pathway induces
cell death in HL cell lines synergistically by >90%. Recent studies proposed trabectedin as
a co-adjuvant drug to treat classical Hodgkin’s Lymphoma, due to its anti-tumoral activity
and tumor microenvironment modulatory ability [28,29]. Additionally, recent clinical trials
have explored the potential use of trabectedin, due to its high efficacy and fewer side effects,
compared to standard cancer treatments [63–68]. Others have reported trabectedin as an
effective anti-tumoral drug against advanced soft tissue sarcomas and ovarian cancer in
clinical settings [69–72].

BIBR1532 has been used in several studies as a specific and powerful telomerase
inhibitor [48,73–75]. It demonstrates anti-migration and anti-proliferation properties in
addition to its cytotoxic effect on cancer cells [76,77]. Recent clinical trials using a different
telomerase inhibitor (Imetelstat) showed promising results against multiple myeloma,
myelodysplasia, acute myeloid leukemia, and myelofibrosis, even in patients presenting
resistance to first-line treatment options [78–83]. This highlights the potential use of
telomerase inhibitors as effective drugs in the treatment of hematological cancers.

Although most cancers activate one of the two telomere maintenance pathways,
targeting just one was shown to induce the activation of the other [26]. Here, we highlight
that the consecutive use of telomerase inhibitor (BIBR1532) followed by ALT inhibitor
(trabectedin) within 72 h is necessary to achieve a high impact on HL cell viability (>90%
decrease in cell viability) compared to cell death induced by each inhibitor alone or by
combined ALT and telomerase inhibition and consecutive inhibition of first ALT and
then telomerase. A limitation of our study is the use of patient-derived cell lines. Future
investigations of primary pre-treatment HL lymph node aspirates will be required. The ex
vivo treatment of such primary HL cells with the inhibitors of both telomerase maintenance
pathways will be absolutely essential prior to any future clinical trials and a potential
translation to clinical application. Moreover, future translational studies will determine
whether the inhibition of telomere maintenance pathways (alone or in combination with
other treatments) could be used as novel therapeutical avenues to treat hematological and
solid cancers.
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5. Conclusions

Hodgkin’s Lymphoma cells exhibit telomerase and alternative telomere lengthening
pathways. The present study investigates whether the inhibition of both telomerase main-
tenance pathways leads to the death of Hodgkin’s lymphoma cells. Using patient-derived
cell lines, we show that the cells are vulnerable to the inhibition of both pathways. The
survival of the cells is impaired with either drug alone or in combination; however, the
most efficient cell killing was observed during short-term treatment where telomerase
inhibition (72 h) was followed by ALT inhibition (72 h). Future work will address ex vivo
treatments of primary treatment-naive patient samples and investigate whether this dual
treatment will impact the survival of tumor cells in other cancers.

Author Contributions: Writing—original draft preparation, M.F.d.L. and S.M.; M.F.d.L., M.O.F.,
M.K.H. and A.R.-P. performed laboratory experiments; review and editing, M.F.d.L., A.R.-P., X.-D.Z.
and S.M.; visualization, S.M.; supervision, A.R.-P. and S.M.; funding acquisition, S.M. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors thank the Canadian Institutes of Health Research (CIHR) for CRC Tier 1
funding (S.M.), the Leukemia and Lymphoma Society of Canada (LLSC) for grant funding (S.M.),
and Research Manitoba for funding support (M.F.d.L.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Hans Knecht for critical reading and comments. The authors
are grateful to the Leukemia and Lymphoma Society of Canada (LLSC) for grant funding (SM), the
Canadian Institutes of Health Research (CIHR) for Canada Research Chair (CRC) Tier 1 support (SM),
and Research Manitoba for funding support (MFdL). Imaging was performed at the Genomic Centre
for Cancer Research and Diagnosis (GCCRD). The GCCRD is funded by the Canada Foundation for
Innovation (CFI) and supported by the CancerCare Manitoba Foundation, the University of Manitoba,
and through funds from a Canada Research Chair Tier 1 (SM).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Biomedicines 2022, 10, x FOR PEER REVIEW 11 of 16 
 

translation to clinical application. Moreover, future translational studies will determine 
whether the inhibition of telomere maintenance pathways (alone or in combination with 
other treatments) could be used as novel therapeutical avenues to treat hematological and 
solid cancers. 

5. Conclusions 
Hodgkin’s Lymphoma cells exhibit telomerase and alternative telomere lengthening 

pathways. The present study investigates whether the inhibition of both telomerase 
maintenance pathways leads to the death of Hodgkin’s lymphoma cells. Using patient-
derived cell lines, we show that the cells are vulnerable to the inhibition of both pathways. 
The survival of the cells is impaired with either drug alone or in combination; however, 
the most efficient cell killing was observed during short-term treatment where telomerase 
inhibition (72 h) was followed by ALT inhibition (72 h). Future work will address ex vivo 
treatments of primary treatment-naive patient samples and investigate whether this dual 
treatment will impact the survival of tumor cells in other cancers. 

Author Contributions: Writing—original draft preparation, M.F.d.L. and S.M.; M.F.d.L., M.O.F., 
M.K.H. and A.R.-P. performed laboratory experiments; review and editing, M.F.d.L., A.R.-P., X.-
D.Z. and S.M.; visualization, S.M.; supervision, A.R.-P. and S.M.; funding acquisition, S.M. All au-
thors have read and agreed to the published version of the manuscript. 

Funding: The authors thank the Canadian Institutes of Health Research (CIHR) for CRC Tier 1 fund-
ing (S.M.), the Leukemia and Lymphoma Society of Canada (LLSC) for grant funding (S.M.), and 
Research Manitoba for funding support (M.F.d.L.). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Acknowledgments: The authors thank Hans Knecht for critical reading and comments. The authors 
are grateful to the Leukemia and Lymphoma Society of Canada (LLSC) for grant funding (SM), the 
Canadian Institutes of Health Research (CIHR) for Canada Research Chair (CRC) Tier 1 support 
(SM), and Research Manitoba for funding support (MFdL). Imaging was performed at the Genomic 
Centre for Cancer Research and Diagnosis (GCCRD). The GCCRD is funded by the Canada Foun-
dation for Innovation (CFI) and supported by the CancerCare Manitoba Foundation, the University 
of Manitoba, and through funds from a Canada Research Chair Tier 1 (SM). 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. BIBR1532 concentration titration using HDLM-2 cell line. Decrease in cell viability upon 
increase in BIBR1532 concentration. The decrease in viability is time-dependent as well as dose-
dependent. Data expressed as mean ± SEM. ** p < 0.01 and *** p < 0.001. TBDN—trabectedin. 

Figure A1. BIBR1532 concentration titration using HDLM-2 cell line. Decrease in cell viability
upon increase in BIBR1532 concentration. The decrease in viability is time-dependent as well as
dose-dependent. Data expressed as mean ± SEM. ** p < 0.01 and *** p < 0.001. TBDN—trabectedin.
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shows the zoomed cell. (B) Analysis of colocalization of PML bodies and pT371-TRF1 in L-248. A 
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ies and TRF2 in L-428. A white arrow shows the zoomed cell. (F) Analysis of colocalization of PML 
bodies and TRF2 in L-1236. A white arrow shows the zoomed cell. Colocalized signals are shown in 
yellow. PML (Cy3-Red). pT371-TRF1 (FIT C-Green). TRF2 (FITC-Green). 90 cells were examined in 
three independent experiments and for each cell line. All cell lines display colocalization of pT371-
TRF1 with PML and TRF2 with PML. However not all signals in each cell colocalize. 
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