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Abstract: Nasopharyngeal carcinoma is a malignancy from epithelial cells predominantly associated
with the Epstein–Barr virus (EBV) infection, and it is responsible for 140,000 deaths annually. There
is a current need to develop new strategies to increase the efficacy of antineoplastic treatment and
reduce side effects. Thus, the present study aimed to perform a systematic review and meta-analysis
of the ability of photodynamic therapy (PDT) to modulate the tumor microenvironment and PDT
efficacy in nasopharyngeal carcinoma treatment. The reviewers conducted all steps in the systematic
review. PubMed, Science Direct, Scopus, Scielo, Lilacs, EMBASE, and the Cochrane library databases
were searched. The OHAT was used to assess the risk of bias. Meta-analysis was performed with a
random-effects model (α = 0.05). Nasopharyngeal carcinoma cells treated with PDT showed that IL-8,
IL-1α, IL-1β, LC3BI, LC3BII, MMP2, and MMP9 levels were significantly higher than in groups that
did not receive PDT. NF-κB, miR BART 1-5p, BART 16, and BART 17-5p levels were significantly lower
in the PDT group than in the control group. Apoptosis levels and the viability of nasopharyngeal
carcinoma cells (>70%) infected with EBV were effective after PDT. This treatment also increased
LMP1 levels (0.28–0.50/p < 0.05) compared to the control group. PDT showed promising results
for efficacy in killing nasopharyngeal carcinoma cells infected with EBV and modulating the tumor
microenvironment. Further preclinical studies should be performed to validate these results.

Keywords: photodynamic therapy; nasopharyngeal carcinoma; Epstein–Barr virus; systematic review;
meta-analysis

1. Introduction

Head and neck cancer comprises a heterogeneous group of malignancies with dis-
tinguished etiological factors [1]. The human microbiome has received attention as a
risk factor for head and neck cancer [2]. In this regard, Streptococcus anginous, Strepto-
coccus mitis, Streptococcus oral, Streptococcus gordonii, Capnocytophaga gingivalis, Prevotella
melaninogenica and Porphyromonas gingivalis are examples of microorganisms related
to the oncogenesis of head and neck cancer [2]. Moreover, the human papillomavirus
(HPV) and Epstein–Barr virus (EBV) strongly correlate to oro- and nasopharyngeal
carcinomas, respectively [2].

The EBV (human herpes virus type 4) belongs to the Gammaherpesvirinae family and is
responsible for infecting more than 90% of the world’s population [3]. Although EBV causes
infectious mononucleosis, it is associated with carcinomas and lymphoma carcinogenesis,
resulting in 1% of global cancers. Approximately 140,000 people die each year from EBV-
related tumors [4].
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Nasopharyngeal carcinoma is a malignancy from epithelial cells that extends across the
nasopharynx surface, and EBV is one of its etiological factors [4–6]. EBV infection divides
the level of differentiation of nasopharyngeal epithelial cells into type II (non-keratinizing)
and type III (undifferentiated). Hence, a non-keratinizing tumor is predominantly associ-
ated with EBV infection [7]. Nasopharyngeal carcinoma prevails in men, with the highest
incidence in North Africa and Southeast Asia, particularly in southern China and eastern
Malaysia [4]. Additionally, EBV viral load; history of chronic diseases (ear, nose, or throat);
genetic factors; environmental exposure; and the consumption of alcohol, tobacco, salted
fish, dairy, and lipids are among the etiological factors of nasal carcinoma [4,8].

The latent membrane protein type 1 (LMP1) is present during the latent phase of
EBV and is considered an oncogenic protein. Moreover, LMP1 has a higher number of
polymorphisms than other genes [9], and it can induce the production of tumors, possibly
due to the functional similarity of the anti-protein with tumor necrosis factor (TNF-α), CD40,
and tumor necrosis factor type I (TNF-1) [10]. LMP1 can also up-regulate anti-apoptotic
genes, down-regulate metastasis suppressors, and promote angiogenesis, pro-inflammatory
cytokine activation, and epithelial cell morphology changes [11].

The conventional treatment for nasopharyngeal carcinoma is radiotherapy, chemother-
apy, and surgical resection [8]. However, the overall survival rate of patients affected by
this carcinoma is still low, and the bad prognoses have remained independent of treat-
ment [12]. Furthermore, other chemotherapy drugs, such as docetaxel, cisplatin, and
fluorouracil associated with chemoradiotherapy, have not improved the five-year overall
survival and progression-free survival rates [13]. That highlights the absence of new
effective therapeutic options for treating these patients [12]. Additionally, conventional
treatment (chemotherapy and radiotherapy) is associated with different adverse events,
such as skin hyperpigmentation, fatigue, nausea, leukopenia, anemia, hepatotoxicity,
and diarrhea [14].

Photodynamic therapy (PDT) involves applying a photosensitizer, followed by a
light source in a specific wavelength, to a target tissue [6,15]. After the photosensitizer is
sensitized by irradiation, reactive oxygen species are produced, causing cytotoxicity and
indirect destruction of tumor cells due to vascular damage [6]. Therefore, PDT might be a
promising approach for treating nasopharyngeal carcinoma. Regarding the high prevalence
of EBV infection associated with the development of nasopharyngeal carcinoma, the present
study aimed to perform a systematic review and meta-analysis of the ability of PDT to
modulate the tumor microenvironment and PDT effectiveness in killing nasopharyngeal
carcinoma cells infected with EBV.

2. Materials and Methods
2.1. Protocol and Registration

The present systematic review and meta-analysis were performed according to the Pre-
ferred Reporting Items for Systematic Reviews (PRISMA) statement [16]. The study was reg-
istered in the Open Science Framework (OSF) (registration DOI: 10.17605/OSF.IO/ACUVG).

2.2. Data Extraction and Study Question

The research question was based on the PICO strategy for systematic exploratory re-
views [16], where P = nasopharyngeal carcinoma cells infected with EBV; I = photodynamic
therapy (PDT); C = PDT associated with another therapy, the absence or application of
another treatment instead of PDT, or nasopharyngeal carcinoma cells not infected with
EBV; O = the primary outcome was chemokine and interleukin levels and the second one
was the viability of nasopharyngeal carcinoma cells infected with EBV and LMP1 levels.
The present study aimed to answer the following focused questions: What is the efficacy of
PDT in reducing nasopharyngeal carcinoma cells infected with EBV? Moreover, can PDT
modulate the inflammatory microenvironment in this tumor infected with EBV?
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2.3. Eligibility Criteria

The inclusion criteria for the systematic review were in vitro studies that used PDT to
treat nasopharyngeal carcinoma cells infected with EBV and cell lines from humans. There
was no restriction on types of language, photosensitizer, and cell line. The exclusion criteria
were observational studies and clinical trials in humans; book chapters; letters to the editor;
conference abstracts; theses; dissertations; case reports; and studies with nasopharyngeal
carcinoma cells not infected with EBV, without evaluating the photoinactivation of EBV,
and with cell lines from animals.

2.4. Search Strategy

Two independent examiners were calibrated in a previous pilot study to perform the
steps for article selection. The electronic search was performed in PubMed, Science Direct,
Scopus, Scielo, Lilacs, EMBASE, and the Cochrane library databases. The search words
were (((Epstein-Barr) OR (Epstein-Barr virus)) OR (EBV)) AND (Photodynamic therapy).
The Kappa calibration (0.87/p < 0.01) between the examiners was an “almost perfect”
agreement. Mendeley Reference Software was used to detect and eliminate duplicates.
After the eligibility step, the data were extracted from the selected articles, analyzed, and
discussed. Any disagreement during the process was solved before proceeding to the
next steps by reaching a consensus. The following data were extracted from the included
studies: first name of the author, year of publication, study design, cell lineage, sample size,
evaluated group, photosensitizer, wavelength (nanometers), irradiation time (minutes),
incubation time of the photosensitizer, light dose, and main results.

2.5. Risk of Bias Assessment

This step used the OHAT Rob Rating tool adapted for in vitro studies [17,18]. There
were four answer alternatives for each question: (i) definitely low (++) there is direct
evidence to affirm the answer to the question; (ii) (+) there is indirect evidence to affirm
the answer to the question; (iii) (−) there is indirect evidence to respond negatively to the
question; (iv) (−−) there is direct evidence to respond negatively to the question. The
question “Were there no other potential threats to internal validity?” referred to a bias
related to statistical approaches (sample size calculation, normality and homoscedasticity
evaluations, and inferential text details) [19].

2.6. Meta-Analysis

The meta-analysis used the random-effects model, the standard mean difference in
effect measurement. A forest plot was made to evaluate the results better. The trim-and-fill
method was used to detect publication and meta-analysis biases. Heterogenicity levels
above 50% were considered high (I2 > 50%). R software, version 3.6.3, and Rstudio with
the “META” package were used to conduct quantitative approaches (α = 0.05) and build
the graphs.

3. Results
3.1. Search Results

The flowchart in Figure 1 summarizes the article selection process. The electronic
search yielded 203 articles. Accordingly, 175 articles remained for selection. After title and
abstract screenings, 168 articles were excluded because they did not meet the eligibility
criteria. Seven studies were eligible for a full-text evaluation. After the full-text assess-
ment, the same seven articles were included in the qualitative analysis, and three were
included in the meta-analysis. Four studies were excluded from the quantitative analysis
because they did not report the sample size or precisely report the outcome measurement
(Supplementary Materials).
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Figure 1. Flowchart summarizing the search results of the present study.

3.2. Synthesis of Results

The articles included in the present systematic review and meta-analysis ranged
in publication dates from 2002 to 2020 [20–26] (Table 1). The cell lines most frequently
used were CNE-2 (57.15%) and C666-1 (57.15%), followed by HK-1 (42.86%). Numerous
photosensitizers were used, but two studies evaluated the same one (FosPeg®®) [23,25].
The wavelength varied from 585 to 685 J/cm2 and the light dose from 0.25 to 20 J/cm2. The
photosensitizer incubation time ranged from three to 24 h, and four hours was the most
frequently used [20,23,26]. Only one study reported the irradiation time [24].
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Table 1. Data extracted from the articles included in the present systematic review and meta-analysis.

# Author Study
Design Cell Line Sample

Size
Evaluated

Group Photosensitizer Wavelength
(nm)

Irradiation
Time (minutes)

Photosensitizer
Incubation Time Light Dose Results

1 Du et al.,
2002 [20] In vitro HK-1

CNE-2 6 G1: PDT
G2: no PDT Hypericin 585 ND 4 h (HK-1)

6 h (CNE-2) 0.5 J/cm2

IL-8 (pg/mL)
HK-1/ G1: 168.80 ± 7.93
HK-1/G2: 130.80 ± 5.80
CNE-2/ G1:71.15 ± 9.81
CNE-2/G2: 60.09 ± 2.01

2 Koon et al.,
2010 [21] In vitro HK-1 ND

G1: HK-1
(EBV+)

G2: HK-1
(EBV-)

G3: control (no
PDT + EBV+)

Zn-BC-AM 682 ND 24 h 0.25–1.0 J/cm2

Apoptosis (PI)
HK-1 (EBV+): 80%
HK-1 (EBV−): 60%

IL-1α (pg/mL)
HK-1 (EBV+): 6300 ± 250
HK-1 (EBV−): 3301 ± 500
Control/G3: 1350 ± 250

IL-1β (pg/mL)
HK-1 (EBV+): 92 ± 5
HK-1 (EBV−): 55 ± 5
Control/G3: 18 ± 2

IL-8 (pg/mL)
HK-1 (EBV+): 15 ± 1
HK-1 (EBV−): 0 ± 0

Control/G3: 430 ± 25

3 Li et al.,
2010 [22] In vitro c666-1

CNE-2 3
G1: c666-1

(EBV+)
G2: CNE-2

(EBV-)

HMME
(7(12)-(1-methoxyethyl)-
12(7)-(1-hydroxyethyl)-

3,8,13,17-
tetramethyl-21H,23H-

porphin-2,18-dipropionic)

630 ND 3 h 0.6–14.4 J/cm2

Phototoxicity (clonogenic assay)
There were significant and

similar results for G1 and G2,
particularly when the

intracellular uptake of HMME
was balanced between

the groups.

4 Wu et al.,
2013 [23] In vitro

c666-1
HK-1

CNE-2
3

G1: c666-1
(EBV+)

G2: HK-1
(EBV-)

G3: CNE-2
(EBV-)

FosPeg 630 ND 4 h 3.0 J/cm2

Cytotoxicity (MTT)
c666-1: 69%
HK-1: 77%

CNE-2: 84%
LMP1 mRNA expression

c666-1: 8 ± 1.5 (PDT+)
c666-1: 1 ± 0.0 (PDT−)
EBV-miR-BART 1-5p

c666-1: 0.75 ± 0.1 (PDT+)
c666-1: 1.0 ± 0.0 (PDT−)

EBV-miR-BART 16
c666-1: 0.6 ± 0.25 (PDT+)
c666-1: 1.0 ± 0.0 (PDT−)
EBV-miR-BART 17-5p

c666-1: 0.75 ± 0.1 (PDT+)
c666-1: 1.0 ± 0.1 (PDT−)

LMP1 protein expression
c666-1: 1.35 ± 0.15 (PDT+)
c666-1: 1.0 ± 0.1 (PDT−)
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Table 1. Cont.

# Author Study
Design Cell Line Sample

Size
Evaluated

Group Photosensitizer Wavelength
(nm)

Irradiation
Time (minutes)

Photosensitizer
Incubation Time Light Dose Results

5 Peng et al.,
2017 [24] In vitro NPC 5-8F

NPC 6-10B ND
G1: PDT

G2: PDT +
Lovastatin

Photosan II 630 1 24 h 10 J/cm2

Cell viability (Alamar blue)
There were significant results
for Lovastatin + PDT for both

cell lines.

6 Wu et al.,
2020 (a) [25] In vitro c666-1 3

G1: 2D culture
G2: 3D culture

(MCL and
MCS)

FosPeg 652 ND 24 h 20 J/cm2

Cell viability (MTT)
2D: 95 ± 5%

MCL: 60 ± 10%
MCS: 70%

Apoptosis (Annexin V)
2D: 30.6 ± 7.7

MCL: 31.0 ± 7.4
MCS: 27.6 ± 7.0

Necrosis (Annexin V)
2D: 16.3 ± 8.6

MCL: 9.8 ± 10.6
MCS: 13.5 ± 3.2

LC3BI protein expression
2D: 1.5 ± 1.0

MCL: 1.4 ± 1.2
MCS: 0.8 ± 0.5

LC3BII protein expression
2D: 1.8 ± 1.0

MCL: 1.25 ± 0.8
MCS: 0.8 ± 0.5

LMP1 protein expression
2D: 0.9 ± 0.25

MCL: 1.25 ± 1.0
MCS: 2.0 ± 1.25

MMP2 protein expression
2D: 0.7 ± 0.15

MCL: 1.2 ± 0.25
MCS: 1.5 ± 1.0

MMP9 protein expression
2D: 0.7 ± 0.15

MCL: 2.2 ± 0.75
MCS: 1.5 ± 0.65

ABCB1 protein expression
2D: 0.5 ± 0.25

MCL: 1.5 ± 0.65
MCS: 1 ± 0.8

ABCC1 protein expression
2D: 1.0 ± 0.25
MCL: 2.3 ± 1.2
MCS: 1.8 ± 0.1

ABCG2 protein expression
2D: 1.7 ± 0.5

MCL: 1.5 ± 0.5
MCS: 1.8 ± 2.0
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Table 1. Cont.

# Author Study
Design Cell Line Sample

Size
Evaluated

Group Photosensitizer Wavelength
(nm)

Irradiation
Time (minutes)

Photosensitizer
Incubation Time Light Dose Results

7 Wu et al.,
2020 (b) [26] In vitro c666-1

CNE-2 3
G1: c666-1

(EBV+)
G2: CNE-2

(EBV-)

H-ALA (5-aminolevulinic
acid hexyl ester) 630 ND 4 h 2–4 J/cm2

Cytotoxicity (MTT)
G1: 70%
G2: 80%

LMP1 protein expression
G1: 1.5 ± 0.0

Control: 1.0 ± 0
EGRF protein expression

G1: 0.75 ± 0.16
G2: 0.6 ± 0.0

Control: 1.0 ± 0.0
p-EGRF protein expression

G1: 0.5 ± 0.3
G2: 0.8 ± 0.16

Control: 1.0 ± 0.0
NF-κB protein expression

G1: 0.8 ± 0.25
G2: 0.8 ± 0.16

Control: 1.0 ± 0.0

EBV: Epstein-Barr virus; NPC: nasopharyngeal carcinoma; PDT: photodynamic therapy. Evaluated groups: G1—group 1, G2—group 2, G3—group 3; PDT: hypericin-based photodynamic
therapy; Photosensitizer: hematoporphyrin monomethyl ether. Irradiation time: minutes; ND: not documented; Light dose: J—joules; Results: H-ALA—5-aminolevulinic acid hexyl
derivative, MCL—liquid overlay method with agarose base, MCS—hanging drop method, PpIX—protoporphyrin IX. After PDT in nasopharyngeal carcinoma cells infected with EBV,
the IL-8 [20], IL-1α, IL-1β [21], LMP1 [23,25,26], LC3BI, LC3BII, MMP2, and MMP9 [25] levels were not higher than control groups. ABCB1, ABCC1, and ABCG2 [25] levels did not show
significant results compared to the control group. There were significant results for apoptosis levels [21] and the viability of nasopharyngeal carcinoma cells infected with EBV. However,
NF-κB protein expression decreased after PDT for the same group compared to nasopharyngeal carcinoma cells not infected with EBV [26]. miR BART 1-5p, BART 16, and BART 17-5p
levels also decreased [23].
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3.3. Risk of Bias Assessment

The primary source of bias in all included articles referred to blinding (were research
personnel blind to the study group during the investigation?/was the outcome assessment
reliable, including the blinding of evaluators?) and details about statistical approaches
(were there no other potential threats to internal validity?) (Table 2).

Table 2. Risk of bias analysis according to the OHAT Rob Rating tool adapted to assess the risk of
bias of in vitro studies included in the systematic review.

Questions/Studies
Du et al.,

2002
[20]

Koon et al.,
2010
[21]

Li et al.,
2010
[22]

Wu et al.,
2013
[23]

Peng et al.,
2017
[24]

Wu et al.,
2020 (a) [25]

Wu et al.,
2020 (b) [26]

Was the administered dose or exposure
level adequately randomized? ++ ++ ++ ++ ++ ++ ++

Were study group allocations
adequately concealed? ++ ++ ++ ++ ++ ++ ++

Were the experimental conditions
identical across study groups? ++ ++ ++ ++ ++ ++ ++

Were research personnel blind to the
study group during the investigation? − − − − − − −
Were outcome data complete without

attrition or exclusion from the analysis? ++ ++ ++ ++ ++ ++ ++

Was the exposure characterization reliable? ++ ++ ++ ++ ++ ++ ++
Was the outcome assessment reliable

(including the blinding of evaluators)? − − − − − − −
Were there no other potential threats to

internal validity? −− −− −− −− −− −− −−

++ = direct evidence to affirm the question; − = indirect evidence to respond negatively to the question;
−− = direct evidence to respond negatively to the question.

3.4. Meta-Analysis

The meta-analysis was only possible for LMP1 levels [23,25,26]. Thus, the experimental
group included nasopharyngeal carcinoma cells infected with EBV treated with PDT, and
the control group consisted of nasopharyngeal carcinoma cells not infected with EBV and
without receiving PDT. PDT increased LMP1 levels (mean difference (MD) = 0.28/95% con-
fidence interval (CI) = 0.01–0.56/I2 = 90%) (Figure 2a). After detecting the publication bias
with the trim-and-fill method and correlating the meta-analysis, MD was 0.50 [0.28–0.72],
but the heterogenicity level remained high (I2 = 90%) (Figure 2b).
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in a forest plot. This statistical test detected publication and meta-analysis biases, which were
corrected. The experimental group included nasopharyngeal carcinoma cells infected with EBV and
treated with PDT, and the control group consisted of nasopharyngeal carcinoma cells not infected with
EBV and without receiving PDT. MD = mean difference; SD = standard deviation; CI = confidence
interval; TE = estimated mean; seTE = estimated standard deviation [23,25,26].

4. Discussion

According to the World Health Organization, there are three pathological subtypes
of nasopharyngeal carcinomas: keratinized squamous, non-keratinized, and basaloid
squamous [27]. Nonetheless, the non-keratinized subtype represents more than 95% of
cases in endemic areas and is predominantly associated with EBV infection [7,27]. This
tumor is related to a remarkable geographical distribution. Thus, there are other risk
factors for developing nasopharyngeal carcinoma in addition to EBV infection, such as host
genetics and environmental aspects (e.g., salted fish consumption) [28,29].

Tumor-derived epithelial cells are susceptible to ionizing radiation, which explains
why radiotherapy is the primary treatment modality for non-metastatic nasopharyngeal car-
cinoma [28]. Chemotherapy combined with radiotherapy is essential and highly indicated
for advanced locoregional diseases. Patients with metastatic nasopharyngeal carcinoma are
a heterogeneous group, and although chemotherapy is the mainstay treatment modality
at this stage, individualized treatment is increasingly required [28,30]. A high dose of
radiation or chemotherapy causes acute and later side effects. Oral mucositis, dermatitis,
xerostomia, and dysphagia are the main acute toxicities associated with radiotherapy,
and xerostomia, sensorineural hearing loss, osteoradionecrosis, trismus, and hormonal
dysfunction (e.g., hypothyroidism) are the described later effects [28]. Hematological dis-
crepancies are the main toxicities when administering chemotherapy in nasopharyngeal
carcinoma patients [28].

Despite advances in radiotherapy and chemotherapy for treating nasopharyngeal
carcinoma, the overall survival rate is still poor and the side effects reduce the quality of
life of patients diagnosed with this tumor [12,28,31]. In this scenario, PDT is a treatment
option for different cancers [19,32–34]. There is a current lack of clinical trials evaluating
the effectiveness of PDT for nasopharyngeal carcinoma, which is the main reason for
developing this present systematic review on in vitro studies.

Nasopharyngeal carcinoma cells infected with EBV and treated with PDT significantly
increased IL-8, IL-1α, and IL-1β levels, resulting in cell death. PDT also increased IL-1α
and IL-1β levels in nasopharyngeal carcinoma cells without EBV infection, but at a lower
rate than tumors infected with EBV [21]. Moreover, applying PDT only to the tumor did
not affect IL-8 levels. In return, apoptosis [21] and cytotoxicity levels from PDT [23,26] were
similar in nasopharyngeal carcinoma cells regardless of EBV infection. That is promising
because the oxidative damage of PDT can cause different cell deaths and immunological
response pathways depending on EBV infection in nasopharyngeal carcinoma cells.

In particular, IL-8 is an inflammatory mediator mainly related to necroptosis [35] that
can play a different role in cancer. However, IL-8 can recruit innate immune cells, starting
an immunological response against cancer [36]. That is a strength of PDT over other tradi-
tional cancer treatments because PDT can initiate immunogenic cell death accompanied
by the exposure and release of damage-associated molecular patterns (DAMPs) [37]. In
the context of the tumor microenvironment, cancer cells can die by apoptosis, necrop-
tosis, and autophagy, along with inflammatory molecule release that may modulate the
immunological response against cancer [37]. Furthermore, the role of IL-8 in PDT differs
from radiotherapy, in which IL-8 induces an epithelial–mesenchymal transition [38] and
tumor cell repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL-8 pathways [35],
leading to a poor prognosis for cancer patients.
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IL-1 is a pro-inflammatory cytokine that participates in nasopharyngeal carcinoma
development and is recognized as an oncogenic factor for this tumor. High IL-1 levels
are normal in nasopharyngeal carcinoma and are stimulated by T cells infiltrated in the
tumor and lipopolysaccharides (LPS) [39]. In this scenario, LPS-containing Gram-negative
bacteria can stimulate resident macrophages via TLR4 for TNF and IL-1 secretion, inducing
cell proliferation and tumorigenesis [40].

Despite the role of IL-1 in nasopharyngeal processes, there is a lack of knowledge about
the action of this cytokine in the tumor microenvironment after treatment. The caspase-
1/NLRP3/IL-1 pathway regards inflammasome formation and pyroptosis, which stimulate
the activation of inflammatory processes and modulation of immune responses [41]. Thus,
PDT might induce nasopharyngeal cell death via inflammasome formation, but further
studies should be designed to evaluate this point better.

EBV-induced carcinogenesis in nasopharyngeal carcinoma can explain the differences
in inflammatory responses of nasopharyngeal carcinoma cells infected with EBV or not after
PDT. There are three EBV latent phases, distinguished by viral antigen expression. Type
I shows EBNA1 (EBV nuclear antigen 1) expression, type II presents EBNA1 and LMP1,
LMP2, and EBERs (EBV-encoded small RNA), and type III includes a high production of
EBNA1,2, LMP1, LMP2, and EBRs [42,43].

LMP1 is an oncogenic protein that stimulates the expression of the epidermal growth
factor receptor (EGFR), promoting cell growth by activating the MAP kinase pathway [44–46].
In epithelial cells, LMP1 inhibits P53-mediated induction of apoptosis and induces lympho-
cyte sensibilization to TGF-beta, tempering the immune response against cancer cells [47].
In other words, the distinguished carcinogenesis pathways related to different etiologi-
cal factors (EBV positive and EBV negative) may be considered the reason for different
responses obtained after PDT for nasopharyngeal carcinoma.

LMP1 can also activate oncogenic signaling pathways, causing tumor invasion, metas-
tasis, anti-apoptosis ability, and inhibition of squamous cell differentiation [28]. Higher
LMP1 levels indicate a poor prognosis for nasopharyngeal carcinoma patients. The meta-
analysis showed higher LMP1 levels in nasopharyngeal carcinoma cells treated with PDT
than those not treated with PDT. However, as LMP1 function depends on the activation of
NF-κB and STAT3 pathways [48] and the group treated with PDT showed lower NF-κB
levels, PDT might make LMP1 dysfunctional.

In other words, higher LMP1 levels can represent a direct response to cell death
by oxidative damage from PDT; therefore, LMP1 would not run an oncogenic pathway
because NF-κB levels decreased. Although our study did not evaluate this finding, we
might also hypothesize that, as LMP1 function depends on the NF-κB and STAT3 pathways,
PDT might modulate LMP1 function via the STAT3 pathways in persistent cancer cells.
However, future studies should assess these very pathways better. It is also essential to
balance the benefits between increased LMP1 levels via the NF-κB and STAT3 pathways
and PDT efficiency in killing nasopharyngeal carcinoma cells (>70%). The impact of higher
LMP1 levels on clinical trials remains to be analyzed.

BART-miRNAs are transcription factors that potentiate tumor growth, cooperate in
immune attack escape, and strengthen anti-apoptosis ability [28]. PDT reduced BART-
miRNAs levels, indicating that PDT could also positively modulate tumor-mediated factors,
possibly improving the prognosis of nasopharyngeal carcinoma patients.

MMP2 and MMP9 are a family of proteolytic enzymes implicated in the invasion and
metastasis of numerous cancers because they degrade extracellular matrix components [49].
MMP2 and MMP9 overexpression is associated with higher tumor grades. Concomitantly,
MMP2 overexpression is associated with a higher risk of cancer metastasis, and MMP9
overexpression correlates to lymph node metastasis [49,50]. However, MMP2, MMP9, and
other proteolytic enzymes in local inflammations from PDT can cooperate in tissue damage
by facilitating a reduction in tumor volume [51].

The role of autophagy in cancer development, growth, invasion, and metastasis has
recently been highlighted. In this context, microtubule-associated protein 1B light chain 3B
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(LC3B) is one of the most studied proteins, and its overexpression is associated with a poor
prognosis [52]. PDT triggers autophagy in tumor cells by suppressing AKT-mTOR signaling
or up-regulating the AMPK pathway [53,54]. Thus, LC3B overexpression indicates that tu-
mor cells underwent autophagy. Related concerns should be mentioned because surviving
tumor cells can obtain resistance over PDT by inhibiting autophagy pathways [55].

The effect of PDT on cancer cells is related to apoptosis or necrosis, and autophagy
is an intracellular degradation pathway that can participate in pro-survival or pro-death
mechanisms. Thus, autophagy often monitors cellular death by PDT as an attempt to sur-
vive oxidative damage [55]. Furthermore, autophagy inhibition can decrease anti-apoptotic
proteins, promoting survival and tumor adaption against PDT [56]. The precise mecha-
nisms that can unbalance autophagy from running toward pro-death cells are pivotal for
improving the clinical outcomes of cancer patients treated with PDT [41]. Thus, autophagy
after PDT with different photosensitizers should be further investigated.

The ATP-binding cassette (ABC) transporters are transmembrane proteins that utilize
ATP to transport/efflux diverse compounds across cellular membranes [57]. Among
these proteins, ABCB1, ABCC1, and ABCG2 can transport numerous chemotherapy drugs
outside cells, causing chemoresistance [58]. PDT could not affect ATP protein levels in
nasopharyngeal carcinoma cells infected with EBV, which can be a good response because
of the absence of tumor resistance by photodamage in this pathway. The present study
adapted the OHAT Rob Rating tool to assess the risk of bias for in vitro studies [17,18].
Most included articles showed a higher risk of bias related to blinding. Although blinding
is not frequently used for in vitro studies and is highly required in randomized clinical
trials, this methodological approach was accepted, considering that effect size estimates
may be overrated. Blinding can also eliminate the observation bias [59].

The findings of the present systematic review and meta-analysis should be under-
stood with caution because only seven articles were included in the systematic review and
three in the meta-analysis. Moreover, three of the seven articles were published by the
same research group, representing a limitation for the present study. Hence, the studies
were conducted with different cell lines, such as CNE-2, C666-1, and HK-1. CNE-2 is a
poorly differentiated nasopharyngeal carcinoma epithelioid cell line from a primary tumor
biopsy in China [60]. The C666-1 cell line represents an undifferentiated nasopharyngeal
carcinoma carrying EBV in long-term cultures [61]. The HK-1 originated from a recur-
rent (after radiotherapy) differentiated nasopharyngeal carcinoma [62]. These differences
can represent distinguished molecular signatures that could cause differences in tumor
microenvironment responses after PDT and impact PDT efficacy in killing tumor cells.

In summary, PDT can modulate the tumor microenvironment of nasopharyngeal
carcinoma cells and is an efficient treatment against these cells when infected with EBV.
However, these findings should be investigated in animals and previous preclinical studies.

5. Conclusions

PDT is a promising approach as a treatment for nasopharyngeal carcinoma cells in-
fected with EBV because it can modulate the tumor microenvironment. It also showed
significant results in killing nasopharyngeal carcinoma cells infected with EBV. Neverthe-
less, PDT can easily be associated with other treatments for this tumor.
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