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Abstract: High-fat diet (HFD)-induced obesity is a risk factor for colon cancer. Our previous data
show that compared to an AIN-93 diet (AIN), a HFD promotes azoxymethane (AOM)-induced colonic
aberrant crypt foci (ACF) formation and microbial dysbiosis in C57BL/6 mice. To explore the under-
lying metabolic basis, we hypothesize that AOM treatment triggers a different fecal metabolomic
profile in C57BL/6 mice fed the HFD or the AIN. We found that 65 of 196 identified metabolites were
significantly different among the four groups of mice (AIN, AIN + AOM, HFD, and HFD + AOM).
A sparse partial least squares discriminant analysis (sPLSDA) showed that concentrations of nine
fecal lipid metabolites were increased in the HFD + AOM compared to the HFD, which played a
key role in overall metabolome group separation. These nine fecal lipid metabolite concentrations
were positively associated with the number of colonic ACF, the cell proliferation of Ki67 proteins,
and the abundance of dysbiotic bacteria. These data suggest that the process of AOM-induced ACF
formation may increase selective fecal lipid concentrations in mice fed with a HFD but not an AIN.
Collectively, the accumulation of these critical fecal lipid species may alter the overall metabolome
during tumorigenesis in the colon.
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1. Introduction

Obesity is one of the most prevalent causes of non-communicable diseases across
the globe [1], and there is strong epidemiologic evidence linking diet-induced obesity to
increased risk of colon cancer in humans [2,3]. Mechanistic studies in mice show that the
consumption of a high-fat diet (HFD) leads to the accumulation of excess body fat similar
to those observed in obese humans, namely increased adiposity, chronic inflammation,
and risk of cancer in the colon [4]. However, this association may differ by sex and tumor
subsites in the colon [5]. For example, obesity is associated with a 30–70% increased risk
of colon cancer in men, whereas this association is less consistent and pronounced in
women [5,6]. Similarly, male mice are more sensitive to HFD-induced weight gain and
colonic inflammation than female mice [7]. As the first step in studying fecal metabolomics,
we then focused on determining the impact of AOM treatment on fecal metabolome in
male mice in this study, hoping to provide new data for designing future female mouse
experiments. We recently reported that in a mouse model, a HFD promotes the formation of
azoxymethane (AOM)-induced aberrant crypt foci (ACF) (a putative preneoplastic lesion)
and microbial dysbiosis in the colon [8]. However, the underlying metabolic process
remains to be determined.

Metabolic status can be potentially tracked through metabolomics as small-molecule
metabolites represent a dynamic situation in response to physiological and pathological
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changes [9]. Untargeted metabolite profiling may define a molecular phenotype represent-
ing the underlying biochemical change [10]. Recent data demonstrate that a HFD drives
tumorigenesis in the colon through inducing gut microbial dysbiosis and metabolomic
dysregulation [11]. However, the impact of the formation of AOM-induced ACF on fecal
metabolome in the colon, when compared to the healthy (untreated) colon, remains largely
unknown. As the interplay between cancer cells and tumor microenvironment plays a
fundamental role in tumor progression [12], we hypothesize that AOM treatment triggers a
different fecal metabolomic profile in C57BL/6 mice fed with the HFD or the AIN-93 diet
(AIN) [8].

2. Results

To determine the impact of the AOM treatment on the fecal metabolome in the colon,
we compared the fecal metabolome of the four groups of mice fed with two different diets
with and without AOM (AIN, AIN + AOM, HFD, and HFD + AOM) [8].

2.1. Effect of AOM Treatment on the Abundance of Fecal Metabolites

Daily fecal samples were collected and stored at −80 ◦C during the last week of the
study (week 14) [8]. We identified 196 metabolites (Table S1) from 455 discrete signals
detected in the fecal samples using GC-TOF-MS, and 65 of 196 identified metabolites were
significantly different among the four treatment groups. The relative values for these
65 metabolites compared to the AIN group are shown in Table 1.

Table 1. The effect of AOM treatment and diet on the abundance of fecal metabolites.

Metabolites AIN AIN + AOM HFD HFD + AOM

Adenine 1.00 ± 0.19 a 1.02 ± 0.29 a 0.89 ± 0.26 ab 0.64 ± 0.27 b

Adenosine-5-monophosphate 1.00 ± 0.18 a 0.88 ± 0.37 ab 0.58 ± 0.25 bc 0.51 ± 0.26 c

Alanine 1.00 ± 0.20 ab 1.34 ± 0.76 a 0.84 ± 0.20 b 0.70 ± 0.25 b

Alanine-alanine 1.00 ± 0.47 ab 1.19 ± 0.57 a 0.73 ± 0.24 ab 0.62 ± 0.33 b

Arachidic acid 1.00 ± 0.36 c 0.77 ± 0.27 c 3.55 ± 0.76 b 4.72 ± 1.13 a

Aspartic acid 1.00 ± 0.57 ab 1.48 ± 0.87 a 0.51 ± 0.25 bc 0.34 ± 0.24 c

Azelaic acid 1.00 ± 0.50 c 1.23 ± 0.55 bc 1.80 ± 0.78 ab 2.02 ± 0.40 a

Benzoic acid 1.00 ± 0.22 b 0.98 ± 0.27 b 1.46 ± 0.28 a 1.17 ± 0.34 ab

Beta-alanine 1.00 ± 0.24 a 0.86 ± 0.28 ab 0.64 ± 0.19 bc 0.62 ± 0.17 c

Beta-glutamic acid 1.00 ± 0.66 a 0.94 ± 0.37 a 0.63 ± 0.20 ab 0.54 ± 0.23 b

Biphenyl 1.00 ± 0.46 ab 0.88 ± 0.39 b 1.37 ± 0.28 a 0.88 ± 0.31 b

Cellobiose 1.00 ± 0.77 a 0.71 ± 0.33 ab 0.26 ± 0.10 b 0.32 ± 0.29 b

Cholesterol 1.00 ± 0.30 c 1.09 ± 0.47 c 1.58 ± 0.34 b 2.24 ± 0.56 a

Cis-gondoic acid 1.00 ± 0.48 b 0.62 ± 0.26 b 3.62 ± 1.56 b 10.57 ± 6.68 a

Citramalic acid 1.00 ± 0.19 ab 0.88 ± 0.21 ab 1.09 ± 0.28 a 0.78 ± 0.18 b

Citric acid 1.00 ± 0.55 a 0.96 ± 0.45 a 0.56 ± 0.31 ab 0.36 ± 0.13 b

Creatinine 1.00 ± 0.65 a 0.45 ± 0.33 b 0.30 ± 0.16 b 0.45 ± 0.44 b

Deoxycholic acid 1.00 ± 0.38 c 0.72 ± 0.41 c 4.64 ± 1.14 a 1.90 ± 0.58 b

Ethanolamine 1.00 ± 0.80 a 0.73 ± 0.52 ab 0.38 ± 0.19 b 0.45 ± 0.31 b

Fructose 1.00 ± 0.79 a 0.58 ± 0.38 ab 0.29 ± 0.14 b 0.36 ± 0.31 b

Glucose 1.00 ± 0.86 a 0.56 ± 0.36 ab 0.23 ± 0.24 b 0.14 ± 0.12 b

Glyceric acid 1.00 ± 0.37 ab 1.23 ± 0.32 a 0.89 ± 0.20 bc 0.59 ± 0.24 c

Glycerol-3-galactoside 1.00 ± 0.46 ab 0.68 ± 0.23 c 1.18 ± 0.28 a 0.71 ± 0.20 bc

Glycerol-alpha-phosphate 1.00 ± 0.31 ab 1.17 ± 0.37 a 0.79 ± 0.24 b 0.78 ± 0.26 b

Glycolic acid 1.00 ± 0.24 b 0.99 ± 0.34 b 1.48 ± 0.44 a 0.87 ± 0.30 b

Heptadecanoic acid 1.00 ± 0.42 b 0.94 ± 0.34 ab 1.37 ± 0.37 a 1.36 ± 0.40 a

Hexadecylglycerol 1.00 ± 0.71 b 0.57 ± 0.31 b 2.94 ± 1.31 b 7.83 ± 5.34 a

Isomaltose 1.00 ± 0.97 a 0.47 ± 0.47 ab 0.16 ± 0.03 b 0.19 ± 0.05 b

Isothreonic acid 1.00 ± 0.70 a 0.56 ± 0.58 ab 0.37 ± 0.34 b 0.36 ± 0.40 b

Linoleic acid 1.00 ± 0.40 c 0.95 ± 0.41 c 3.26 ± 0.76 b 6.64 ± 2.38 a
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Table 1. Cont.

Metabolites AIN AIN + AOM HFD HFD + AOM

Lysine 1.00 ± 0.40 ab 0.90 ± 0.36 b 1.66 ± 0.76 a 1.32 ± 0.67 ab

Maltose 1.00 ± 0.53 a 0.56 ± 0.26 b 0.16 ± 0.07 c 0.20 ± 0.25 c

N-acetylglutamate 1.00 ± 0.65 a 1.96 ± 0.92 b 0.47 ± 0.31 b 0.56 ± 0.26 b

Nicotinic acid 1.00 ± 0.42 ab 1.19 ± 0.33 a 0.79 ± 0.19 b 0.69 ± 0.17 b

Octadecanol 1.00 ± 0.55 b 0.81 ± 0.31 b 1.16 ± 0.41 ab 1.91 ± 1.35 a

Octadecylglycerol 1.00 ± 0.53 b 0.66 ± 0.31 b 2.93 ± 0.98 b 7.08 ± 4.28 a

Oleic acid 1.00 ± 0.25 b 0.92 ± 0.40 b 2.71 ± 1.17 b 8.47 ± 5.08 a

Palmitic acid 1.00 ± 0.26 c 1.00 ±0.26 c 2.12 ± 0.29 b 3.44 ± 1.01 a

Palmitoleic acid 1.00 ± 0.53 b 0.81 ± 0.37 b 2.24 ± 1.03 b 4.07 ± 2.17 a

Phenylacetic acid 1.00 ± 0.37 c 1.29 ± 0.56 bc 1.74 ± 0.61 ab 1.95 ± 0.66 a

Pimelic acid 1.00 ± 0.26 b 0.88 ± 0.29 b 1.35 ± 0.29 a 1.00 ± 0.21 b

p-tolyl glucuronide 1.00 ± 0.73 b 0.83 ± 0.95 b 1.01 ± 0.72 b 2.33 ± 1.79 a

Putrescine 1.00 ± 0.38 b 0.56 ± 0.29 b 4.71 ± 5.34 a 2.58 ± 2.18 ab

Sophorose 1.00 ± 1.20 a 0.31 ± 0.35 b 0.09 ± 0.05 b 0.08 ± 0.05 b

Stearic acid 1.00 ± 0.24 c 1.12 ± 0.42 c 2.45 ± 0.63 b 3.15 ± 0.89 a

Stigmasterol 1.00 ± 0.33 b 0.87 ± 0.42 b 1.90 ± 0.99 a 1.13 ± 0.86 b

Tartaric acid 1.00 ± 1.20 a 0.58 ± 0.74 ab 0.10 ± 0.05 b 0.10 ± 0.10 b

Threonic acid 1.00 ± 0.67 a 0.40 ± 0.31 b 0.49 ± 0.37 b 0.38 ± 0.31 b

Thymine 1.00 ± 0.25 ab 1.13 ± 0.30 a 0.59 ± 0.30 c 0.70 ± 0.26 bc

Tocopherol beta 1.00 ± 0.29 c 1.07 ± 0.47 c 5.44 ± 2.24 a 3.64 ± 1.80 b

Triethanolamine 1.00 ± 0.28 ab 0.86 ± 0.32 b 1.28 ± 0.54 a 0.85 ± 0.24 b

Tyramine 1.00 ± 0.66 b 1.77 ± 1.16 ab 2.82 ± 1.56 a 1.79 ± 1.16 ab

UDP-N-acetylglucosamine 1.00 ± 0.39 b 1.47 ± 0.50 a 1.06 ± 0.36 ab 0.88 ± 0.38 b

Uracil 1.00 ± 0.32 ab 1.14 ± 0.30 a 0.71 ± 0.22 b 0.78 ± 0.23 b

Urocanic acid 1.00 ± 0.28 a 0.86 ± 0.23 ab 0.81 ± 0.25 ab 0.70 ± 0.13 b

1,3-Diaminopropane 1.00 ± 0.42 bc 0.68 ± 0.21 c 3.20 ± 2.42 a 1.99 ± 1.28 ab

1-Hexadecanol 1.00 ± 0.72 b 1.04 ± 0.82 b 1.15 ± 0.82 ab 2.71 ± 2.46 a

1-Monoolein 1.00 ± 0.57 a 0.71 ± 0.38 ab 0.39 ± 0.12 b 0.40 ± 0.16 b

2-Hydroxyvaleric acid 1.00 ± 0.20 b 1.11 ± 0.40 ab 1.45 ± 0.34 a 1.25 ± 0.27 ab

2-Methylglyceric acid 1.00 ± 0.27 b 1.01 ± 0.37 b 1.43 ± 0.31 a 1.08 ± 0.27 b

3-Epicholic acid 1.00 ± 1.32 ab 0.53 ± 0.55 b 2.20 ± 2.41 a 0.47 ± 0.36 b

3-Hydroxy-3-methyglutaric acid 1.00 ± 0.26 ab 0.89 ± 0.46 b 1.45 ± 0.57 a 1.02 ± 0.36 ab

3-Phenyllactic acid 1.00 ± 0.35 ab 0.98 ± 0.60 a 0.55 ± 0.23 bc 0.48 ± 0.18 c

4-Aminobutyric acid 1.00 ± 0.26 b 0.89 ± 0.22 b 1.63 ± 1.00 a 0.83 ± 0.25 b

6-Hydroxynicotinic acid 1.00 ± 0.30 b 0.96 ± 0.40 b 2.34 ± 0.40 a 1.14 ± 0.38 b

Values are means ± SDs, n = 10/group (AIN or HFD group) and n = 15/group (AIN + AOM or HFD + AOM
group). Data from the HFD, AIN + AOM, and HFD + AOM groups were converted to fold changes compared to
the AIN group. For a given metabolite, if two values do not share at least one common letter (a, b, or c), then the
difference between them is statistically significant (p < 0.05 is adjusted by the FDR method).

2.2. Effect of Diet and AOM Treatment on Overall Fecal Metabolome

To further determine the effect of AOM treatment on the overall metabolome, sparse
partial least squares discriminant analysis (sPLSDA) was used to visualize the individ-
ual sample variability and overall metabolite separation between experimental groups
(Figure 1A). There was separation between the HFD and HFD + AOM groups, but not
the AIN and AIN + AOM groups, component 1 (32.7%) played a greater role than that of
component 2 (9.2%) for this score plot (Figure 1).
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Figure 1. Two-dimensional (2D) sPLS-DA of the 4 experimental groups (A) and loading plots of
10 metabolites which are most significant in group separation among the four groups for compo-
nent 1 (B) and component 2 (C). Mice without AOM treatment (control), n = 10/group (AIN or HFD
group). Mice with AOM treatment, n = 15/group (AIN + AOM or HFD + AOM group).

The top 10 metabolites determining component 1 separation were (1) the increased
concentrations of arachidic acid (20:0; ≥33%), linoleic acid (18:2n-6; ≥104%), cis-gondoic
acid (20:1n-9; ≥192%), octadecylglycerol (≥142%), palmitic acid (16:0; ≥62%), oleic acid
(18:1n-9); ≥213%), hexadecylglycerol (≥166%), stearic acid (18:0; ≥29%), and palmitoleic
acid (16:1n-7; ≥82%) in the HFD + AOM group relative to other treatments; and (2) the
increased concentration of maltose (≥44%) in the AIN group compared to other groups
(Figure 1B, Table 1).

Conversely, the top 10 metabolites in the HFD group for component 2 separation, rela-
tive to the HFD + AOM group, were the increased concentrations of 6-hydroxynicotinic acid
(≥105%), 4-aminobutyric acid (≥63%), deoxycholic acid (≥144%), glycerol-3-galactoside
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(≥18%), 3-epicholic acid (≥120%), pimelic acid (≥35%), glycolic acid (≥48%), citramalic
acid (≥9%), triethanolamine (≥28%), and biphenyl (≥37%) (Figure 1C, Table 1).

2.3. Effect of Diet and AOM Treatment on Metabolic Pathways and Potential Disease Aspects

These 65 altered metabolites (Table 1) were significantly involved in 32 of 82 bio-
chemical pathways in a pathway library of mice (Table S2). The top 8 significant path-
ways (Figure 2) included (1) the biosynthesis of unsaturated fatty acids; (2) linoleic acid
metabolism; (3) fatty acid biosynthesis; (4) fatty acid elongation; (5) beta-alanine metabolism;
(6) fatty acid degradation; (7) pantothenate and CoA biosynthesis; and (8) alanine, aspartate,
and glutamate metabolism.
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acid metabolism was the critical metabolic process in all four experimental groups, it did 
not address the specific pathways which were most crucial to HFD and ensuing colon 

Figure 2. Overall pathway enrichment analysis of the 65 differential metabolites in the AIN, HFD,
AIN + AOM, and HFD + AOM groups. Only the top 8 of 32 statistically significant pathways
(Table S2) are listed here; the p-values are obtained by pathway enrichment analysis and adjusted
by both Holm and FDR methods; the p-value and red-dot color intensity are inversely proportional.
* The pathway impact score is obtained by pathway topology analysis.
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Although the overall pathway enrichment analysis (Figure 2) demonstrated that fatty
acid metabolism was the critical metabolic process in all four experimental groups, it did
not address the specific pathways which were most crucial to HFD and ensuing colon
cancer. Subsequently, we examined the metabolic pathways of the AIN vs. HFD group
(Table 2A) and the HFD vs. HFD + AOM group (Table 2B). Similar to that of the overall
pathway analysis (Figure 2), lipid metabolism pathways remained in the top eight pathways
(Table 2A,B). However, the significant priorities of the pathways were different between
the AIN group vs. the HFD group (Table 2A) and between the HFD group vs. the HFD
+ AOM group (Table 2B). For example, the most crucial pathway was the biosynthesis of
unsaturated fatty acids in the AIN group vs. the HFD group (Table 2A), while there was
linoleic acid metabolism in the HFD group vs. the HFD + AOM group (Table 2B).

Table 2. (A): In the AIN vs HFD group, the top 8 significant metabolic pathways are involved in
the 65 altered metabolites *. (B): In the HFD vs. HFD + AOM group, the top 8 significant metabolic
pathways are involved in the 65 altered metabolites **.

A

KEGG Pathway Total
Compounds Hits FDR p Impact ***

Biosynthesis of unsaturated fatty acids 36 5 2.10 × 10−8 0.00

Fatty acid biosynthesis 47 1 1.46 × 10−6 0.01

Fatty acid elongation 39 1 1.46 × 10−6 0.00

Linoleic acid metabolism 5 1 1.46 × 10−6 1.00

Fatty acid degradation 39 2 4.93 × 10−5 0.00

Beta-alanine metabolism 21 4 3.54 × 10−4 0.40

Primary bile acid biosynthesis 46 1 2.54 × 10−3 0.03

Steroid biosynthesis 42 1 2.54 × 10−3 0.03

B

KEGG Pathway Total
Compounds Hits FDR p Impact ***

Linoleic acid metabolism 5 1 2.48 × 10−4 1.00

Fatty acid degradation 39 2 3.75 × 10−4 0.00

Biosynthesis of unsaturated fatty acids 36 5 3.75 × 10−4 0.00

Fatty acid biosynthesis 47 1 5.73 × 10−3 0.01

Fatty acid elongation 39 1 5.73 × 10−3 0.00

Butanoate metabolism 15 1 7.03 × 10−3 0.03

Alanine, aspartate, and glutamate metabolism 28 4 7.13 × 10−3 0.31

Glyoxylate and dicarboxylate metabolism 32 2 7.13 × 10−3 0.11
* Only the top 8 of 23 statistically significant pathways (Table S3) are listed here. ** Only the top 8 of 15 statistically
significant pathways (Table S4) are listed here; the p-values are obtained by pathway enrichment analysis and ad-
justed by both Holm and FDR methods. *** The pathway impact score is obtained by pathway topology analysis.

To further explore the potential roles of these 65 differential metabolites in human
disease aspects, we conducted a metabolite set enrichment analysis. These 65 metabolites
were significantly involved in 27 of the 44 reported metabolite sets in human feces (Table S5).
The top eight reported human fecal metabolite sets (Figure 3, Table S5) included ulcerative
colitis, colorectal cancer, colonic Crohn’s diseases, ileal Crohn’s diseases, bladder infections,
interstitial cystitis, irritable bowel syndrome, and cirrhosis.
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2.4. Correlation between Key Fecal and Plasma Fatty Acids

As shown in Figures 2 and 3, fatty-acid-related pathways were the top overall metabolic
action related to colonic inflammation and cancer. Component 1 (Figure 1B) mainly in-
volved free fatty acids in which all seven fecal fatty acid concentrations were increased in
the HFD + AOM group compared to the HFD group. In contrast, our previous study [13]
showed that the concentrations of arachidic acid, cis-gondoic acid, oleic acid, palmitic acid,
palmitoleic acid, and stearic acid (six of seven of these fatty acids) did not differ, and only
the concentration of linoleic acid was increased in the HFD + AOM group compared to the
HFD group. To further understand the connection between the colonic microenvironment
and body system, we analyzed the correlation (Figure 4) between these seven fecal and
plasma fatty acids. The plasma data of seven fatty acids were taken from our previous
study [13]. The correlation analysis (Figure 4) showed that linoleic acid and oleic acid in
the fecal samples were positively associated with concentrations in the plasma samples,
while palmitic acid and palmitoleic acid were inversely associated. However, there was
not a correlation between the concentrations of arachidic acid, cis-gondoic acid, and stearic
acid in fecal samples and those in plasma samples (Figure 4).

2.5. Correlation between Fecal Metabolites (or Plasma Counterpart Metabolites), AC, ACF, iNOS,
Ki67, and Colonic Bacteria

As shown in Figures 2–4, component 1 (Figure 1B) mainly concerned free fatty acids,
which might be associated with molecular actions related to colonic inflammation and
cancer. In addition to being part of the colonic microenvironment, these fecal fatty acids
could potentially be biomarker candidates because they can be non-invasively collected.
Therefore, we examined the correlation between component 1 metabolites (Figure 1B) (or
the plasma counterpart metabolites) and ACF formation, oncogenic proteins, and bacterial
dysbiosis. Data on the plasma, AOM-induced colonic AC, ACF, iNOS, Ki67, Proteobacteria,
and Tenericutes were taken from our previous studies [8,13].
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Correlation heatmap analysis (Figure 5) revealed the following. (1) Except for an in-
verse association with maltose, there was a positive association between the concentrations
of all nine fecal lipid metabolites of component 1 (Figure 1B); the number of AC, ACF, and
Ki67 proteins; and the abundance of proteobacteria in the colon (Figure 5A). Moreover, the
concentration of fecal linoleic acid was also positively associated with the iNOS protein
and abundance of Tenericutes (Figure 5A). (2) In contrast, when the plasma counterpart
metabolites were used in the same correlation analysis (Figure 5B), we found that only the
concentrations of plasma linoleic acid and oleic acid were positively associated with (AC
and ACF) and (Ki67 and proteobacteria), respectively (Figure 5B). However, the concen-
tration of plasma palmitoleic acid was inversely associated with Ki67 and Proteobacteria
(Figure 5B).



Biomedicines 2022, 10, 2891 9 of 15Biomedicines 2022, 10, x FOR PEER REVIEW 9 of 15 
 

 
Figure 5. Correlation between the concentrations of panel (A)—the 10 metabolites of component 1 
(Figure 1) or (B)—the 8 plasma counterpart metabolites of component 1 in our previous study [13] 
**, the number of AC and ACF protein levels of iNOS and Ki67, and the abundance of Proteobacteria 
and Tenericutes in the ileum/colon in our previous study [8]. The heatmap color stands for a corre-
lation coefficient r value. * p < 0.05, a significant FDR-adjusted Spearman correlation (n = 44 to 50). 
** Octadecylglycerol and hexadecylglycerol could not be detected in the plasma samples in our pre-
vious study [13]. 

 

Figure 5. Correlation between the concentrations of panel (A)—the 10 metabolites of component 1
(Figure 1) or (B)—the 8 plasma counterpart metabolites of component 1 in our previous study [13] **,
the number of AC and ACF protein levels of iNOS and Ki67, and the abundance of Proteobacteria
and Tenericutes in the ileum/colon in our previous study [8]. The heatmap color stands for a
correlation coefficient r value. * p < 0.05, a significant FDR-adjusted Spearman correlation (n = 44 to
50). ** Octadecylglycerol and hexadecylglycerol could not be detected in the plasma samples in our
previous study [13].
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3. Discussion

In the present report, 65 of the 196 identified metabolites were significantly different
among the four treatment groups (Table 1 and Table S1, Figure 1). Importantly, there was
an overall metabolomic separation between the HFD and HFD + AOM groups (Figure 1A),
and this observation suggests that AOM-induced ACF formation is associated with a
greater fecal metabolomic change in C57BL/6 mice fed with a HFD when compared to
an AIN.

The effects of AOM-induced ACF formation on these metabolite concentrations
(Table 1) suggest several biological significances. First, it is known that AOM is hydroxy-
lated by the microsomal monooxygenase system in the liver, is immediately conjugated with
glucuronic acid, and is transported via the bile to the intestine [14]. The AOM-conjugated
glucuronic acid may be hydrolyzed by gut bacterial β-glucuronidase to free methylazoxy
methanol, an active carcinogen in the colon [15]. As glucuronic acid is a precursor for
p-tolyl glucuronide [15,16], the p-tolyl glucuronide concentration was increased (>100%) in
the HFD + AOM group compared to other three groups (Table 1), suggesting a higher level
of bacterial β-glucuronidase (a marker for procarcinogenic activity) in the HFD + AOM
group [17]. This observation is in line with the idea that a diet high in fat and sucrose and
low in calcium and fiber, with a high risk for colon cancer, increases fecal β-glucuronidase
activity [17,18]. However, future studies on bacterial glucuronidase activity are warranted
to confirm this potential molecular action.

Metabolites of component 1 were lipid metabolites and their concentrations were
greatly increased in the HFD + AOM group compared to the other three groups (Figure 1B).
In Figure 1B, 7 of the 10 metabolites of component 1 were fatty acids (arachidic acid, linoleic
acid, cis-gondoic acid, palmitic acid, oleic acid, stearic acid, and palmitoleic acid). It has
been documented that corn oil contains all of these seven fatty acid species [19] and the
HFD in this report was corn-oil-based [8]. Thus, this finding (Figure 1B) suggests that
the process of AOM-induced-ACF may be associated with a > one-fold increase in these
lipid metabolites in the colon, which may promote and/or exacerbate a procarcinogenic
microenvironment for colonic tumorigenesis cancer in the context of HFD consumption.
Alternatively, AOM treatment may also impact the absorption of lipids from the gut, a
process that only becomes evident in context of the lipid-rich HFD.

Third, except glycolic acid in the AIN group, all 10 endogenous metabolites, such as
bile acid byproducts of component 2, were decreased by AOM for both diets (Figure 1C).
There are a few probable causes. For example, during the AOM-induced ACF forma-
tion, epithelial cell mutations may cause a decrease in a certain nutrient (e.g., cholesterol)
uptake [20,21]. Additionally, as there was a weight loss in the AIN + AOM and HFD +
AOM groups in our previous data [8], and an intestinal cachexia may occur because of
metabolic and nutritional changes during the progression of tumorigenesis [22]. Overall,
these abnormal changes in fecal metabolite/fatty acids (Figure 1) correspond to the notion
that inflammation caused by the metabolic processing of fatty acids (generated by lipid
overdose) increases the risk of tumorigenesis [23].

To determine the biological impact of these 65 differential metabolites on the metabolism,
pathway enrichment analysis demonstrated that these 65 altered metabolites (Table 1) were
significantly involved in 32 biochemical pathways (Table S2). Five of the eight top path-
ways (among these 32 biochemical pathways) (Figure 2) were related to the biosynthesis,
elongation, and degradation of free fatty acids, particularly unsaturated fatty acids. These
data are in agreement with the increased concentrations of unsaturated fatty acids, such as
linoleic acid, cis-gondoic acid, oleic acid, and palmitoleic acid in the HFD + AOM group
(Figure 1B). The linoleic acid metabolism played an important metabolic role because of
the high overall impact score (Figure 2). Further pathway dissection analysis showed that
the most crucial pathway was the biosynthesis of unsaturated fatty acids in the AIN vs.
HFD group (Table 2A), while linoleic acid metabolism in the HFD vs. HFD + AOM group
(Table 2B). These mechanistic pathway analyses suggest that these two pathways may be
the top metabolic actions specific to the HFD and HFD + AOM treatment, respectively.
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In agreement with the pathway enrichment analysis, metabolite set enrichment analy-
sis also revealed that 65 differential metabolites were statistically matched with 27 metabo-
lite sets (Figure 3, Table S5). Five of the eight top metabolite sets (among those 27 metabolite
sets) were involved in gastrointestinal inflammation and diseases such as ulcerative colitis,
colorectal cancer, colonic/ileal Crohn’s diseases, and irritable bowel syndrome (Figure 3).
To examine the connection between fecal and plasma fatty acids, correlation analysis
(Figure 4) was used to show that only the concentrations of linoleic acid and oleic acid in
the fecal samples were positively associated with concentrations in the plasma samples.
These findings are in line with recent reports that dietary linoleic acid and oleic acid are
unsaturated fatty acids known to cause inflammation and promote the development of
colon cancer [24–27].

While the underlying mechanism of fecal lipid accumulation (Figure 1B) remains
to be determined, it can be shown that the AOM-induced ACF process may selectively
enrich certain bacterial taxa in the colon, which are likely to play a role in fatty acid
biosynthesis. For examples, our previous report [8] showed that, at the genus level, the
highest increased bacterial taxonomy was lactobacillus due to the HFD + AOM treatment,
in which the abundance of colonic lactobacillus in the HFD + AOM group was 3.32%
compared to <0.85% in the AIN, AIN + AOM, or HFD groups. It is known that lactobacillus
bacteria contain novel multi-component enzyme machinery (e.g., linoleic acid isomerase)
which catalyzes C=C double-bond migration for conjugated fatty acid synthesis [28,29].

To explore the functional connection, we determined the interrelation of fecal (or
plasma) lipid metabolites and potential oncogenic signatures in the colon. The correlation
analysis demonstrated that nine fecal lipid metabolites of component 1 (Figure 1B) were
positively associated with the number of AC and ACF proteins, the cell proliferation protein
marker Ki67, and the abundance of dysbiotic proteobacteria (Figure 5A) [8]. Furthermore,
fecal linoleic acid was also positively associated with inflammatory iNOS protein and
potential dysbiotic bacteria (Tenericutes) (Figure 5A) [8]. In contrast, only the concentrations
of plasma linoleic acid and oleic acid were positively associated with (AC and ACF)
and (Ki67 and Proteobacteria), respectively (Figure 5B). Consistent with the fecal data
(Figure 5A), the plasma lipid data (Figure 5B) further suggest the connection between
linoleic acid, oleic acid, and oncogenic signatures in the colon. These data suggest several
biological implications: (1) at the colonic microenvironment and systemic levels, the critical
role of the metabolism of certain fatty acids (e.g., linoleic acid) in colonic inflammation
and tumorigenesis is underscored in the context of diet-induced obesity; (2) compared to
plasma lipid metabolites, fecal lipid metabolites are more suitable/sensitive for seeking
potential colon cancer biomarkers; (3) the combination of both fecal and plasma lipid
profiles will provide a new molecular basis and additional validation when seeking colon
health markers. Collectively, our data suggest that the process of AOM-induced ACF
formation is associated with a change in fecal metabolome, and may increase certain fecal
lipid signatures correlated with the effects of gut inflammation and tumorigenesis in the
colon in a male mouse model fed with a HFD (Figure 6). If this correlation also exists in
our future female mouse experiments, the identification of fecal metabolome signatures in
humans may open new avenues for seeking non-invasive colon health biomarkers.
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4. Materials and Methods
4.1. Animals, Diets, and AOM Treatment

The study design, diet composition, and preparation have been previously reported [8].
Three- to four-week-old male C57BL/6 mice (Harlan, Madison, WI) were individually
housed in PlexiglasTM ventilated cages within a pathogen-free facility that maintained
a 12 h light–dark cycle and a temperature of 22 ± 1 ◦C. Mice were given free access
to food and deionized water. This study was approved by the Animal Care and Use
Committee of the Grand Forks Human Nutrition Research Center (protocol code HZ13M2),
and animals were maintained in accordance with NIH guidelines for the care and use
of laboratory animals. Briefly, C57BL/6 mice were randomly assigned to either an AIN
or HFD group (n = 25/group) for the entire experimental period (14 weeks). On week 3,
within a given diet group, mice received either weekly intraperitoneal injections of the
colon carcinogen, AOM (Sigma, St. Louis, MO) (n = 15/group) at a concentration of
8 mg/kg body weight [30], or phosphate buffered saline (PBS, pH = 7.4) carrier solution
(n = 10/group) for 4 weeks. At the termination of the experiment, mice were fasted for 6 h
and then euthanized with a mixture of ketamine and xylazine (100 mg/kg body weight).
At the end of the study (week 14), (A) fecal and plasma samples were collected and stored
at −80 ◦C for metabolomic analysis [13], and (B) ileum and colon samples were fixed for
immunohistochemistry protein, AC, and ACF analyses [8].

4.2. Fecal Metabolomics

Metabolomic analysis was performed at the West Coast Metabolomics Center (Uni-
versity of California, Davis Genomic Center, Davis, CA, USA) [31,32]. Fecal samples were
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extracted and derivatized by silylation and methyloximation, and analyzed by GC-TOF-MS
for untargeted metabolomics with >95% accuracy for metabolite species identification. Data
were processed at the West Coast Metabolomics Center using the BinBase database [33].
Metabolite quantifier ion peak heights were normalized to the sum intensities of all known
compounds and used for the follow-up statistical analyses (Table S1).

4.3. Statistical and Bioinformatic Analysis

To avoid a skewed distribution when performing bioinformatic analysis, the ob-
tained (peak-intensity) data were normalized by Log10 transformation with an auto-scaling
method which is highly recommended for most peak intensity data using MetaboAnalyst
software (version 5.0, McGill University, Sainte Anne de Bellevue, QC, Canada) [34,35]. The
metabolite group separation and functional pathways were analyzed by sPLSDA, pathway
enrichment analysis, and metabolite set enrichment analysis using the MetaboAnalyst
software [34,35], respectively. The effects of the relative abundance of fecal metabolites
were analyzed using a two-way analysis of variance (ANOVA), corrected by a false dis-
covery rate (FDR) of 0.05, and Tukey’s contrasts for post-hoc comparisons. Results are
given as mean ± standard deviation (SD). JMP V15 (SAS Institute Inc., Cary, NC) and
MetaboAnalyst software (version 5.0, McGill University, Sainte Anne de Bellevue, QC,
Canada) were used for all statistical analyses [34,35].

5. Conclusions

Taken together, our results demonstrate that the process of AOM-induced ACF for-
mation is associated with an increase in fecal fatty acids in male mice fed with a HFD but
not an AIN. The accumulation of fecal fatty acids also correlates with changes in overall
metabolome compositions and may be directly related to tumorigenesis in the colon in a
male mouse model.
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from C57BL/6 mice fed with the AIN or the HFD and with or without AOM treatment. Table S2: The
32 statistically significant metabolic pathways involved in the 65 altered metabolites. Table S3: In the
AIN vs HFD group, the 23 statistically significant metabolic pathways are involved in the 65 altered
metabolites. Table S4: In the HFD vs HFD + AOM group, the 15 statistically significant metabolic
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involved in the 65 altered metabolites.
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