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Abstract: Background and aim: Several studies have identified that three SAMM50 polymorphisms
(rs2073082, rs738491, rs3761472) are associated with an increased risk of non-alcoholic fatty liver
disease (NAFLD). However, the clinical significance of the SAMM50 SNP in relation to NAFLD
remains largely unknown. Therefore, we conducted a clinical study and SNP–SNP interaction
analysis to further elucidate the effect of the SAMM50 SNP on the progression of NAFLD in the
elderly. Methods: A total of 1053 patients over the age of 65 years were recruited. Liver fat and
fibrosis were detected by abdominal ultrasound or FibroScan, respectively. Genomic DNA was
extracted and then genotyped by Fluidigm 96.96 Dynamic Array. Multivariable logistic regression
was used to evaluate the association between NAFLD and SNP. SNP–SNP interactions were analyzed
using generalized multivariate dimensionality reduction (GMDR). Results: The risk of NAFLD was
substantially higher in people who carried SAMM50-rs2073082 G and -rs738491 T alleles (OR, 1.962;
95% CI, 1.448–2.659; p < 0.001; OR, 1.532; 95% CI, 1.246–1.884; p = 0.021, respectively) compared to
noncarriers. Carriers of the rs738491 T and rs3761472 G alleles in the cohort showed a significant
increase in liver stiffness measurements (LSM). The combination of the three SNPs showed the
highest predictive power for NAFLD. The rs2073082 G allele, rs738491 T allele and rs3761472 G
carriers had a two-fold higher risk of NAFLD compared to noncarriers. Conclusions: Our research
has demonstrated a strong correlation between the genetic polymorphism of SAMM50 and NAFLD
in the elderly, which will contribute to a better understanding of the impact of age and genetics on
this condition. Additionally, this study provides a potential predictive model for the early clinical
warning of NAFLD.

Keywords: nonalcoholic fatty liver disease; SAMM50; single nucleotide polymorphism; SNP–SNP
interactions; aging

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease,
affecting up to 1.7 billion individuals worldwide and posing a significant health burden.
Notably, China has one of the highest prevalence, morbidity and annual mortality rates
associated with NAFLD in Asia [1,2]. NAFLD is caused by a confluence of genetic and
environmental factors, with hereditary predisposition accounting for approximately 50% of
the risk [3,4]. Genome-wide association studies (GWASs) have identified dozens of genetic
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variants related to NAFLD over the last decade, such as patatin-like phospholipase domain-
containing protein 3 (PNPLA3), Glucokinase regulatory protein (GCKR) and Membrane
Bound O-Acyltransferase Domain Containing 7 (MBOAT7) [5–7]. This indicates that SNPs
play a vital role in the development of NAFLD.

Recently, the SAMM50 variant was found to be closely associated with NAFLD vul-
nerability [8–10]. The SAMM50 gene encodes Sam50, which is a kind of β-barrel protein
distributed in the mitochondrial membrane [11]. It is also involved in the regulation of
mitochondrial morphology, function and scavenging mitochondrial reactive oxygen species
(ROS) [12]. Several SNPs in the SAMM50 gene have also been reported to be associated
with an increased risk of NAFLD. Clinical studies have revealed that SAMM50 variants,
including rs738491 and rs3761472, increase susceptibility to NAFLD [12,13]. Subsequent re-
ports have also suggested that rs2073082 is associated with an increased risk of NAFLD [10].
Furthermore, Kitamoto et al. discovered a significant association between the rs738491
variant and fibrosis in a Japanese cohort, whereas rs3761472 did not show a correlation [12].
However, rs738491 was not found to be associated with fibrosis in a Chinese cohort [14]. The
findings are inconsistent and require further investigation. In short, the clinical significance
of the SAMM50 SNP in relation to NAFLD remains largely unknown.

In addition, the trend of global aging is becoming increasingly obvious [15]. The
World Health Organization (WHO) estimates that the number of individuals aged 60 and
above will reach approximately 840 million by 2025 [16]. Evidence indicates that aging
increases the incidence of NAFLD, especially mortality from nonalcoholic steatohepatitis
(NASH) [7,17–20]. Unfortunately, little attention has been paid to NAFLD in older adults.
Therefore, we conducted this case-control study to investigate the effects of three variants
of SAMM50 and their interactions on NAFLD in the elderly Chinese population.

In the present study, we evaluated the effects of three variants of SAMM50 and their
interactions on the development of NAFLD. The results demonstrated that all three variants
were associated with NAFLD in the elderly. Among them, carriers of the rs2073082 G
allele and rs738491 T allele were associated with susceptibility to NAFLD, and carriers
of rs738491 T and rs3761472 G alleles were associated with fibrosis. In addition, GMDR
analysis demonstrated that the best model for predicting NAFLD included all three SNPs.
Thus, this study provides important insights into genetic factors, which may contribute to
a better understanding of the underlying mechanisms involved.

2. Materials and Methods
2.1. Patients and Methods

Elderly citizens in the Beijing Mentougou community who participated in annual free
physical examinations were recruited from 1 November 2020 to 30 September 2021. The
study protocol was approved by the Ethics Committee of Beijing You’an Hospital, Capital
Medical University (IRB number (2020)-133). The approval date was 28 October 2020. The
registration number was ChiCTR 2100043106. All subjects signed informed consent forms.

2.2. Patient Selection and Enrollment Criteria

NAFLD was diagnosed according to the 2018 AASLD NAFLD management guidelines
(i.e., defined as evidence of hepatic steatosis on abdominal ultrasound) [21]. In addition to
a diagnosis of NAFLD, the inclusion criteria included the following reasons: (1) residents
in the community; (2) volunteered participating in the annual free physical examination,
which was provided by the Beijing government for residents older than 65; (3) signed
informed consent. Participants were excluded from analyses for the following reasons:
(1) missing data on genetic polymorphisms or other important laboratory parameters or
medical history; (2) excessive alcohol consumption (>140 g/week for men and >70 g/week
for women); (3) inability to obtain reliable abdominal ultrasound results due to specific
reasons, such as intestinal gas interference; (4) malignant tumors, HIV and other serious
diseases that may affect the nutritional status or organ function; (5) comorbidity with other
liver diseases, such as viral hepatitis and autoimmune hepatitis.
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Typically, 10–20 residents took part in the routine examination every morning. If a
patient was diagnosed with fatty liver by ultrasound, they were transferred to an isolated
room where they were recruited and underwent further testing. Controls were selected
from residents who arrived after previous NAFLD patients and did not have fatty liver.
Ultimately, 1423 residents were examined, and 1053 residents were recruited into the study
(Figure 1).
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Figure 1. Flow chart of patients’ selection. A total of 1423 patients were initially collected in the
cohort, 143 were excluded according to the exclusion criteria, and after exclusion of 227 patients with
incomplete data or unqualified genotyping, 1053 patients were finally enrolled in the study.

2.3. Data Collection

Baseline information for all participants, including their demographics, anthropo-
metrics, clinical parameters, and comorbidities, was measured. All laboratory tests were
performed in the central lab of Menkuang Hospital or Beijing Jingmei Group General
Hospital, including serum concentrations of alanine aminotransferase (ALT), aspartate
aminotransferase (AST), triglyceride (TG), total cholesterol (TC), high-density lipopro-
tein (HDL), and low-density lipoprotein (LDL), Blood glucose (GLU) and Glycosylated
Hemoglobin, Type A1c (HbA1c). Two trained investigators performed an abdominal ultra-
sound and determined liver fat content and liver stiffness with the FibroScan 502 touch
device (Echosens, Paris, France).

2.4. Definitions

Using ultrasonography to identify fatty liver, participants were divided into NAFLD
and non-NAFLD groups. Weight (kg) divided by the square of height (m) is known as
body mass index (BMI). Waist-to-hip ratio (WHR) was the waist circumstance divided by
the hip circumstance. The formula for homeostasis model assessment of insulin resistance
(HOMA-IR) is fast insulin (pmol/L) × fast blood sugar (FBS, mmol/L))/22.5. Additionally,
the non-invasive liver fibrosis score formula non-alcoholic fatty liver disease fibrosis score
(NFS) [22] was calculated according to the following equations:
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NFS = −1.675 + 0.037 × age (years) + 0.094 × BMI (kg/m2) + 1.13 × impaired fasting
blood glucose or diabetes mellitus (yes = 1, no = 0) + 0.99 × (AST/ALT) − 0.013 × PLT
(×109/L) − 0.66 × albumin (g/dL)

Comorbid diseases were diagnosed according to international guidelines, including
hypertension, type 2 diabetes mellitus (T2DM) and metabolic syndrome (Mets). In brief, hy-
pertension is diagnosed when systolic blood pressure ≥ 130 mmHg, diastolic blood pressure
≥ 85 mmHg or taking antihypertensive drugs. T2DM is diagnosed when FBS ≥ 7.0 mmol/L,
or HbA1c ≥ 6.5%, or OGTT 2h blood sugar ≥ 11.1 mmo/L or taking hypoglycemic drugs.
According to the Joint Statement Criteria, metabolic syndrome (Mets) was defined as the
presence of at least three of the following conditions: (1) increased waist circumference
(≥90 cm for men or ≥80 cm for women); (2) elevated triglycerides (≥1.70 mmol/L) or
medication for elevated triglycerides; (3) reduced HDL-C (<1.0 mmol/L for men and
<1.3 mmol/L for women) or using lipid-lowering drugs; (4) elevated blood pressure
(≥130/85 mmHg) or taking antihypertensive drugs; and (5) elevated FBS (≥5.6 mmol/L)
or taking hypoglycemic drugs [23]. In this study, LSM ≥ 8.2 kPa was used to predict
significant hepatic fibrosis [24,25]. BMI ≥ 28 kg/m2 was used to characterize obesity.

2.5. Genomic DNA Extracting and Genotyping

Genomic DNA was extracted from the patient’s blood specimens by BGI-Shenzhen,
China. The concentration and quality of DNA were determined by spectrophotometry
(Nanodrop 2000, Thermo Scientific, Wilmington, DE, USA) and diluted to approximately
50 ng/mL before genotyping. Next, genomic DNA was genotyped with the use of a 96.96
genotyping integrated fluidics circuit with customized SNP-type assays on the JunoTM

system (Fluidigm, South San Francisco, CA, USA), and quantification on the BiomarkTM

(Fluidigm, South San Francisco, CA, USA) in accordance with the manufacturers’ instruc-
tions. The data were analyzed using Fluidigm SNP Genotyping Analysis software version
4.5.1 (South San Francisco, CA, USA).

2.6. Statistical Analysis

The unpaired Student’s t-test, one-way ANOVA, or Mann–Whitney U-test (if the data
were not normally distributed) were employed for comparing continuous variables, which
were presented as means with standard deviations (SD) or medians (25th and 75th per-
centiles). Categorical variables were reported as numbers and percentages and subjected to
the χ2 test or Fisher’s exact test. The χ2 test was utilized to determine the Hardy–Weinberg
equilibrium. Using the χ2 test, differences in alleles and genotype distributions between
groups were calculated. By using logistic regression analysis, the relationship between genetic
variations and NAFLD was assessed, and the odds ratio (OR) with a 95% confidence interval
(CI) was obtained. Open source Java software versions 3.0.2 Multifactor Dimension Reduction
(MDR) (http://www.epistasis.org/mdr.html accessed on 4 August 2023) [26] and 0.9 Gen-
eralized Multivariate Dimensionality Reduction (GMDR) (http://www.ssg.uab.edu/gmdr/
accessed on 4 August 2023) [27,28] for analyzing SNP–SNP interactions. The statistical
analyses were performed using the Statistical Package for Social Sciences (SPSS), version
26.0 (SPSS Inc., Chicago, IL, USA). A p value < 0.05 was considered statistically significant.

3. Results
3.1. Baseline Characteristics of Non-NAFLD Controls and NAFLD Patients

A total of 1053 subjects were included, and 28.7% of the subjects were male. Among
these patients, 590 (56.03%) had NAFLD. The demographic and clinical characteristics of
the two groups are listed in Table 1. The NAFLD patients had a higher BMI, waist and
hip circumferences, serum levels of ALT, AST, HbA1C, HOMA-IR, insulin and serum TG
and lower HDL than the control group. Controlled attenuation parameter (CAP) and liver
stiffness measurement (LSM) were also significantly higher in the NAFLD group than in
the controls. However, no significant differences were observed between the two groups in
terms of TC, LDL and GLU.

http://www.epistasis.org/mdr.html
http://www.ssg.uab.edu/gmdr/
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Table 1. Clinical characteristics of non-NAFLD controls and NAFLD patients.

Non-NAFLD (N = 463) NAFLD (N = 590) p-Value

Age (year) 70.00 [67.00~75.00] 69.00 [66.75~73.00] <0.001
Male, n (%) 154 (33.26) 149 (25.25) 0.004
Weight (kg) 62.39 ± 9.09 68.31 ± 10.32 <0.001

BMI (kg/m2) 24.44 ± 2.77 26.89 ± 3.06 <0.001
Waist circumference (cm) 85.75 ± 7.69 91.12 ± 7.91 <0.001
Hip circumference (cm) 96.07 ± 7.02 100.33 ± 7.16 <0.001

WHR 0.89 ± 0.05 0.91 ± 0.05 <0.001
TBIL (µmol/L) 15.24 ± 5.50 15.65 ± 7.47 0.322
TG (mmol/L) 1.33 ± 0.80 1.78 ± 1.16 <0.001
TC (mmol/L) 4.82 ± 1.17 4.82 ± 1.27 0.939

HDL (mmol/L) 1.21 ± 0.28 1.12 ± 0.22 <0.001
LDL (mmol/L) 3.34 ± 1.07 3.34 ± 1.16 0.980

ALT (U/L) 17.54 ± 7.64 21.47 ± 10.14 <0.001
AST (U/L) 17.40 ± 5.62 19.36 ± 8.57 <0.001

GLU (mmol/L) 6.93 ± 3.82 7.27 ± 2.46 0.078
HbA1C (%) 6.36 ± 1.21 6.70 ± 1.32 <0.001

Insulin 7.80 [5.49~11.05] 10.96 [7.59~15.16] <0.001
HOMA-IR 2.18 [1.48~3.40] 3.31 [2.25~4.91] <0.001

CAP (dB/m) 242.93 ± 43.24 295.22 ± 41.11 <0.001
LSM (kPa) 4.51 ± 1.77 5.44 ± 1.99 <0.001

NFS −0.79 [−1.53~0.03] −0.73 [−1.40~0.05] 0.870
Hypertension, n (%) 345 (74.51) 465 (78.81) 0.035

Mets, n (%) 356 (76.89) 537 (91.02) <0.001
T2DM, n (%) 169 (36.50) 272 (46.10) 0.002
Obesity, n (%) 45 (0.09) 202 (34.24) <0.001

Lipid lowering agent, n (%) 164 (35.42) 191 (32.37) 0.355
Stroke, n (%) 73 (15.77) 92 (15.59) 0.981

Continuous variables are shown as mean ± standard deviation or median [interquartile range]. Categorical
values are shown as n (%). p values were derived from Student’s t-test, Mann–Whitney U test or Chi-square test.
Abbreviations: BMI, body mass index; WHR, Waist-to-hip ratio; TBIL, total bilirubin; TG, total triglyceride; TC,
total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; GLU, Glucose; HbA1C, Glycosylated Hemoglobin Type A1C; HOMA-IR,
homoeostatic model assessment of insulin resistance; CAP, controlled attenuated parameter controlled; LSM, liver
stiffness measurement; NFS, NAFLD Fibrosis Score; Mets, metabolic syndrome; T2DM, type 2 diabetes.

Regarding the metabolic profiles, among NAFLD cases, 465 subjects (78.81%) had
hypertension, 272 subjects (46.10%) had T2DM, 537 subjects (91.02%) had Mets, and 425 sub-
jects (72.03%) were obese. The prevalence showed differences between the NAFLD and
non-NAFLD groups (p < 0.05). Meanwhile, there were no significant differences in stroke
incidence and lipid-lowering agent use between the two groups.

3.2. Genotypes and Allele Frequencies of rs2073082, rs738491 and rs3761472 in Non-NAFLD and
NAFLD Groups

The distribution of each SNP in the non-NAFLD and NAFLD groups was consistent
with the Hardy–Weinberg balance and was representative of the population (p > 0.05).
As described in Table 2, there were significant differences in the genotype of rs2073082
between the NAFLD group and the control group. The genotype and allele frequencies
of rs738491 differed between the two groups. However, the distribution of the rs3761472
genotype and allele frequencies was comparable.
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Table 2. Distribution of genotypes and allele frequencies of three genetic variants in SAMM50
in subjects.

Genotypes and Allele Non-NAFLD NAFLD χ2 p-Value

SAMM50-rs2073082(G > A)
Genotypes 12.090 0.002

GG 199 (42.98%) 242 (41.02%)
GA 198 (42.76%) 299 (50.68%)
AA 66 (14.25%) 49 (8.31%)

Alleles 0.912 0.340
G 596(64.36%) 783(66.36%)
A 330(35.64%) 397(33.64%)

SAMM50-rs738491(C > T) 8.722 0.013
CC 164 (35.42%) 161 (27.29%)
CT 209 (45.14%) 312 (52.88%)
TT 90 (19.44%) 117 (19.83%)

Alleles 3.819 0.05
C 537(58.00%) 634(53.70%)
T 389(42.00%) 546(46.30%)

SAMM50-rs3761472(A > G) 0.118 0.943
AA 185 (39.96%) 230 (38.98%)
AG 225 (48.60%) 290 (49.15%)
GG 53 (11.45%) 70 (11.86%)

Alleles 0.109 0.742
A 595(64.30%) 750(63.60%)
G 331(35.70%) 430(36.40%)

3.3. rs2073082, rs738491 and rs3761472 Polymorphism and NAFLD Susceptibility Adjusted by
Age, Gender and BMI

The relationship between the three variants of SAMM50 and NAFLD susceptibility
under different genetic models is analyzed in Table 3. There was a noticeable association
between rs2073082 polymorphism and NAFLD susceptibility under the homozygous model
(GG vs. AA, OR = 1.638, 95% CI, 1.222–2.196, p < 0.001) and recessive model (AG + GG
vs. AA, OR = 1.836, 95% CI, 1.392–2.421, p < 0.001). Significant association remained
after adjusting for confounding factors (adjusted OR, 1.691; 95% CI, 1.235–2.315; p < 0.001;
adjusted OR, 1.962; 95% CI, 1.448–2.659; p < 0.001, respectively). Carriers of the G-allele
had a higher risk of NAFLD.

Table 3. Study group odds ratios for NAFLD according to genotypes of SAMM50 single nucleotide
polymorphisms in the study group.

Genetic Model Unadjusted OR, 95% CI p-Value Adjusted OR, 95% CI a p-Value

rs2073082
G vs. A 0.916 (0.764–1.097) 0.340 1.109 (0.909–1.353) 0.309

GG vs. AA 1.638 (1.222–2.196) 0.001 1.691 (1.235–2.315) 0.001
GG vs. AA + AG 1.084 (0.911–1.290) 0.365 1.084 (0.896–1.313) 0.407
AG + GG vs. AA 1.836 (1.392–2.421) <0.001 1.962 (1.448–2.659) <0.001

rs738491
T vs. C 1.189 (0.999–1.414) 0.051 1.216 (1.005–1.472) 0.045

TT vs. CC 1.324 (1.034–1.697) 0.026 1.373 (1.050–1.376) 0.021
TT vs. CC + CT 0.975 (0.785–1.212) 0.822 0.960 (0.757–1.217) 0.737
CT + TT vs. CC 1.462 (1.214–1.760) <0.001 1.532 (1.246–1.884) <0.001

rs3761472
G vs. A 1.031 (0.862–1.233) 0.742 1.016 (0.867–1.285) 0.588

GG vs. AA 1.062 (0.797–1.416) 0.680 1.093 (0.800–1.493) 0.575
GG vs. AA + AG 0.970 (0.734–1.256) 0.767 0.975 (0.728–1.305) 0.863
AG + GG vs. AA 1.042 (0.874–1.242) 0.650 1.099 (0.905–1.335) 0.340

a Multiple logistic regression model was adjusted for age, gender, and body mass index.
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Moreover, the data demonstrated strong links between rs738491 and the presence of
NAFLD under the allelic model (T vs. C, adjusted OR, 1.216; 95% CI, 1.005–1.472; p = 0.045),
the homozygous model (TT vs. CC, adjusted OR, 1.373; 95% CI, 1.050–1.376; p = 0.021) and
the recessive model (CT + TT vs. CC, adjusted OR, 1.532; 95% CI, 1.246–1.884; p = 0.021),
which indicated that the T-allele was the risk allele of NAFLD. However, no significant
difference existed between any model of rs3761472 and NAFLD.

3.4. Association of Three SAMM50 Gene Variants with Clinical Features

Since previous studies have indicated that the G-allele in rs2073082, T-allele in rs738491
and G-allele in rs3761472 all increased susceptibility to NAFLD [10,12,13], we classified the
patients as carriers and noncarriers in the whole population. As shown in Table 4, the LSM
of the rs738491 T allele and rs3761472 G allele carriers was significantly higher than that of
noncarriers (p = 0.040, p = 0.019, respectively). Furthermore, our analysis revealed that the
significance of LSM remained even after adjusting for sex, age and BMI (Table S1). As for
rs3761472, the TC and LDL levels had significant differences between the two groups, even
after adjusting for sex, age, BMI and use of lipid-lowering agents in the logistic regression
model (Table S2). Nevertheless, the levels of ALT, AST, TG and HDL between the carriers
and the noncarriers of the three genetic variants were not statistically different. The clinical
characteristics were also compared in the whole population according to the genotypes of
the three SNPs. After correction for multiple linear regression, LSM indicated a difference
between groups (Tables S3 and S4). There were no differences between the other indicators.

Similar analyses were also performed in the NAFLD population. No statistical signifi-
cance was discovered (Tables S5 and S6).

3.5. Analysis of SNP–SNP Interactions

GMDR was used to analyze the interactions between these SNPs. Table 5 presents a
summary of the results obtained from the GMDR analysis for the one- to three-locus models.
Among them, a significant three-locus model (p = 0.0107) involving rs2073082, rs738491
and rs3761472 was identified, demonstrating the highest training accuracy (56.97%), test-
ing accuracy (TA, 55.52%) and the best cross-validation consistency (CVC: 10/10). A
graphical presentation of the best identified interaction models in NAFLD and control
groups is given in Figure 2, which demonstrated the distribution of high and low risk of
NAFLD in a three-locus genetic model combination (Figure 2). The dendrogram (Figure 3)
showed that rs2073082 and rs738491 exhibited antagonism effects on NAFLD susceptibility.
Fruchterman-Reingold (Figure 4) revealed that rs3761472 synergized with both rs738491
and rs2073082, resulting in positive information gain values of 0.21% and 0.04% in NAFLD,
while rs2073082 and rs738491 were antagonistic with negative IG values (−0.76%). Age,
sex and BMI adjustments were made to the models.

Importantly, NAFLD risk increased in parallel with the number of loci even after
adjusting for confounders. The adjusted OR of one locus, two locus and three locus models
were 1.532 (95% CI: 1.144–2.053), 1.809 (95% CI: 1.147–2.853) and 1.892 (95%CI: 1.196–2.993),
respectively. Additionally, rs2073082 G carriers, rs738491 T carriers and rs3761472 G carriers
had a two-fold higher risk of NAFLD compared to noncarriers (Table 6).
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Table 4. Comparison of clinical characteristics according to SAMM50 genotypes within the whole population (Carriers vs. Noncarriers).

rs2073082 rs738491 rs3761472

Carriers (GG + AG) Noncarriers (AA) p-Value Carriers (TT + CT) Noncarriers (CC) p-Value Carriers (GG + AG) Noncarriers (AA) p-Value

N 938 115 728 325 638 415

Age (year) 69.00
[67.00~73.00]

70.00
[67.00~75.00] 0.036 69.00

[67.00~73.00]
70.00

[67.00~75.00] <0.001 69.00
[67.00~73.00]

69.00
[67.00~74.00] 0.071

Male, n (%) 268 (28.57) 35 (30.43) 0.677 205 (28.16) 98 (30.15) 0.529 180 (28.21) 123 (29.64) 0.618
Weight (kg) 65.69 ± 10.24 65.82 ± 10.14 0.898 65.61 ± 10.10 65.93 ± 10.51 0.637 65.29 ± 10.08 66.34 ± 10.42 0.103

BMI (kg/m2) 25.83 ± 3.20 25.70 ± 2.98 0.682 25.80 ± 3.14 25.84 ± 3.27 0.863 25.70 ± 3.12 25.98 ± 3.26 0.166
Systolic pressure 135.14 ± 16.77 134.18 ± 13.97 0.560 134.69 ± 14.60 135.80 ± 20.08 0.318 134.76 ± 14.37 135.45 ± 19.27 0.508
Diastolic pressure 78.93 ± 8.83 78.33 ± 7.79 0.488 78.86 ± 8.48 78.87 ± 9.24 0.999 78.78 ± 8.33 79.00 ± 9.28 0.697

Waist circumference 88.77 ± 8.27 88.61 ± 8.10 0.843 88.60 ± 8.10 89.09 ± 8.59 0.369 88.54 ± 8.08 89.07 ± 8.51 0.316
Hip circumference 98.42 ± 7.43 98.68 ± 7.17 0.732 98.39 ± 7.36 98.58 ± 7.50 0.702 98.24 ± 7.32 98.77 ± 7.52 0.256

WHR 0.90 ± 0.05 0.90 ± 0.05 0.478 0.90 ± 0.05 0.90 ± 0.06 0.282 0.90 ± 0.05 0.90 ± 0.05 0.894
CAP 273.89 ± 49.44 264.04 ± 47.78 0.073 275.00 ± 49.79 268.10 ± 48.03 0.055 273.71 ± 50.35 271.60 ± 47.75 0.534
LSM 5.07 ± 1.95 4.85 ± 2.00 0.318 5.14 ± 2.06 4.84 ± 1.68 0.040 5.17 ± 2.05 4.85 ± 1.78 0.019

NFS −0.74
[−1.44–0.01]

−0.92
[−1.49–−0.08] 0.470 −0.74

[−1.45–−0.05]
−0.76

[−1.46–0.09] 0.849 −0.76
[−1.47–−0.05]

−0.73
[−1.44–0.07] 0.357

LSM ≥ 8.2 kPa, n (%) 53 (5.65) 4 (3.48) 0.423 45 (6.18) 12 (3.69) 0.111 39 (6.11) 18 (4.34) 0.250
NFS ≥ −1.455, n (%) 597 (63.64) 69 (60.00) 0.295 452 (62.09) 214 (65.85) 0.834 401 (62.85) 265 (63.86) 0.766

TBIL (µmol/L) 15.53 ± 6.90 14.98 ± 4.41 0.406 15.56 ± 7.09 15.28 ± 5.66 0.530 15.57 ± 7.19 15.32 ± 5.80 0.556
TG (mmol/L) 1.59 ± 1.06 1.51 ± 0.92 0.401 1.60 ± 1.05 1.56 ± 1.03 0.579 1.57 ± 1.02 1.60 ± 1.08 0.724
TC (mmol/L) 4.81 ± 1.25 4.89 ± 1.09 0.483 4.80 ± 1.26 4.86 ± 1.15 0.452 4.75 ± 1.25 4.92 ± 1.18 0.031

HDL (mmol/L) 1.15 ± 0.25 1.18 ± 0.27 0.218 1.15 ± 0.25 1.18 ± 0.26 0.074 1.15 ± 0.25 1.16 ± 0.25 0.517
LDL (mmol/L) 3.33 ± 1.13 3.41 ± 1.00 0.511 3.33 ± 1.15 3.37 ± 1.05 0.593 3.28 ± 1.14 3.44 ± 1.08 0.030

ALT (U/L) 19.83 ± 9.31 19.03 ± 9.50 0.389 19.98 ± 9.58 19.21 ± 8.73 0.215 19.89 ± 9.28 19.52 ± 9.41 0.536
AST (U/L) 18.52 ± 7.58 18.31 ± 6.67 0.778 18.63 ± 8.00 18.21 ± 6.14 0.403 18.43 ± 7.62 18.61 ± 7.26 0.711

Hypertension, n (%) 722 (77.97) 88 (76.52) 0.850 561 (77.06) 249 (76.62) 0.870 488 (76.49) 322 (77.59) 0.959
T2DM, n (%) 398 (42.43) 43 (37.39) 0.293 311 (42.72) 130 (40.00) 0.421 267 (41.85) 174 (41.93) 0.986
Stroke, n (%) 146 (15.57) 19 (16.52) 0.804 117 (16.07) 48 (14.77) 0.591 100 (15.67) 65 (15.66) 0.928
Mets, n (%) 798 (85.07) 95 (82.61) 0.487 621 (85.30) 272 (83.69) 0.501 539 (84.48) 354 (85.30) 0.718

Lipid lowering agent, n (%) 318 (33.90) 37 (32.17) 0.677 242 (33.24) 113 (34.77) 0.649 210 (32.92) 145 (34.94) 0.616

BMI, body mass index; WHR, Waist-to-hip ratio; CAP, controlled attenuated parameter controlled; LSM, liver stiffness measurement; NFS, NAFLD Fibrosis Score; TBIL, total bilirubin;
TG, total triglyceride; TC, total cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; T2DM, type
2 diabetes; Mets, metabolic syndrome.
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Table 5. Best models to predict NAFLD by generalized multifactor dimensionality reduction (GMDR) a.

GMDR Model Training Accuracy b Testing Accuracy b Sign Test (p) CVC

rs738491 0.5468 0.5260 6 (0.3770) 6/10
rs2073082, rs3761472 0.5571 0.5304 7 (0.1719) 8/10
rs2073082, rs738491 a

rs3761472 0.5697 0.5552 9 (0.0107) 10/10

a Whole dataset statistics: Training Balanced Accuracy, 0.5449; Training Accuracy, 0.5449; Training Sensitivity,
0.7300; Training Specificity, 0.3593; Training Odds Ratio, 1.5189 (1.0076, 2.2898); Training χ2 (p), 4.0049 (p = 0.0454);
Training Precision, 0.5327; Training Kappa, 0.0897; Training F-Measure, 0.6159. b The values’ units are (%).
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Figure 2. SNP−SNP interactions among SAMM50 rs2073082, rs738491 and rs3761472 loci in NAFLD
and Control subjects. Inside each square, the left bar represents NAFLD subjects (positive score),
and the right bar represents control subjects (negative score). The number at the top of each bar is
the scoring statistic, which is the product of the affiliation coefficient and the residuals. The scoring
statistic categorizes data into high and low risk by calculating whether an individual’s scoring mean
exceeds a set threshold (e.g., ≥1). High-risk combinations of genotypes are indicated in dark squares;
low-risk genotype combinations are indicated in gray squares; empty squares present the absence of
identified genotype combination.
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long lines represent weaker interactions.
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Figure 4. Fruchterman−Rheingold. This interaction model describes the percent of the entropy that
is explained by each factor. Each SNP is shown in a box with the percent of entropy below the label.
Interactions between SNPs are depicted as lines in different colors. Synergy is depicted as an orange
line between SNPs accompanied by a positive percent of entropy, while redundancy is indicated as a
blue line accompanied by a negative percent of entropy. Rs3761472 synergized with both rs738491
and rs2073082, resulting in positive information gain values of 0.12% and 0.04% in NAFLD, while
rs2073082 and rs738491 were antagonistic with negative IG values (−0.76%).

Table 6. Logistic regression analysis between each genetic model and risk of NAFLD.

Genotypes Adjusted OR (95% CI) a p-Value

rs738491
CC 1

CT + TT 1.532 (1.144, 2.053) 0.004
rs2073082, rs3761472

AA, AA 1
GG + AG, GG + AG 1.809 (1.147, 2.853) 0.011

rs2073082, rs738491, rs3761472
AA, CC, AA 1

GG + AG, CT + TT, GG + AG 1.892 (1.196, 2.993) 0.006
a Multivariate logistic regression model adjusted for age, sex and BMI. BMI, body mass index; CI, confidence
interval; OR, odds ratio.

4. Discussion

In the last decade, it has become increasingly clear that genetic markers significantly
impact the progression of NAFLD. For example, the variant PNPLA3 rs738409 is associated
with increased liver fat content and fibrosis [29]. GCKR rs780094 can also cause hepatic
steatosis, impair mitochondrial β-oxidation and cause a predisposition to fatty liver-related
liver disease [30]. Therefore, the identification of genetic markers for NAFLD can be
a valuable tool in clinical management, helping with risk assessment and highlighting
potential treatment targets [5,31,32]. In the current study, we conducted clinical research
and analyzed the interaction between the novel genetic factor SAMM50 SNPs (rs2073082,
rs738491 and rs3761472) to understand their impact on the progression of NAFLD in
elderly patients. The major findings of the study are as follows: (i) The carriers of the
rs2073082 G allele and rs738491 T allele significantly increased susceptibility to NAFLD;
(ii) the rs738491 T allele and rs3761472 G allele carriers had significantly higher levels of
LSM than the noncarriers in the whole population; (iii) We found that the best model for
predicting NAFLD in elderly individuals included rs2073082, rs738491 and rs3761472 using
GMDR analysis.

Aging, a major risk factor for increased susceptibility to certain diseases, is charac-
terized by a gradual physiological process that affects all systems of the body, including
cells, tissues and organs, which ultimately leads to impaired biological function of the
organism [33]. Various endogenous and exogenous factors, such as genetic makeup or
dietary habits, also have a significant impact on individualized aging [34]. It has been
reported that aging, particularly hepatic age, can promote the development of steatosis,
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non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma by reducing the re-
generative capacity, biotransformation and increasing inflammation of the liver [34]. In a
territory-wide retrospective cohort study, Zhang et al. [35] found that most patients with
NAFLD and T2DM developed liver-related events or cirrhosis after age 50, suggesting
that aging is an independent and strong predictor of NAFLD. Another study, including
a cohort of 182 Japanese patients with biopsy-proven NAFLD, also demonstrated that
age was closely related to the pathological progression of liver fibrosis [36]. However,
epidemiological data on fatty liver in the elderly population are still much less available
compared to middle-aged adults and children. Based on the fact that the global elderly
population continues to increase, research on aging and NAFLD may contribute to reducing
the burden on healthcare systems.

The SAMM50 gene and its encoded protein SAM50 are important components of the
sorting and assembly machinery complex in the mitochondrial outer membrane, involved
in maintaining the stability of mitochondrial DNA, respiratory chain complexes, mitochon-
drial cristae structure [12,14], and the regulation of mitophagy [37]. It has been reported
that SAM50 deficiency triggers membrane remodeling and mitochondrial dysfunction,
reducing the ability to clear reactive oxygen species (ROS) and causing lipotoxicity and
hepatocyte damage, which further contributes to the development of NAFLD [10]. Poly-
morphisms in rs2073082, rs738491 and rs3761472 of the SAMM50 gene were also found to be
significantly associated with susceptibility to NAFLD in middle-aged Japanese and Chinese
populations through GWAS and a clinical cohort study, respectively [12,13]. Individuals
with the homozygous TT genotype of rs738491 and the GG genotype of rs2073082 had a
lower expression of the SAMM50 gene, but only decreased protein levels of rs738491 TT
were found in the livers of patients with NAFLD [10]. The above studies imply that these
variants may promote mitochondrial dysfunction by reducing SAMM50 expression, which
further leads to the development of NAFLD.

Our results indicate that the rs2073082 G allele and rs738491 T allele variations in the
SAMM50 gene significantly increase susceptibility to NAFLD in an elderly population,
which is consistent with previous studies reported by Zuyin et al. in a cohort of Han Chinese
adults [10]. Furthermore, another population-based study with an average age of around
41 years showed that the rs3761472 G allele was associated with an increased susceptibility
to non-alcoholic fatty liver disease, but this was not found in our cohort. Furthermore,
the current research on the relationship between SAMM50 genetic polymorphism and
liver fibrosis is inconsistent. A biopsy-proven study based on a cohort of Japanese liver
fibrosis patients with a mean age of approximately 50 years demonstrated that the rs738491
gene polymorphism, but not rs3761472, was strongly associated with fibrosis progression,
whereas rs738491 was not found to be related to fibrosis in another study of a biopsy-proven
Chinese liver fibrosis cohort with a mean age of approximately 40 years [12,14]. Unlike the
above, our results showed that both the rs738491 T allele and rs3761472 G allele carriers
were related to liver fibrosis in the whole aging population but not in the NAFLD group.
The conflicting findings between SAMM50 polymorphism and non-alcoholic fatty liver
disease may require further validation through large-scale clinical cohorts and in-depth
mechanistic studies. However, our finding of this unique correlation of genetic factor gene
polymorphisms for NAFLD in older cohorts suggests that age is an important independent
risk factor for genetic susceptibility to NAFLD compared to other factors, such as geography,
race and ethnicity.

Aging and many aging-related pathological conditions are closely related to mitochon-
drial function [38]. Early senescent cells have also been shown to have high ROS levels,
dysfunctional mitochondria and shorter telomeres [39]. Moreover, targeted elimination of
mitochondria within aging cells has been shown to successfully reverse many features of
the aging phenotype, including metabolic disorders [40]. Based on the above reports, our
study of SAMM50 gene polymorphism in the elderly cohort may better reflect the impact
of this mitochondria-related protein on NAFLD. In addition, several studies have found
that mitochondrial dysfunction can disrupt hepatic lipid homeostasis, which contributes



Biomedicines 2023, 11, 2416 12 of 15

to the pathogenesis of NAFLD [41–43]. Specifically, loss of mitochondrial function and
subsequent reduction in membrane potential have been reported to disrupt cholesterol
homeostasis in macrophages and decrease the efflux of cholesterol to apoA-I [44], while en-
hancing mitochondrial respiration, as well as ATP production, can increase the expression
of the ABCA1 protein and effectively promote cholesterol efflux. The above studies indicate
that mitochondria play an important regulatory role in cholesterol metabolism. However,
our study found, for the first time, that rs3761472 G carriers had significantly lower TC
and LDL than noncarriers. This finding provides compelling evidence for the existence
of a potential molecular regulatory mechanism linking age, SAMM50 polymorphisms,
mitochondria and cholesterol metabolism.

The analysis of the interaction of multiple SNPs can provide more accurate disease risk
prediction models and a more comprehensive understanding of genetic factors’ impact on
disease, improving disease screening and treatment outcomes in clinical practice. Using the
GMDR method, our analysis identified that the three-locus model, comprising rs2073082,
rs738491 and rs3761472, provided the most accurate prediction for NAFLD. Although
the OR for the risk of NAFLD in rs2073082 G carriers was higher than the OR derived
from the three-SNP model, in the screening of the best single locus, rs738491 (TA 0.5260,
p 0.3770, CVC 6/10) was superior to rs2073082 and became the best single locus model. The
three-locus model, including rs2073082, rs738491 and rs3761472 (TA 0.5552, p 0.0107, CVC
10/10) outperformed the rs738491 single-locus model. In addition, in our cohort, there
were 938 carriers of the rs2073082 G allele and 541 with NAFLD. A total of 607 patients
had simultaneous mutations at all three loci, of which 351 had NAFLD. Therefore, the
inconsistent number of carriers may explain the higher OR of rs2073082 compared to the
three genetic loci. However, further confirmation with larger sample sizes is necessary.

GMDR gives the best prediction model based on the accuracy of training and testing,
consistency of symbolic testing and CVC. Therefore, it has a relatively reliable reference
value. Additionally, rs2073082 G allele, rs738491 T allele and rs3761472 G carriers have a
two-fold higher risk of NAFLD compared to noncarriers. Hence, even though rs3761472
showed no connection when examined separately, we assumed that the interplay of the
three variations controlled the development of NAFLD. Chen et al. reported a possible
synergistic association between rs738491, rs2143571 and rs3761472 of the SAMM50 gene and
NAFLD in a middle-aged population [13]. The TA of the three-locus model was 60.79% and
CVC was 10/10. However, the best model in their study was a two-locus model combining
rs2143571 and rs3761472, with the highest TA (62.21%) and CVC (10/10). We conducted
a similar study in an elderly population but included a new SNP-rs2073082. Our study
found that the three-locus model involving rs2073082, rs738491 and rs3761472 showed
the highest TA (55.52%) and perfect CVC (10/10). Differences in the age of the cohort
and inclusion of SNPs may account for the differences in the results of the studies. The
genetic marker model discovered using GMDR may help clinical identification of potential
NAFLD patients, which is expected to become a useful tool for clinical management and
lay a foundation for further mechanistic research.

Our study’s strength was that it was the first to use a geriatric NAFLD cohort for
genetic analysis. Moreover, our study focused on investigating the interaction between
three SNPs (rs2073082, rs738491 and rs3761472) and NAFLD in an elderly population.
Furthermore, LSM assists in evaluating the relationship between SNPs and liver fibrosis.
Nevertheless, there were still some limitations. First, although liver biopsy is considered
the gold standard for NAFLD diagnosis, our cohort was built based on a population with
a healthy physical examination, and we can only choose B-ultrasound as the first-line
diagnostic method. Second, all participants were recruited from the same city in China,
and further research work is required to generalize our results to different ethnic groups
and the general population in the future.
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5. Conclusions

Together, the three SNPs in the SAMM50 gene provided the most accurate predic-
tion of the predisposition for elderly NAFLD. Among them, the rs2073082 and rs738491
genetic variants contributed to NAFLD susceptibility, whereas the rs738491 T allele and
the rs3761472 G allele were linked to fibrosis. Our research uncovered a novel genetic risk
factor for elderly NAFLD, which may help to better understand the mechanism.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines11092416/s1, Table S1: Multiple comparison correction of
LSM based on Table 4; Table S2: Association of SAMM50 rs3761472 G allele carriers and non-carriers
with TC, LDL after logistic regression model adjusted for sex, age, BMI and lipid-lowering agent;
Table S3: Comparison of clinical characteristics according to SAMM50 genotypes within the whole
population; Table S4: Multiple comparison correction of LSM based on Table S3; Table S5: Comparison
of clinical characteristics according to SAMM50 genotypes within NAFLD cohorts; Table S6: Com-
parison of clinical characteristics according to SAMM50 genotypes within NAFLD cohorts (Carriers
Vs Noncarriers).
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