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Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease character-
ized by the loss of upper and lower motor neurons, which eventually may lead to death. Critical
to the mission of developing effective therapies for ALS is the discovery of biomarkers that can
illuminate mechanisms of neurodegeneration and have diagnostic, prognostic, or pharmacodynamic
value. Here, we merged unbiased discovery-based approaches and targeted quantitative comparative
analyses to identify proteins that are altered in cerebrospinal fluid (CSF) from patients with ALS.
Mass spectrometry (MS)-based proteomic approaches employing tandem mass tag (TMT) quantifi-
cation methods from 40 CSF samples comprising 20 patients with ALS and 20 healthy control (HC)
individuals identified 53 proteins that are differential between the two groups after CSF fractionation.
Notably, these proteins included both previously identified ones, validating our approach, and
novel ones that have the potential for expanding biomarker repertoire. The identified proteins were
subsequently examined using parallel reaction monitoring (PRM) MS methods on 61 unfractionated
CSF samples comprising 30 patients with ALS and 31 HC individuals. Fifteen proteins (APOB, APP,
CAMK2A, CHI3L1, CHIT1, CLSTN3, ERAP2, FSTL4, GPNMB, JCHAIN, L1CAM, NPTX2, SERPINA1,
SERPINA3, and UCHL1) showed significant differences between ALS and the control. Taken together,
this study identified multiple novel proteins that are altered in ALS, providing the foundation for
developing new biomarkers for ALS.

Keywords: amyotrophic lateral sclerosis; cerebrospinal fluid; proteomics; mass spectrometry; biomarker

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease char-
acterized by the loss of upper and lower motor neurons, eventually leading to death [1–5].
An average of 5.5 people per 100,000 population are annually diagnosed with ALS in
the United States [6–8]. ALS patients die within 2–5 years after the first diagnosis [1,9].
Clinical hallmarks of ALS have significant heterogeneity, including behavioral changes
for ≈60% of the cases and co-occurrence of frontotemporal dementia for ≈15% of the
cases [10]. The etiology of ALS is still elusive. Although 5–10% of ALS cases are familial,
most cases are sporadic [11]. The commonly known genetic risk factors of ALS include
changes in C9ORF72, SOD1, TARDBP, and FUS [9]. Genetic changes in C9ORF72, which is
the most frequently observed in ALS, are autosomal dominant and manifested by several
hundred to thousands of hexanucleotide repeats of GGGGCC in the promotor or intron1 of
the gene [12]. More than 170 genetic alterations are observed in SOD1 in ALS, and these
are also autosomal dominant. Because most of the mutations in SOD1 are observed in
exons, it is widely accepted that SOD1 protein dysfunction is linked to ALS pathogene-
sis [11,13]. TARDBP encodes TDP43, a DNA- and RNA-binding protein involved in the
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splicing, transcription, stability, and transport of mRNAs. TDP-43 is implicated in ALS
through gain-of-function mechanisms in which mutant TDP-43 disrupts stress granules or
via loss-of-function in which TDP-43 is depleted from the nucleus [11,14]. FUS encodes a
nucleoprotein that colocalizes with TDP-43 and is considered to have similar RNA editing
deficiencies as TDP-43 in ALS [15].

Since there is no cure for ALS, current treatment options are focused on slowing pro-
gression and managing symptoms. For instance, riluzole is employed to inhibit glutamate
release from pre-synaptic terminals, while edaravone acts as a free radical scavenger, thus
slowing the disease’s progression [16]. On the other hand, baclofen is utilized to alleviate
spasticity, while nuedexta is utilized to alleviate both spasticity and difficulties with swal-
lowing [16,17]. Therefore, the development of biomarkers that can be used for elucidating
disease mechanisms and for the diagnosis, prognosis, and estimation of pharmacodynamics
is imperative. Recently, there have been major efforts dedicated to identifying biomarkers
for ALS, and chief among these are quantitative methods to measure proteins in patient
biofluids such as blood, urine, saliva, and cerebrospinal fluid (CSF). Mass spectrometry
(MS)-based proteomic approaches are considered the gold standard for protein discov-
ery, and there have been multiple attempts to develop protein biomarkers for ALS using
proteomics technology [5,6,18–22]. So far, multiple proteins, including CHIT1, CHI3L1,
CHI3L2, UCHL1, MAP2, GPNMB, and neurofilament proteins, have been reported as candi-
date ALS biomarkers [23–26]. Many of these proteins await rigorous validation [27]. Clearly,
the discovery of additional novel biomarkers is needed, but one major barrier is that many
key regulatory proteins are of relatively low abundance and fail to be detected [28]. Accord-
ingly, the identification of useful biomarkers for ALS requires the application of innovative,
highly sensitive, and accurate methodologies. Herein, we report findings from an initial
unbiased proteomics discovery study on CSF from 20 patients with ALS and 20 healthy
controls (HC). We employed tandem-mass-tag (TMT)-based multiplexing technology for
the accurate and sensitive quantification of CSF proteins, with subsequent analysis of
TMT-labeled peptides via an Orbitrap Fusion Lumos ETD MS. From the discovery phase,
we identified several new candidate ALS biomarker proteins as well as several previously
reported ones, validating our approach. Using proteins identified from the discovery phase,
we subsequently performed a validation experiment using parallel reaction monitoring
(PRM) targeted MS in 61 CSF samples from 30 patients with ALS and 31 HC individuals.
Through these approaches, we identified novel biomarkers for ALS that can be used for
the diagnosis, prognosis, and estimation of pharmacodynamics, which will contribute to a
better understanding of ALS pathogenesis mechanisms. Further, this work highlights that
our innovative MS approach has iterative potential in other neurodegenerative diseases.

2. Methods
2.1. Collection of CSF Samples

CSF samples from 11 HC individuals and 30 patients with ALS were obtained from the
Northeast Amyotrophic Lateral Sclerosis (NEALS) consortium. Nineteen additional CSF
samples from HC individuals were provided by the Advancing Research and Treatment
for Frontotemporal Lobar Degeneration Research Consortium (ARTFL) at the University of
California San Francisco (UCSF). Lumbar punctures were performed using the atraumatic
technique and collected in a polypropylene tube before transferring to a 50 mL conical
polypropylene tube at room temperature (RT), which was mixed gently by inverting
3–4 times. Within 15 min of collection, CSF was centrifuged at 2000× g for 10 min at RT
and aliquoted directly into pre-cooled polypropylene cryovials. Within 60 min of CSF
collection, aliquots were frozen on dry ice and then stored at −80 ◦C, until further analysis.
For samples collected prior to 2015, the protocol used is described by Scherling CS et al. [29].
Study participants provided written informed consent, and all procedures were approved
by the relevant Institutional Review Boards (IRB). The demographics of CSF samples used
in this study are provided in Table 1.
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Table 1. The demographics of CSF samples used in this study.

Subject ID Sample Type Group Gender Race Age Application of the Samples
in This Study

ALS01 CSF ALSFRS 40 Male White 62 Discovery and Validation
ALS02 CSF ALSFRS 36 Female White 68 Discovery and Validation
ALS03 CSF ALSFRS 44 Male White 54 Discovery and Validation
ALS04 CSF ALSFRS 33 Female White 55 Discovery and Validation
ALS05 CSF ALSFRS 37 Female White 44 Discovery and Validation
ALS06 CSF ALSFRS 42 Female White 51 Discovery and Validation
ALS07 CSF ALSFRS 42 Male White 64 Discovery and Validation
ALS08 CSF ALSFRS 33 Female White 52 Discovery and Validation
ALS09 CSF ALSFRS 35 Male White 68 Discovery and Validation
ALS10 CSF ALSFRS 34 Male White 55 Discovery and Validation
ALS11 CSF ALSFRS 34 Male White 61 Discovery and Validation
ALS12 CSF ALSFRS 35 Male White 79 Discovery and Validation
ALS13 CSF ALSFRS 42 Male White 63 Discovery and Validation
ALS14 CSF ALSFRS 40 Male White 59 Discovery and Validation
ALS15 CSF ALSFRS 44 Female White 66 Discovery and Validation
ALS16 CSF ALSFRS 43 Male White 73 Discovery and Validation
ALS17 CSF ALSFRS 41 Male White 55 Discovery and Validation
ALS18 CSF ALSFRS 48 Male White 65 Discovery and Validation
ALS19 CSF ALSFRS 46 Male White 40 Discovery and Validation
ALS20 CSF ALSFRS 34 Female White 53 Discovery and Validation
ALS21 CSF No score Male White 64 Validation
ALS22 CSF ALSFRS 32 Male White 58 Validation
ALS23 CSF ALSFRS 42 Male White 45 Validation
ALS24 CSF ALSFRS 40 Female White 41 Validation
ALS25 CSF ALSFRS 47 Male White 44 Validation
ALS26 CSF ALSFRS 41 Male White 51 Validation
ALS27 CSF ALSFRS 40 Male White 68 Validation
ALS28 CSF ALSFRS 27 Female White 44 Validation
ALS29 CSF ALSFRS 48 Male White 57 Validation
ALS30 CSF ALSFRS 15 Female White 63 Validation
HC01 CSF Healthy Control Male White 38 Discovery and Validation
HC02 CSF Healthy Control Male White 58 Discovery and Validation
HC03 CSF Healthy Control Female White 23 Discovery and Validation
HC04 CSF Healthy Control Female White 58 Discovery and Validation
HC05 CSF Healthy Control Female Asian 43 Discovery and Validation
HC06 CSF Healthy Control Male White 35 Discovery and Validation
HC07 CSF Healthy Control Male White 57 Discovery and Validation
HC08 CSF Healthy Control Female White 46 Discovery and Validation
HC09 CSF Healthy Control Male White 76 Discovery and Validation
HC10 CSF Healthy Control Female White 44 Discovery and Validation
HC11 CSF Healthy Control Female White 47 Discovery and Validation
HC12 CSF Healthy Control Male White 70 Discovery and Validation
HC13 CSF Healthy Control Female White 62 Discovery and Validation
HC14 CSF Healthy Control Male White 74 Discovery and Validation
HC15 CSF Healthy Control Male White 66 Discovery and Validation
HC16 CSF Healthy Control Male White 72 Discovery and Validation
HC17 CSF Healthy Control Female White 62 Discovery and Validation
HC18 CSF Healthy Control Female White 66 Discovery and Validation
HC19 CSF Healthy Control Male White 69 Discovery and Validation
HC20 CSF Healthy Control Female White 55 Discovery and Validation
HC21 CSF Healthy Control Female White 61 Validation
HC22 CSF Healthy Control Male White 66 Validation
HC23 CSF Healthy Control Male White 67 Validation
HC24 CSF Healthy Control Female White 64 Validation
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Table 1. Cont.

Subject ID Sample Type Group Gender Race Age Application of the Samples
in This Study

HC25 CSF Healthy Control Female ND 59 Validation
HC26 CSF Healthy Control Male White 65 Validation
HC27 CSF Healthy Control Male White 66 Validation
HC28 CSF Healthy Control Female White 58 Validation
HC29 CSF Healthy Control Male White 54 Validation
HC30 CSF Healthy Control Female White 59 Validation
HC31 CSF Healthy Control Female ND 60 Validation

HC: healthy control; ALS: amyotrophic lateral sclerosis; ALSFRS: Amyotrophic Lateral Sclerosis Functional
Rating Scale.

2.2. Sample Preparation and Trypsin Digestion for Discovery Experiments

Sample preparation was conducted as described previously with minor modifica-
tions [30,31]. To analyze 40 CSF samples using an 11-plex TMT, the 40 CSF samples were
divided into 4 batches of 10 samples each, and a master pool (MP) sample was included in
each batch for normalization between 4 batches. The MP was prepared by combining an
equal volume from all 40 CSF samples including HC and ALS (Figure 1A). To denature pro-
teins in CSF, we mixed each CSF sample with one volume of lysis buffer composed of 10 M
urea, 100 mM triethylammonium bicarbonate (TEAB), 20 mM tris (2-carboxyethyl) phos-
phine hydrochloride (TCEP), and 80 mM chloroacetamide (CAA), followed by incubating
the samples at RT for 1 h for reduction and alkylation to be completed. Subsequently, the
protein digestion was carried out with LysC (lysyl endopeptidase MS grade, Fujifilm Wako
Pure Chemical Industries Co., Ltd., Osaka, Japan) at a one-to-fifty ratio for 3 h at 37 ◦C,
followed by trypsin (sequencing grade modified trypsin, Promega, Fitchburg, WI, USA)
digestion overnight at 37 ◦C after diluting urea from 5 M to 2 M with 50 mM TEAB. After
acidifying digested peptides with 1% trifluoroacetic acid (TFA) to the final concentration,
they were desalted using C18 StageTips (3M Empore™, St. Paul, MN, USA). The desalted
peptides were dried with a Savant SPD121P SpeedVac concentrator (Thermo Fisher Scien-
tific, Waltham, MA, USA). To perform TMT-based quantitative MS, the digested peptides
from CSF samples were labeled using 11-plex TMT reagents following the manufacturer’s
instructions (Thermo Fisher Scientific). The MP samples were labeled with 131C, while
CSFs from ALS patients and HC individuals were labeled with the rest of the TMT tags
at RT for 1 h. Labeling reactions were carried out at RT for 1 h after mixing each peptide
sample in 100 mM TEAB with TMT reagent in acetonitrile (ACN). After this, the reaction
was quenched by adding 1/10 volume of 1 M Tris-HCl (pH 8.0). The TMT-labeled peptides
were pooled and pre-fractionated by basic pH reversed-phase liquid chromatography
(bRPLC) with an Agilent 1260 offline HPLC system (Agilent Technologies, Santa Clara,
CA, USA) as follows. The peptides were reconstituted in solvent A (10 mM TEAB in
water, pH 8.5); loaded onto an Agilent 300 Extend-C18 column (5 m, 4.6 mm × 250 mm,
Agilent Technologies); and resolved over 90 min of a gradient of solvent B (10 mM TEAB in
90% ACN and 10% water, pH 8.5) at 0.3 mL/min, collecting 96 fractions. After this, the
96 fractions were concatenated into 24 fractions and dried in a SpeedVac.

2.3. LC-MS/MS Analysis for the Discovery of Biomarker Candidates

LC-MS/MS analysis was conducted as described previously with minor modifica-
tions [30,31]. The dried peptides were reconstituted in 0.5% formic acid (FA) and analyzed
using an Orbitrap Fusion Lumos Tribrid MS coupled with an Ultimate 3000 RS Autosam-
pler nanoflow liquid chromatography system (Thermo Fisher Scientific). The peptides
were loaded into trap columns (Acclaim™ PepMap™ 100 LC C18, 5 µm, 100 µm × 2 cm,
Thermo Fisher Scientific) at a flow rate of 8 µL/min and separated on an analytical column
(Easy-Spray™ PepMap™ RSLC C18, 2 µm, 75 µm × 50 cm, Thermo Fisher Scientific) at a
flow rate of 0.3 µL/min with mobile phases consisting of 0.1% FA in water and 0.1% FA in
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95% ACN and 5% water. The overall run time was 120 min. The MS data were acquired in
a data-dependent acquisition mode. The MS1 scan range for precursor ions was set to m/z
300–1800 in the top-speed mode. The resolutions for MS1 and MS2 were set to 120,000 and
50,000, respectively, at an m/z of 200. The automatic gain controls for MS1 and MS2 were
set to 1 × 106 and 5 × 104, respectively. The maximum ion injection times for MS1 and
MS2 were set to 50 ms and 100 ms, respectively. The charges for MS2 isolation were set to 2
to 5, and the most intense ions were fragmented using higher-energy collisional dissocia-
tion (HCD) fragmentation with 35% normalized collision energy. The precursor isolation
window was set to m/z 1.6 with a m/z 0.4 offset and the dynamic exclusion was set to 30 s.
The internal calibration was performed using the lock mass option (m/z 445.1200025) from
ambient air.
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Figure 1. Experimental strategy and identified proteins from the discovery experiment for ALS
biomarker candidate proteins. Human CSF samples from 20 patients with ALS and 20 HC individuals
were analyzed with four 11-plex TMT experimental batches. MP was prepared by pooling all 40 CSF
samples and was added to each TMT experiment to normalize between batches. CSF proteins were
digested with trypsin and labeled with TMT reagents, followed by pre-fractionation into 24 fractions
prior to mass spectrometry analysis. Proteins were subsequently identified by conducting a database
search of the acquired mass spectra (A). The numbers of identified proteins from 4 batches of TMT-
based proteomics experiments are shown in the Venn diagram (B).
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2.4. Database Searches for Peptide and Protein Identification

The database search and quantification were conducted as described previously with
minor modifications [30,31]. A database search of the acquired tandem MS data was
conducted against the human UniProt database (released in May 2018, containing protein
entries with common contaminants) with the SEQUEST search algorithm embedded in the
Thermo Proteome Discoverer platform (version 2.2.0.388, Thermo Fisher Scientific). The top
ten peaks within each m/z 100 window were selected for database searches during MS/MS
preprocessing. The database search parameters were as follows. Two missed cleavages
by trypsin were allowed. Carbamidomethylation (+57.02146 Da) at cysteine and TMT
modification (+229.162932 Da) at the N-terminus of peptides and lysine residues were set
for fixed modifications, while oxidation (+15.99492 Da) of methionine was set for variable
modifications. The MS1 error tolerance was set to 10 ppm, and the MS/MS error tolerance
was set to 0.02 Da. The minimum peptide length was set to 6 amino acids. False discovery
rates (FDRs) were set at 1% for both peptides and proteins. The protein quantification
was performed with the parameters as follows. A centroid-based integration mode was
used, a tolerance of 20 ppm was set for reporter ions, MS order was set to MS2, and the
activation type was set to HCD. The quantification value correction was disabled. Peptide
quantification was performed using both unique and razor peptides. Peptide uniqueness
was determined at the level of protein groups. Missing intensity values were replaced with
the minimum value. The signal-to-noise ratio was used to compute reporter ion abundance.
The quantification value corrections for isobaric tags were disabled. A threshold of 50% was
set for co-isolation. The average signal-to-noise threshold for reporters was set to 50. Data
normalization was disabled. Protein groups were created by applying the strict parsimony
principle as follows: (1) all proteins that share the same set or subset of identified peptides
were grouped; (2) protein groups without any unique peptides were filtered out; and (3)
Proteome Discoverer iterated through all spectra and chose which peptide-spectrum match
(PSM) to use in ambiguous cases to create a protein group with the greatest number of
unambiguous and unique peptides. The Proteome Discoverer summed all the reporter ion
abundances of PSMs for the corresponding proteins in a TMT run.

2.5. Preparation of CSF Samples for the PRM Experiments

The isotopically labeled peptides (SpikeTides L, JPT Peptide Technologies GmbH,
Berlin, Germany) were synthesized with 13C- and 15N-labeled lysine and arginine at their
C-termini and were used for the PRM analysis. The CSF samples were mixed with 1 volume
of the lysis buffer, composed of 8 M urea, 20 mM TCEP, 80 mM CAA, 100 mM TEAB, and
synthetic peptides with known amounts. The CSF and lysis buffer mixture were incubated
for 1 h at RT for reduction and alkylation. Protein digestion was carried out using LysC
(Wako Chemicals Industries Co., Ltd., Osaka, Japan) at a one-to-fifty ratio at 37 ◦C for 3 h
and then using trypsin (sequencing grade modified trypsin, Promega, Fitchburg, WI, USA)
at a one-to-fifty ratio at 37 ◦C overnight after diluting the concentration of urea from 4 M to
2 M by adding 50 mM TEAB. Peptides were purified using C18 StageTips (3M Empore™,
St. Paul, MN, USA) after acidifying with TFA. The peptide eluents were dried in a SpeedVac
(Thermo Fisher Scientific) and then stored at −80 ◦C until use.

2.6. LC-MS/MS Analysis for Validation Experiments Using the PRM Method

LC-MS/MS analyses were conducted as described previously with minor modifica-
tions [30,31]. The peptide samples were analyzed on an Orbitrap Fusion Lumos Tribrid
mass spectrometer interfaced with an Ultimate 3000 RSLCnano nanoflow liquid chromatog-
raphy system (Thermo Fisher Scientific). The peptides reconstituted in 15 µL of 0.1% FA
were loaded on Acclaim PepMap100 Nano-Trap column (100 µm × 2 cm, Thermo Fisher
Scientific) packed with 5 µm C18 particles at a flow rate of 5µL per min. The flow rate
employed was 250 nL/min using a linear gradient of 6% to 28% solvent B (0.1% FA in
95% ACN and 5% water) over 55 min on an EASY-Spray column (50 cm× 75 µm, Thermo
Fisher Scientific) packed with 2 µm C18 particles (Thermo Fisher Scientific), which was
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fitted with an EASY-Spray ion source operated at a voltage of 2.0 kV. Mass spectrometry
analysis was conducted in the targeted MS2 mode. The MS1 scan range for a full survey
scan was acquired from m/z 300 to 1600 with a resolution of 120,000 at an m/z of 200. The
mass resolution for MS2 was set to 30,000 at an m/z of 200. Automatic gain control was
set to 500,000 and 100,000 ions for MS1 and MS2, respectively. The maximum ion injection
time and HCD fragmentation energy for each peptide are listed in Table S1.

2.7. Experimental Design and Statistical Rationale

The sample size determination was conducted in a similar way to the one described
previously with minor modifications [30,31]. The total number of CSF samples used in
the discovery study was 40, composed of 20 ALS patients and 20 HC individuals. We
conducted sample size analysis using the pwr package in R. When we wanted to detect
proteins with 1.5-fold differences between groups, the required minimum sample size was
11.299 when the significance level was 0.0001, power was 0.8, sigma was 0.24, and delta was
0.585 (=log21.5). This sigma value of 0.24 was derived from our in-house TMT proteomics
experiments conducted with human CSF samples. The significance level of 0.0001 was
determined on the basis of our in-house data. When we identified several thousands of
proteins, the majority of the proteins with p value < 0.0001 showed q-value < 0.05. On the
basis of this sample size analysis, we decided to use 20 samples per group. The statistical
analysis of the mass spectrometry data was performed with the Perseus (version 1.6.0.7)
software package. The intensity values of each protein were divided by the one of the
MP included in each batch, followed by dividing the values of each sample by the sample
median. The relative abundance values for each sample were log2-transformed, followed
by z-score transformation [32,33]. The fold changes between the comparison groups were
calculated by dividing the average abundance values of each protein from one group by
the values from another group. According to our normality test using the Shapiro–Wilk test
in the dplyr package in R, the majority of the proteins showed normal distribution. Thus,
p values between the comparison groups were calculated by Student’s two-sample t-test.
Since we were conducting multiple comparisons, we calculated an FDR by comparing
data with and without permutations between groups. The q-values for the volcano plots
were calculated by a permutation-based FDR estimation in the significance analysis of
microarrays (SAM) method, in which p values and fold-changes were calculated before
and after the permutation of samples from two groups [34]. Protein–protein association
network analysis was conducted using the STRING database [35].

Skyline software (version 21.2) was used for the analysis of PRM data [36]. The quan-
tification was conducted by summing the area under the curves (AUC) of the third-to-last
fragment y ions of the selected peptides. Statistical analysis was performed using Graph-
Pad Prism (version 9, GraphPad Software Inc., San Diego, CA, USA). Student’s unpaired,
two-tailed t-test was used for the comparison between HC with ALS. A probability value of
p < 0.05 was considered statistically significant. To evaluate the performance of biomarker
candidates, univariate and multivariate receiver operating characteristic (ROC) curve anal-
ysis was performed in Metaboanalyst (version 5.0) [37]. For the univariate ROC analysis,
bootstrapping was conducted by resampling 500 times to generate an AUC mean value
with a 95% confidence interval. For multivariate ROC analysis, the partial least squares
discriminant analysis (PLS-DA) classification method with the feature ranking method
built in PLS-DA was selected. The number of latent variables was set to 2. To begin multi-
variate analysis using PLS-DA, ROC curves were generated using balanced subsampling
by Monte Carlo cross-validation (MCCV). In each MCCV, 2/3 of the samples were used
to evaluate feature importance, and the remaining 1/3 were used to validate the models
created with the first step. The top-ranking features in terms of importance were used to
build the biomarker classification models. This was repeated several times to calculate the
performance and confidence intervals of each model.



Biomedicines 2023, 11, 1250 8 of 22

2.8. Disclosure of Previously Published Data

Out of ≈3000 proteins identified in the TMT-based discovery experiment of this study,
the data for 78 glycosylphosphatidylinositol-anchored proteins (GPI-APs) were published
previously to show the differential release of GPI-APs by differential glycerophosphodiester
phosphodiesterase 2 activity in ALS patients compared to control individuals [38].

3. Results
3.1. Quantitative Proteome Analysis of CSF Samples

We first implemented an unbiased discovery-based approach to identify proteins that
are differentially expressed in the CSF of patients with ALS compared with HC individuals.
We performed a quantitative proteome analysis of 40 CSF samples comprising 20 patients
with ALS and 20 HC individuals using TMT labeling-based mass spectrometry (Figure 1A,
Table 1). The 40 samples were split into 4 batches of 10 and were labeled with an 11-plex
TMT reagent. The MP, which is a reference sample prepared by pooling equal volumes of
all 40 CSF samples, was placed at the 11th channel of each 11-plex TMT experimental set for
the purpose of normalization between batches. After enzyme digestion and TMT labeling,
the peptides were pre-fractionated using a bRPLC system. The fractions were analyzed by
LC-MS/MS. In total, 3,828,053 MS/MS spectra were acquired, and 402,387 MS/MS spectra
were assigned to peptides leading to the identification of 26,726 peptides and 3038 proteins.
Out of 3038 proteins, 1936 proteins were identified in all four TMT experimental batches
(Figure 1B, Supplementary Data S1).

3.2. Selection of Candidate Biomarkers for ALS

To quantify protein abundances measured by the four TMT experimental batches,
we normalized the intensity values of each protein to the intensities of the MP samples
in each TMT experiment. The normalized data were subsequently subjected to statistical
analyses to identify proteins that were differentially expressed between the two groups.
Nineteen proteins were found to have differential expression between ALS and HC on the
basis of q-value < 0.05 (Table 2, Figure 2A,B). Out of 19 differentially expressed proteins,
15 proteins were upregulated in ALS, while only 4 proteins were downregulated in ALS.
Twelve proteins (SERPINA3, GPNMB, MEGF8, GOT2, CENPF, NPTX2, CAMK2A, APP,
L1CAM, CHI3L1, PF4, and LYZ) were novel, and seven proteins (CHI3L2, CHIT1, NEFL,
NEFM, NEFH, UCHL1, and APOB) were reported previously [23–26,39,40]. Protein–protein
association network analysis showed that NEFL and APP were the most connected proteins
within the panel of proteins identified (Figure 2C). Taken together, this discovery-based
approach successfully identified potential biomarkers for ALS.

Table 2. Differentially expressed proteins in CSFs from ALS patients compared to the ones from HC
individuals identified in the discovery experiment.

Name Gene Symbol p Value q-Value Log2
(ALS/HC)

Detectability
by PRM q-Value

Chitinase-3-like protein 2 CHI3L2 2.01 × 10−8 0 2.527697

<0.05

Chitotriosidase-1 CHIT1 1.88 × 10−5 0 3.99428 Detectable
Neurofilament light polypeptide NEFL 1.47 × 10−7 0 1.722488

Neurofilament medium polypeptide NEFM 6.97 ×
10−11 0 3.784436

Neurofilament heavy polypeptide NEFH 5.91 × 10−5 0.001333 2.779995
Alpha-1-antichymotrypsin SERPINA3 6.94 × 10−6 0.008571 1.077944 Detectable

Ubiquitin carboxyl-terminal
hydrolase isozyme L1 UCHL1 1.48 × 10−5 0.015 1.012955 Detectable

Transmembrane glycoprotein NMB GPNMB 8.06 × 10−5 0.0244 1.069444 Detectable
Multiple

epidermal-growth-factor-like
domains protein 8

MEGF8 4.36 × 10−6 0.026182 −0.72796 Detectable
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Table 2. Cont.

Name Gene Symbol p Value q-Value Log2
(ALS/HC)

Detectability
by PRM q-Value

Aspartate aminotransferase,
mitochondrial GOT2 0.00032 0.026222 1.511867

Centromere protein F CENPF 0.001221 0.028 2.205369
Neuronal pentraxin-2 NPTX2 0.00016 0.028667 −1.13379 Detectable

Calcium/calmodulin-dependent
protein kinase type II subunit alpha CAMK2A 0.000116 0.033143 −0.95518 Detectable

Apolipoprotein B-100 APOB 0.002532 0.041053 2.13572 Detectable
Amyloid-beta A4 protein APP 6.85 × 10−5 0.042444 −0.75982 Detectable

Neural cell adhesion molecule L1 L1CAM 7.59 × 10−5 0.043 −0.74116 Detectable
Chitinase-3-like protein 1 CHI3L1 0.000583 0.044 1.137858 Detectable

Platelet factor 4 PF4 0.002747 0.044533 2.573066
Lysozyme C LYZ 0.000368 0.0465 1.015916

Calsyntenin-1 CLSTN1 0.000146 0.051429 −0.75724 Detectable

<0.1

Contactin-associated protein-like 2 CNTNAP2 0.000225 0.052182 −0.79877 Detectable
Macrophage-capping protein CAPG 0.00037 0.056522 0.840849
Triosephosphate isomerase TPI1 2.87 × 10−5 0.05712 −0.59761 Detectable

Microfibril-associated
glycoprotein 4 MFAP4 0.00012 0.058429 −0.66703 Detectable

Endoplasmic reticulum
aminopeptidase 2 ERAP2 0.001754 0.058897 1.147899 Detectable

Gamma-crystallin D CRYGD 0.007001 0.058963 −2.86543
Syndecan binding protein
(Syntenin), isoform CRA_a SDCBP 0.000461 0.059 0.846597

Follistatin-related protein 4 FSTL4 0.000542 0.059333 −0.82485 Detectable
Transport and Golgi organization

protein 1 homolog MIA3 4.14 × 10−7 0.061231 −0.45853

Neurocan core protein NCAN 0.000476 0.070545 −0.73593 Detectable
Platelet basic protein PPBP 0.006893 0.072625 2.127046 Detectable

Leukotriene A-4 hydrolase LTA4H 8.72 × 10−5 0.073677 0.593814 Detectable
Chondroitin sulfate proteoglycan 5 CSPG5 0.001286 0.083412 −0.84017 Detectable

Band 4.1-like protein 3 EPB41L3 0.004408 0.092686 1.101059
Immunoglobulin heavy variable 2-5 IGHV2-5 0.010187 0.096522 1.802516

Plectin PLEC 0.00037 0.096681 0.586559
Myosin light chain kinase, smooth

muscle MYLK 0.000406 0.09688 0.572703

Calsyntenin-3 CLSTN3 8.53 × 10−5 0.097255 −0.49128 Detectable
Serine/threonine-protein
phosphatase 2A activator PTPA 0.000505 0.0978 0.637236

UMP-CMP kinase CMPK1 0.002623 0.097956 0.843523
Neuronal pentraxin-1 NPTX1 0.002511 0.098222 −0.79414 Detectable
Alpha-1-antitrypsin SERPINA1 0.002667 0.098449 0.842153 Detectable

Leucine-rich repeat and
immunoglobulin-like

domain-containing nogo
receptor-interacting protein 1

LINGO1 0.000955 0.098462 −0.65034 Detectable

Immunoglobulin lambda variable
3-19 IGLV3-19 0.006846 0.098537 1.408966 Detectable

Immunoglobulin lambda variable
3-27 IGLV3-27 0.003614 0.098566 0.886375

Alpha-2,8-sialyltransferase 8E ST8SIA5 0.000228 0.098974 −0.5754 Detectable
Butyrophilin subfamily 3

member A2 BTN3A2 0.005124 0.099 1.036734

Reticulon-4 receptor-like 2 RTN4RL2 0.00064 0.099111 −0.67662 Detectable
Protein kinase C-binding protein

NELL2 NELL2 0.001377 0.099135 −0.78332 Detectable
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Table 2. Cont.

Name Gene Symbol p Value q-Value Log2
(ALS/HC)

Detectability
by PRM q-Value

Immunoglobulin J chain JCHAIN 0.010018 0.099167 1.661328 Detectable
Multiple

epidermal-growth-factor-like
domains protein 9

MEGF9 0.000603 0.099263 −0.66189

Glutathione S-transferase Mu 1 GSTM1 0.008847 0.09981 1.620058
Neurofascin NFASC 0.00052 0.099907 −0.62704 Detectable

3.3. Detectability of Candidate Biomarker Proteins in Targeted PRM Analysis

To validate the potential of the proteins identified in the discovery experiments as
biomarkers for ALS, we opted to use PRM analysis of unfractionated CSF. PRM is a targeted
mass spectrometry analysis that does not utilize the chemical modification of peptides.
Instead, known quantities of standard isotope labeled (SIL) tryptic peptides that have
identical sequences to the tryptic peptides of the target proteins were spiked into the
sample for accurate quantitation of the relevant endogenous target peptides. We first
determined whether peptides of the target proteins were detectable by PRM analysis in
unfractionated CSF samples. CSF samples were pooled from 20 patients with ALS and
20 HC individuals, and 200 fmol of SIL peptides corresponding to the endogenous target
peptides were added prior to trypsin digestion to enable subsequent monitoring of relevant
peptides. We evaluated 53 proteins with q-value < 0.1 (Table 2), and 31 of the 53 proteins
were detectable by PRM (Table 2). A total of 15 of the 31 proteins were detected by two or
more peptides, while 18 proteins were detected by one peptide (Table S1).

3.4. Response Curve Test of Candidate Biomarker Proteins in PRM Analysis

Prior to beginning the PRM analysis, we examined the response curve of the target
peptides to determine the proper range for accurate quantification of the 16 target proteins.
We added varying amounts of SIL peptides (0.01, 0.1, 1, 10, 100, 1000, and 10,000 fmol) corre-
sponding to the target tryptic peptides from the pooled CSF samples, and the SIL peptides
were quantified by PRM analysis. The majority of the peptides showed linear responses
in the range from 0.1 fmol to 10 pmol (Figure S1). Five peptides, namely, APOB (WN-
FYYSPQSSPDK), CAMK2A (FYFENLWSR), CAMK2A (ITQYLDAGGIPR), CAMK2A (VTE-
QLIEAISNGDFESYTK), and CHIT1 (DNQWVGFDDVESFK), showed linear responses at
the range from 0.01 fmol to 10 pmol (Figure S1A). Twenty-nine peptides, namely, IGLV3-19
(ITCQGDSLR), JCHAIN (FVYHLSDLCK), LTA4H (WEDAIPLALK), NFASC (LTVSWLK),
PPBP (ICLDPDAPR), UCHL1 (FSAVALCK), CHIT1 (YPLIQTLR), ERAP2 (ILAVTDFEP-
TQAR), FSTL4 (FDDYNSDSSLTLR), APP (THPHFVIPYR), APP (VESLEQEAANER), APP
(WYFDVTEGK), CHI3L1 (ILGQQVPYATK), CNTNAP2 (FSFSTTK), MEGF8 (LFPLPGR),
MFAP4 (GFYYSLK), NELL2 (SALAYVDGK), NPTX2 (AAVLQLR), NPTX2 (TESTLNAL-
LQR), RTN4RL2 (LFLQNNLIR), SERPINA3 (LINDYVK), CHI3L1 (QLLLSAALSAGK),
NPTX1 (LENLEQYSR), NPTX1 (LPFVINDGK), RTN4RL2 (SLEPDTFQGLER), SERPINA1
(LSSWVLLMK), SERPINA1 (SVLGQLGITK), TPI1 (QSLGELIGTLNAAK), and MFAP4
(ADGEYWLGLQNMHLLTLK), showed linear responses at the range from 0.1 fmol to
10 pmol (Figure S1B–D). Sixteen peptides, namely, GPNMB (AYVPIAQVK), JCHAIN
(IVLVDNK), L1CAM (YDIEFEDK), ST8SIA5 (EINSADFVFR), APOB (LPYTIITTPPLK),
CHI3L1 (FPLTNAIK), CLSTN1 (YISNEFK), CSPG5 (EAGSAVEAEELVK), LINGO1 (HLNI-
NAIR), MEGF8 (HVWTTLK), NCAN (ELGGEVFYVGPAR), NCAN (LSSAIIAAPR), NCAN
(QDLPILVAK), NELL2 (AFLFQDTPR), NELL2 (ASTATAEQFFQK), and NELL2 (FTGSS-
WIK), showed linear responses at the range from 1 fmol to 10 pmol (Figure S1E,F). Four
peptides, namely, CHIT1 (SSFYSCAAGR), CHIT1 (FTDMVATANNR), CLSTN3 (FTVTAY-
DCGK), and FSTL4 (LLVESLFR), showed linear responses at the range from 10 fmol to
10 pmol (Figure S1G). Two peptides, namely, SERPINA3 (AVLDVFEEGTEASAATAVK)
and SERPINA1 (LYHSEAFTVNFGDTEEAK), showed linear responses at the range from
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100 fmol to 10 pmol (Figure S1G). In summary, almost all target peptides showed a linear
response curve in the detectable range, enabling us to quantify target peptides accurately.

3.5. Targeted Quantification of Candidate ALS Biomarker Peptides in CSF from ALS and
HC Individuals

To validate whether the selected candidate peptides show differential expression levels
in CSF from ALS patients without TMT labeling, we quantified the target peptides using
PRM in unfractionated 61 CSF samples from 20 ALS patients and 20 HC individuals that
were from our original cohort used in the discovery experiments and from an additional
10 ALS patients and 11 HC individuals that were from an independent cohort (Table 1). To
accurately quantify the target peptides using PRM in CSF samples from ALS patients and
HC individuals, SIL peptides were added to the CSF samples at the beginning of the exper-
iment. We added similar concentrations of the SIL peptides to the endogenous peptides,
but when the concentrations of the endogenous peptides were lower than 5 pmol/mL,
we added 5 pmol/mL of SIL peptides to avoid ambiguous detection. After the digestion
of the CSF proteins with trypsin, the endogenous and SIL peptides were monitored by
PRM assay (Figure 3). In total, 56 peptides from 31 proteins were validated by PRM assay.
The expression of APOB1 (two peptides), CHI3L1 (three peptides), CHIT1 (four peptides),
GPNMB (one peptide), ERAP2 (one peptide), JCHAIN (one of two quantified peptides),
SERPINA1 (three peptides), SERPINA3 (two peptides), and UCHL1 (one peptide) were
upregulated in ALS patients (Figure 4A), while the expression of APP (three peptides),
CAMK2A (three peptides), CLSTN3 (one peptide), FSTL4 (one of two quantified peptides),
L1CAM (one peptide), and NPTX2 (two peptides) were downregulated (Figure 4B). The rest
of the peptides did not show statistically significant differences (Figure S2). Interestingly,
we did not find notable differences between the groups with ALSFRS scores ≥ 40 and the
groups with ALSFRS scores < 39. To estimate the consistency of the discovery data with the
validation data, we conducted a correlation analysis of the ALS candidate biomarker pro-
teins that showed statistical significance in both the discovery and validation experiments.
All the ALS candidate biomarkers showed a positive correlation between discovery and
validation data (Figure 4C). We also conducted ROC analysis to evaluate the performance of
29 peptides with statistically significant differences in discriminating ALS from HC. CHIT1
(FTDMVATANNR with AUC 0.868, DNQWVGFDDVESFK with AUC 0.858, SSFYSCAAGR
with AUC 0.869, and YPLIQTLR with AUC 0.843), APOB (LPYTIITTPPLK with AUC
0.837 and WNFYYSPQSSPDK with 0.792), CAMK2A (VTEQLIEAISNGDFESYTK with
AUC 0.839, ITQYLDAGGIPR with AUC 0.829, and FYFENLWSR with AUC 0.789), and
SERPINA3 (AVLDVFEEGTEASAATAVK with AUC 0.816 and LINDYVK with AUC 0.774)
showed the top four highest average areas under the ROC curves among the measured
candidate biomarkers (Figure 5 and Figure S3). The ROC analysis results for the remaining
candidates are shown in Figure S3 and Table S2. To further improve the discriminability of
the candidate biomarkers, we employed multivariate analysis using MCCV and PLS-DA
methods. When all 56 features were used, the AUC was 0.906 (Figure 6A). CHIT1 (SS-
FYSCAAGR, FTDMVATANNR, and DNQWVGFDDVESFK) was the most contributing
protein, followed by CAMK2A (VTEQLIEAISNGDFESYTK and ITQYLDAGGIPR) and
APOB (LPYTIITTPPLK) (Figure 6B). The predictive accuracy reached 84% when 56 features
were used (Figure 6C). These results showed that the proteins that we have identified hold
promise as candidate biomarkers for ALS, and when multiple biomarkers are used, the
discriminative power can be further improved.
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Figure 2. Statistical and bioinformatic analyses of the identified CSF proteins. The quantified
CSF proteins from 20 patients with ALS and 20 HC individuals were plotted on a volcano plot.
The curved lines are the boundaries for a q-value of 0.05. The proteins with q-value < 0.05 are
colored in red (A). The differentially expressed proteins (q-value < 0.05) are shown on a heatmap (B).
Protein–protein association network analysis (C) for differentially expressed proteins (q-value < 0.05)
using STRING.
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Figure 3. Schematic workflow of the PRM analysis. The selected candidate ALS biomarker proteins
were validated by PRM analysis of CSF samples from 30 ALS patients and 31 HC individuals.
SIL peptides were added to the CSF samples for the accurate quantification of the target peptides,
followed by trypsin digestion and PRM analysis. The peptide abundance was calculated by extracting
the AUC of light endogenous and heavy SIL peptides.
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Figure 4. Proteins differentially expressed in ALS CSFs in the validation experiment. The selected
candidate ALS biomarker proteins were validated by PRM analysis using 30 ALS patients and 31 HC
individuals. SIL peptides were added to the CSF samples for the accurate quantification of the target
peptides for the PRM analysis. The peptide abundance was calculated by extracting the AUC of light
endogenous and heavy SIL peptides. Eighteen peptides were upregulated in ALS (A), and eleven
peptides were downregulated in ALS (B). Patients with ALSFRS scores < 39 are shown as blue dots,
and patients with ALSFRS scores ≥ 40 are shown as red dots. Since one ALS patient had no score,
the patient is shown as a gray dot. All PRM-MS analyses were performed in 3 technical replicates.
Student’s unpaired, two-tailed t-test was conducted for statistical analysis between groups (* p < 0.05;
** p < 0.01; *** p < 0.0001). The correlation of candidate biomarkers measured in the discovery and
validation experiment is shown (C).
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Figure 6. Multivariate ROC analysis and predictive accuracy. Multivariate ROC analyses were
conducted using different numbers of features ranging from 3 to 56. Var. indicates the number
of features used. CI indicates confidence interval (A). The top 15 significant features affecting the
discrimination of ALS from HC are shown with their average importance (B). The accuracy for
predicting ALS as the number of features increased is shown (C).

4. Discussion

In this study, we used an unbiased quantitative discovery approach to identify pro-
teins that are differentially present in ALS CSF compared with HC CSF and validated
these differences using a targeted quantitative approach. Towards this end, we performed
discovery-based studies on pre-fractionated CSF from 20 patients with ALS and 20 HC in-
dividuals using an 11-plex TMT platform and discovered 53 candidate ALS biomarker pro-
teins (19 candidates with q < 0.05 and 34 candidates with q < 0.1). Among the 53 candidate
ALS biomarker proteins, 44 proteins are novel, and 9 proteins were identified previously
as being differentially expressed in ALS, and these include neurofilament proteins (NEFL,
NEFM, and NEFH), CHIT1, CHI3L1, CHI3L2, APOB, GPNMB, and UCHL1 [20,41,42].
Neurofilament proteins are intermediate filament proteins that are elevated in response to
neuronal damage [25,43], while CHIT1, CHI3L1, and CHI3L2 are members of the human
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chitinase family that are implicated in inflammation [24]. UCHL1 is a ubiquitin-protein hy-
drolase important for protein homeostasis that is expressed in neurons and neuroendocrine
cells, whereas APOB is associated with metabolic changes in ALS [40,44]. Consistent with
previous studies, we found that all these candidate proteins were elevated in CSF samples
from patients with ALS [20,25,26,45–48]. This observation independently strengthens the
potential of novel candidate biomarker for ALS identified in our study.

After the discovery phase, we utilized PRM analysis of unfractionated CSF without
TMT labeling to validate the candidates that we had identified in the discovery phase of
our study. Unfortunately, proteins that showed the largest differential expression in our
discovery studies, such as neurofilament proteins, were not detectable by PRM, suggesting
that these proteins are expressed at relatively lower levels in CSF. Since we used unfrac-
tionated CSF peptides in the validation phase while we used fractionated CSF peptides in
the discovery phase, some candidate ALS biomarker proteins with low abundance were
not detected, even though PRM analysis is more sensitive than TMT. Further validation of
these candidates is needed to determine their utility as biomarkers for ALS.

Our PRM analyses successfully detected 31 proteins discovered from our discovery
experiments. APOB, which was increased in ALS in our study, is a lipoprotein responsible
for carrying fat molecules in the human body [49]. Mariosa et al. [40] reported that the
higher APOB level in serum is associated with an increased ALS risk and may serve as
prodromal symptoms decades before ALS diagnosis. Picard et al. [49] reported that APOB
is a biomarker for early tau pathology in Alzheimer’s disease. APP, which was decreased
in ALS in our study, has been proposed to be involved in several human neurodegenerative
diseases such as AD, autism, fragile X syndrome (FXS), ALS, multiple sclerosis (MS), and
Lesch–Nyhan disease (LND) [50]. Since β-amyloid accumulation in the brain of ALS
patients has been reported [51], the β-amyloid accumulation in the brain of ALS can result
in the decrease in β-amyloid in CSF. However, considering the APP peptides quantified
in the PRM-MS analysis is not β-amyloid region, the decreased APP in ALS is less likely
to be related to the β-amyloid accumulation. CAMK2A, which was decreased in ALS
in our study, is a kinase crucial for neural plasticity and memory and is expressed in
both excitatory and inhibitory neurons [51]. The expression of CAMK2A is decreased in
inhibitory neurons at the initial stage of nerve injury [52]. Moreover, CAMK2A is reported
to be dysregulated in the AD hippocampus [53]. CHI3L1 and CHIT1, which were increased
in ALS in our study, are members of the human chitinase family proteins. Varghese et al. [26]
reported that CSF levels of CHIT1, CHI3L1, and CHI3L2 were significantly elevated in ALS
patients relative to HC individuals. CLSTN3, which was decreased in ALS in our study,
is a calsyntenin member protein that plays an evolutionarily conserved role in memory
and learning, promoting the development of synapses [54]. To the best of our knowledge,
the current study is the first to characterize decreased CLSTN3 levels in human CSF from
ALS patients. However, since studies on the involvement of CLSTN3 in ALS are still
lacking, further mechanistic studies are needed. ERAP2, which was increased in ALS in
our study, is a protein associated with immune-mediated diseases [55]. However, little
is known about the relationship between ERAP2 and ALS. Ziff et al. [56] reported that
human-induced pluripotent-stem-cell-derived astrocytes carrying ALS-causing mutations
showed increased ERAP2 mRNA expressed with reduced intron retention (IR), which
is required for the activation of astrocytes. The increased ERAP2 in ALS CSF could be
potentially involved in the activation of astrocytes. FSTL4, which was decreased in ALS
in our study, is known as a negative regulator of BDNF maturation [57]. Collins et al. [6]
conducted mass-spectrometry-based biomarker discovery using ALS CSF and reported
that FSTL4 was decreased in ALS CSF in consistency with our result. JCHAIN, which
was increased in ALS in our study, is a protein component of immunoglobulins A and M
working as a glue for the formation of multimeric immunoglobulins [58]. However, its
relationship with ALS is not known yet. GPNMB, which was increased in ALS in our study,
is a protein involved in inflammatory processes [59], and the absence of UCHL1 leads to
the degeneration of motor axons [60]. Both GPNMB and UCHL1 have been reported as
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ALS candidate biomarkers recently, with increased expression levels in ALS consistent
with our study [23]. L1CAM, which was decreased in ALS in our study, is involved in
diverse processes at different stages during the development of the nervous system and is
expressed on the surface of nerve cells [61,62]. Our data showing the decreased expression
level of L1CAM in ALS CSF could be reflecting the death of neuronal cells. NPTX2, which
was decreased in ALS in our study, is involved in mediating excitatory neurotransmission
and has been reported to be involved in various diseases such as Parkinson’s disease (PD),
ischemia, Alzheimer’s disease (AD), and frontotemporal dementia [63]. Xiao et al. [64]
also reported that NPTX2 is involved in the adaptative control of the pyramidal neuron-
fast-spiking parvalbumin circuit, and failure of this adaptive control could be involved in
the cognitive decline of AD patients. The decreased NPTX2 in CSF in our data suggests
that the adaptative control of the pyramidal neuron-fast-spiking parvalbumin circuit could
be damaged in the ALS patient’s brain. SERPINA1, which was increased in ALS in our
study, is an acute inflammatory protein, and the overexpression of this protein has been
observed in AD and FTLD [65,66]. The increased level of SERPINA1 was also observed
in Creutzfeldt–Jakob disease (CJD) and frontotemporal lobar degeneration (FTLD) [67].
The increased SERPINA1 level in our data suggests that the acute inflammatory response
mediated by SERPINA1 could be involved in ALS as well. SERPINA3, which was increased
in ALS in our study, is a glycoprotein involved in various physiological processes such as
complement cascade, inflammation, and wound healing, and this protein is reported to be
involved in various neurodegenerative diseases [68]. Fissolo et al. reported an increased
level of SERPINA3 in CSF from progressive multiple sclerosis [69].

In this study, we were able to validate a substantial number of candidate ALS biomarker
proteins identified in the discovery phase. However, there were still some proteins that
could not be validated as they were not detectable in the PRM analysis, likely due to their
abundance falling below the detection limit of the PRM method. Consequently, further
studies will be necessary to validate these proteins.

5. Conclusions

Our data showed that the candidate biomarkers, such as CHIT1, APOB, CAMK2A,
and SERPIN3, had AUC > 0.8 in the ROC curve analysis. Furthermore, the multivariate
analysis using all the candidate biomarkers identified in this study showed even im-proved
AUC > 0.9, suggesting that combining the ALS biomarker candidate proteins identified
in our study with ALS biomarkers from other studies can potentially further improve the
discriminatory power between ALS and control. In summary, our mass-spectrometry-based
approach identified fifteen ALS candidate biomarker proteins. Further validation across a
larger number of cohorts across ALS and other neurodegenerative diseases will be needed
to evaluate their utility as ALS biomarkers.
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