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Abstract: Drugs with a long residence time at their target sites are often more efficacious in disease
treatment. The mechanism, however, behind prolonged retention at the site of action is often difficult
to understand for non-covalent agents. In this context, we focus on epichaperome agents, such as
zelavespib and icapamespib, which maintain target binding for days despite rapid plasma clearance,
minimal retention in non-diseased tissues, and rapid metabolism. They have shown significant
therapeutic value in cancer and neurodegenerative diseases by disassembling epichaperomes, which
are assemblies of tightly bound chaperones and other factors that serve as scaffolding platforms to
pathologically rewire protein–protein interactions. To investigate their impact on epichaperomes
in vivo, we conducted pharmacokinetic and target occupancy measurements for zelavespib and
monitored epichaperome assemblies biochemically in a mouse model. Our findings provide evidence
of the intricate mechanism through which zelavespib modulates epichaperomes in vivo. Initially,
zelavespib becomes trapped when epichaperomes bound, a mechanism that results in epichaperome
disassembly, with no change in the expression level of epichaperome constituents. We propose that
the initial trapping stage of epichaperomes is a main contributing factor to the extended on-target
residence time observed for this agent in clinical settings. Zelavespib’s residence time in tumors
seems to be dictated by target disassembly kinetics rather than by frank drug–target unbinding
kinetics. The off-rate of zelavespib from epichaperomes is, therefore, much slower than anticipated
from the recorded tumor pharmacokinetic profile or as determined in vitro using diluted systems.
This research sheds light on the underlying processes that make epichaperome agents effective in the
treatment of certain diseases.

Keywords: zelavespib; epichaperomes; drug–target residence time; target–ligand interactions; target
engagement and occupancy; mechanisms of drug action; icapamespib; drug discovery for cancers
and neurodegenerative diseases

1. Introduction

As in all fields of drug therapy, knowing the right molecular target and having a drug
that perturbs that target is central to effective treatment, but it is not sufficient in itself. It
is also necessary to know how and how long the target is being engaged and modulated
in vivo at a therapeutic level [1–4].

Traditionally, in vivo potency estimates are projected from in vitro equilibrium drug–
target measurements (kd, ki) to quantify the strength of drug–target interactions (i.e.,
affinity) combined with information on clearance from metabolic pathways [4–7]. In this
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model, drugs of high affinity for the target and commensurate systemic presence of the
drug are needed to support a therapeutic effect in vivo. Recently, there has been growing
interest in the concept of binding kinetics, wherein predictions regarding in vivo efficacy
are based on the duration (or residence time) of the drug–target complex, rather than solely
on its equilibrium binding affinity [8–18]. In essence, the drug–target residence time model
posits that pharmacodynamic effects persist as long as the drug remains bound to its target
and wane once the drug dissociates from the drug–target complex. This model has emerged
as an explanatory framework for drugs that exhibit sustained pharmacodynamic effects
even after the systemic drug concentration has decreased to subtherapeutic levels.

Among drugs with long residence times at the site of action are epichaperome binding
agents, such as zelavespib and icapamespib [19]. Epichaperomes represent oligomeric
structures comprised of tightly associated chaperones, co-chaperones, and various other
factors [19–21]. It is important to differentiate epichaperomes from chaperones, which are
ubiquitously expressed in all cell types, under both normal and pathological conditions. By
contrast, epichaperomes are primarily localized within diseased cells and tissues [19–21].
In terms of function, epichaperomes diverge significantly from chaperones. They serve
as pathological scaffolds, orchestrating widespread alterations in protein–protein inter-
actions (PPIs) across the proteome rather than functioning as protein folders involved in
protein synthesis and degradation pathways [19–25]. Comprehensive analyses of protein
networks influenced by epichaperomes have revealed that the formation of these com-
plexes disrupts the connectivity of numerous individual proteins crucial for maintaining
disease-specific phenotypes within their specific contexts [23,24,26–29]. Targeting these
disease-specific PPI network dysfunctions through epichaperome inhibition, epichaperome
agents have emerged as promising drug candidates for various diseases, including cancer
and neurodegenerative disorders [19].

The chaperone heat shock protein 90 (HSP90) and heat shock cognate 70 (HSC70) are
central components of epichaperome assemblies, as demonstrated in several disorders,
including Alzheimer’s disease, Parkinson’s disease, and cancer [23,24,26,27,29]. Therefore,
HSP90 and HSC70 provide a common point of vulnerability for drug binding to and
inhibition of epichaperomes and, in turn, for reversal of aberrant PPI networks that may
be exploited for therapeutic use in these diseases [24,29,30]. Crucially, the chaperones
in epichaperomes exist as conformational mutants specific to disease states, allowing
targeted inhibition of pathologic forms while preserving chaperone functions in normal
cells [21,25,30,31]. This unique property allows discrimination between pathologic and
physiologic conformers and thus the development of epichaperome-specific inhibitors,
such as PU-H71 (zelavespib) (binds HSP90 in epichaperomes) [26], PU-AD (icapamespib)
(binds HSP90 in epichaperomes) [30], LSI137 (binds HSC70 in epichaperomes) [29], and
PU-WS13 (binds glucose-regulated protein 94 (GRP94) in epichaperomes) [25,31]. These
agents rapidly dissociate from chaperones in normal tissues while remaining at the site of
action for days after administration despite rapid clearance from plasma and non-diseased
tissues associated with a fast in vivo metabolism [25,26,30,32].

Epichaperome-targeting agents have been extensively evaluated and have shown
therapeutic efficacy in various disease models, including cancer, neurodegenerative dis-
orders, infection, and inflammation [24,26,28,29,32–35]. Particularly noteworthy is the
successful translation of compounds such as zelavespib and icapamespib into clinical
trials for the treatment of cancer and Alzheimer’s disease [32,36–38]. Radiolabeled ver-
sions of zelavespib and icapamespib have provided valuable information on the time
these agents spend at the site of action in patients (i.e., in tumors and disease-afflicted
brains) [30,32,36,39]. For example, 124I-labeled derivatives of zelavespib and icapamespib
were used to detect and quantify epichaperomes in vivo through positron emission to-
mography (PET) imaging. Both agents contain an endogenous iodine, enabling labeling
with a PET-compatible radionuclide, iodine-124. In mice and humans, real-time single-
tumor pharmacokinetic (PK) measurements were enabled by PET using tracer amounts
of 124I-radiolabeled agents co-injected with therapeutic doses of epichaperome drugs [32].
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Clinical investigations have revealed that the duration of zelavespib’s presence within
tumors exhibits substantial variability, with half-lives spanning from 24 to 100 h [32]. This
variability has been attributed to the levels of epichaperome abundance: higher epichap-
erome levels are associated with prolonged zelavespib residence times in tumors [26,30].
Importantly, the degree of target occupancy, as assessed via PET imaging, displayed a
significant correlation with the extent of the observed anti-tumor effects [30,32], suggesting
that evaluations at the level of individual tumors could be used to optimize dose and
schedule selection in epichaperome therapy. In no instance in human patients has the
plasma PK correlated with the tumor retention profile and the pharmacodynamic effects
noted for zelavespib [30,32,39], supporting the concept that plasma assays provide only
limited insight into drug–target interactions and are unsuitable for epichaperome therapy
development. Importantly, epichaperomes constitute only a fraction of the chaperone pool
within diseased cells (e.g., approximately 5–35% in cancer cells) [26,27,29]. Despite the
abundance of chaperones such as HSP90, which is present in nearly all mammalian cells
and is estimated to comprise ~224–336 g in a mature human weighing 70 kg, constituting
about 16% of the protein mass, epichaperome agents demonstrate specific and prolonged
engagement with their target within the disease site. Thus, both zelavespib and icapame-
spib are examples of the growing number of the drugs where drug–target residence time is
a main driver for the observed pharmacodynamic effects and, in turn, therapeutic efficacy.
The factors determining the prolonged retention of these drugs in vivo remain, however,
poorly understood.

Here, we used zelavespib as an epichaperome agent prototype and investigated the
relationship between target and ligand seeking mechanistic insights into the long presence
and associated biological effect reported for such agents at the site of action.

2. Methods
2.1. Cell Lines and Culture Conditions

The MDA-MB-468 human breast cancer cell line [40] (RRID:CVCL_0419) was obtained
from the American Type Culture Collection and cultured in Dulbecco’s Modified Eagle’s
medium—high glucose (DME-HG) supplemented with 10% FBS, 1% L-glutamine, 1% peni-
cillin, and streptomycin. Cells were authenticated using short tandem repeat profiling and
tested for mycoplasma.

2.2. Mouse Models

All animal studies were conducted in compliance with Memorial Sloan Kettering
Cancer Center (MSKCC)’s guidelines and under Institutional Animal Care and Use Com-
mittee approved protocols #05-11-024. Athymic nude mice (Hsd:Athymic Nude-Foxn1nu,
female, 20–25 g, 5 weeks old; RRID:MGI:5652489) were obtained from Envigo (Indianapolis,
IN, USA) and were allowed to acclimatize at the MSKCC vivarium for 1 week prior to
implanting tumors. Mice were maintained in ventilated cages and provided with food and
water ad libitum. All mice in all studies were observed for clinical signs at least once daily.

2.3. Reagents

Zelavespib (PU-H71), deuterated zelavespib (PU-H71-d6), and 131I-labeled icapame-
spib ([131I]-PU-AD) were synthesized and purified as previously reported [41–43].

2.4. Biodistribution Studies in Mice

MDA-MB-468 (RRID:CVCL_0419) tumor xenografts were established on the fore-
limbs of female athymic nude mice (Hsd:Athymic Nude-Foxn1nu; Envigo; 5 weeks old;
RRID:MGI:5652489) by subcutaneous (s.c.) injection of 7 × 106 cells in a 300 µL cell suspen-
sion of a 1:1 v/v mixture of PBS with reconstituted basement membrane (BD MatrigelTM,
Collaborative Biomedical Products Inc., Bedford, MA, USA). Tumor progression was moni-
tored using vernier calipers. For biodistribution studies, female athymic nude mice with
MDA-MB-468 tumor xenografts (~200–300 mm3) on the forelimbs were injected intra-
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venously in the tail vein with zelavespib (50 mg/kg (PU-H71.HCl formulated in 10 mM
Phosphate Buffer, pH = ~6.4)) at different time points (0 (co-injection), 6, 24, and 48 h) prior
to tracer administration. At designated time points post-drug administration, mice were
injected intravenously in the tail vein with 0.93–1.1 MBq (25–50 µCi) of [131I]-PU-AD in
200 µL of 5% ethanol in saline. The activity in the syringe before and after administration
was assayed in a dose calibrator (CRC-15R; Capintec, Florham Park, NJ, USA) to determine
by difference the actual activity administered to each animal. Animals were euthanized by
CO2 asphyxiation at 24 h post-administration of the radiolabeled [131I]-PU-AD tracer, and
organs, including tumor(s), were harvested and weighed. 131I was measured in a 2480 WIZ-
ARD automatic gamma counter (PerkinElmer, Waltham, MA, USA) using a 260–430 keV
energy window. Count data were background- and decay-corrected to the time of injection,
and the percent injected dose per gram (%ID/g) for each tissue sample was calculated
using a measured 131I calibration factor to convert count rate to activity and the activity
was normalized to the activity injected and the weighed mass of the sample to yield the
activity concentration in %ID/g.

2.5. LC–MS/MS Analyses of Tumors

Frozen tumors were weighed prior to homogenization in acetonitrile/H2O (3:7).
Zelavespib was extracted in methylene chloride, and the organic layer was separated
and dried under vacuum. Samples were reconstituted in mobile phase. Concentrations of
drug were determined by high-performance LC–MS/MS. PU-H71-d6 was added as the
internal standard [42]. Compound analysis was performed on the 6410 LC–MS/MS system
(Agilent Technologies, Santa Clara, CA, USA) in multiple reaction monitoring (MRM) mode
using positive-ion electrospray ionization. The following MRMs were monitored: PU-H71,
513/454, and 513/174; PU-H71-d6, 519/460, and 519/179. A Zorbax Eclipse XDB-C18
column (2.1 × 50 mm, 3.5 µm) was used for the LC separation, and the analyte was eluted
under an isocratic condition (80% H2O + 0.1% HCOOH: 20% CH3CN) for 3 min at a flow
rate of 0.4 mL/min.

2.6. Epichaperome Determination by Native PAGE

For epichaperome analysis, tumors were cut into small pieces and homogenized in
native lysis buffer (20 mM HEPES pH 7.5, 50 mM KCl, 5 mM MgCl2, 0.01% NP40, 20 mM
Na2MoO4) containing protease and phosphatase inhibitors using BioMasher® II Micro
Tissue Homogenizers (VWR, Radnor, PA, USA). Samples were left on ice for 30 min and
then subjected to native PAGE analysis. Protein concentrations were determined using
the BCA kit (Pierce, Waltham, MA, USA) according to the manufacturer’s instructions.
Protein lysate (10–60 µg) was loaded onto 5.5% native gel and resolved at 4 ◦C, transferred
to nitrocellulose membrane, and probed with the indicated primary antibodies: HSP90α
(AB2928; RRID:AB_303423; 1:8000) from Abcam (Cambridge, UK), HOP (ADI-SRA-1500;
RRID:AB_10618972; 1:1000) from Enzo and CDC37 (4793S; RRID:AB_10695539; 1:1000)
from Cell Signaling (Danvers, MA, USA). Membranes were then incubated with a 1:5000
dilution of a peroxidase-conjugated corresponding secondary antibody. Detection was
performed using the ECL Enhanced Chemiluminescence Detection System (Pierce™ ECL
Western Blotting Substrate) according to the manufacturer’s instructions.

2.7. Use of Microdose [131I]-PU-AD Co-Injected with a Therapeutic Dose of Zelavespib or
[124I]-PU-AD Injected Alone to Predict Tumor Molar Concentrations of Zelavespib

Iodine-124 is a ‘non-residualizing’ isotope (i.e., free iodine-124 washes out from cells),
and therefore, data derived from positron emission tomography imaging of MDA-MB-
468-bearing mice that were administered a tracer amount of [124I]-PU-AD can be used
to determine real-time zelavespib concentrations delivered to tumors. Because positron
emission tomography provides information on radioactivity and not molar concentrations,
radioactivity data from Pillarsetty et al. [32] were transformed into tumor concentrations
to calculate the time-dependent zelavespib concentrations in tumors for an administered
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dose of 50 mg/kg. The drug concentration (in µM) in the tumor water space, [Drugtumor],
at the time t post-administration is therefore:

[
Drugtumor

]
t= Drugdose·

[Atumor]t
100%

· 1
W

·1 × 106

MW
µM

where Drugdose is the administered drug dose (in mg), [Atumor]t is the activity concentration
(in % injected dose per milliliter, %ID/mL) of the surrogate radiotracer, W is the water
space of the tissue (in mL/g), MW is the molecular weight of the drug (i.e., zelavespib),
and the factor 1 × 106 converts the concentration to µM. For the drug zelavespib and the
surrogate radiotracer [131I]-PU-AD co-injected in a ratio of ~1 to 10,000, the drug itself is
essentially the only significant form of the drug–surrogate combination in the tumor. Thus,
for a co-administered dose of zelavespib (zelavespibdose in mg) and a tracer amount of
[124I]-PU-AD, the drug concentration in the tumor water space (using an average water
space, W = 0.8 mL/g, and the molecular weight MW = 512) is:

[
Zelavespibtumor

]
t = Zelavespibdose ·

[Atumor]t
100%

·2.44 × 103 µM

2.8. Statistics and Reproducibility

Statistics were performed and graphs were generated using Prism 9 software (Graph-
Pad, Boston, MA, USA). Statistical significance was determined using ANOVA, as indicated.
Means and standard errors are reported for all results unless otherwise specified. Effects
achieving a 95% confidence interval (i.e., p < 0.05) were interpreted as statistically signifi-
cant. No statistical methods were used to pre-determine sample sizes, but these are similar
to those generally employed in the field. No samples were excluded from any analysis
unless explicitly stated.

3. Results
3.1. Experimental Design

To study the zelavespib–epichaperome interaction in vivo, we selected, for simplicity,
an epichaperome-positive tumor model (e.g., subcutaneously xenografted MDA-MB-468
tumors in mice) [26]. Using whole-body PET imaging after the injection of 124I-labeled
zelavespib, Pillarsetty et al. reported drug presence in MDA-MB-468 tumors up to 120 h
post-single dose administration (~T1/2 = 60 h) [32]. Conversely, zelavespib was no longer
observed in non-disease, non-metabolizing tissues after ~8 h, clearing rapidly from plasma,
paralleled by a similar rapid clearance from normal tissues (i.e., chaperone-positive but
epichaperome-negative). In these tumors, a clear relationship between tumor retention,
pharmacodynamic effects, and anti-tumor activity was observed [32], supporting the notion
that zelavespib was in residence with its target over the time it resided in these tumors.

Using the pharmacokinetic data reported by Pillarsetty et al. for this mouse model [32]
and fitting the data to a one-phase exponential decay equation, we calculated the half-life
of zelavespib in the plasma, lung, heart, muscle, bone, and brain to be 4.38, 3.37, 3.10, 5.03,
2.84, and 2.65 h, respectively (Figure 1a). These values are very much in agreement with
those reported for zelavespib in human patients [32,44]. For example, one clinical study
reported a mean terminal half-life (T1/2) in the plasma of 8.4 ± 3.6 h, with no dependency
on dose level [44]. Contrasting plasma and normal tissues and organs, the distribution
of zelavespib in tumors was best fitted using a bi-exponential model. After an initial
rapid clearance phase (Phase 1: 0 to 8 h, k = 0.241 h−1; T1/2 = 2.87 h), a slow terminal
clearance phase followed (Phase 2: T1/2 = 46.8 h; k = 0.015 h−1) (Figure 1a). The first phase
thus reflects the clearance of systemic agent, while the second is attributable to specific
tumor retention.
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Figure 1. Biodistribution of zelavespib in MDA-MB-468 tumor-bearing mice. (a) Biodistribution
of [124I]-Zelavespib in MDA-MB-468 tumors, organs, tissues, and plasma as per ref. [32]. Data are
presented as means ± s.d., five mice per time point. Curves for blood, lung, heart, muscle, bone,
and brain were fitted using a one-phase decay equation, and kinetics of zelavespib clearance were
determined. Tumor curve was fitted to a two-phase exponential decay. k, kfast, and kslow are the
rate constants. Half-life (T1/2) is computed as ln(2)/k. Cartoon below shows the distinction between
chaperones and epichaperomes in terms of their structure, function, and prevalence. (b) Illustrative
schematic showing the distinct binding kinetics of zelavespib to epichaperomes (slow off-rate) and
to chaperone assemblies (fast off-rate). The tumor pharmacokinetics profile recorded in the Phase 2
interval may represent a direct reflection of the in vivo kinetics of target–drug unbinding. koff, kinetic
rate constant for dissociation of an epichaperome-zelavespib assembly. Rt, retention time.

This mouse model, especially during Phase 2, is thus optimal for studying target-
ligand interactions in vivo in an open, dynamic system (i.e., whole body) with little to no
interference from systemic rebinding mechanisms (i.e., where there is no zelavespib in
circulation or bound to other tissues). Critically, only the intact drug molecule is found
in tumors [32], and is target-bound in Phase 2; thus, interference from metabolites is also
minimal. Another crucial aspect to consider is the rapid distribution of zelavespib through-
out the body. When administered via a bolus injection, it swiftly establishes a state of
‘equilibrium mixture’ between the drug and its target. After achieving this equilibrium
state throughout the body, zelavespib then undergoes rapid clearance from the blood-
stream, leading to a body-wide ‘dilution state.’ Therefore the bolus zelavespib injection in
this mouse model closely emulates the classical method used for measuring dissociation
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constants (koff), whereby an equilibrium mixture comprising the ligand, receptor, and
ligand–receptor complex is subjected to dilution, and the subsequent timeline of complex
dissociation is monitored to determine new equilibrium concentrations of both the lig-
and and the receptor [45,46]. Thus, the tumor pharmacokinetics profile recorded in the
Phase 2 interval may be a direct reflection of the in vivo kinetics of target–drug unbinding
(koff = 0.016 h−1; Rt = 1/koff = 67.56 h; Figure 1b).

3.2. Tumor Zelavespib Molar Concentration Measurements

To test our hypothesis, we monitored the clearance rate of zelavespib from epichaperome-
positive lesions following a single-dose bolus administration of 50 mg/kg (intravenously)
(Figure 2a). Considering zelavespib’s long tumor residence time in this model, we ana-
lyzed intratumoral concentrations within a 30 h to 72 h post-drug administration window
(Figure 2b). Mice were sacrificed at 30 h, 48 h, and 72 h post-injection, and tumors were
harvested for analysis. Liquid chromatography tandem mass spectrometry (LC–MS/MS)
with deuterated zelavespib as an internal standard was used to determine zelavespib
concentrations in the tumors. At these time points, intratumoral micromolar concentrations
of 2.57 ± 0.80, 1.59 ± 0.30, and 0.98 ± 0.30 were measured (using an average tumor water
space, W = 0.8 mL/g) (Figure 2b). These concentrations closely match the reported active
levels in this tumor model, confirming the presence of pharmacologically active drug levels
in tumors from 30 h and beyond after a single dose of zelavespib.
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Figure 2. Molar concentration of zelavespib in MDA-MB-468 tumor-bearing mice following single-
dose intravenous injection. (a) Experiment design to investigate the relationship between target and
ligand seeking mechanistic insights into the long presence and associated biological effect reported
for zelavespib at the site of action. (b) Tumor molar concentrations of zelavespib. Black circles,
zelavespib tumor exposure calculated based on the mean %ID/g generated from the biodistribution
curve from Figure 1a for an injected dose of 50 mg/kg. Blue circles, zelavespib molar concentrations
experimentally determined by LC–MS/MS upon administration of 50 mg/kg zelavespib and sacrific-
ing the mice at the indicated times post-zelavespib administration (n = 5 mice per time-point). Data
are presented as means ± s.d.
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3.3. Target Occupancy by Zelavespib

The presence of zelavespib in tumors does not directly confirm that it is target-bound.
The drug could be trapped in non-tumor areas (i.e., stroma or necrotic tissue) or be in-
tracellular but not target-bound. To test this notion and determine the percentile target
occupied by each of these intratumoral concentrations of zelavespib, we performed stud-
ies in which tracer amounts (that is, non-pharmacologically perturbing amounts) of the
radiolabeled epichaperome ligand [131I]-PU-AD (~6 ng/g which is ~1/10,000 of the thera-
peutic zelavespib amount) were administered to mice intravenously 24 h prior to tumor
zelavespib measurements (Figure 2a). The 131I isotope has a half-life of 8 days [47,48],
making it suitable for measurements of drugs with an extended tumor retention profile,
such as that observed for zelavespib. It emits γ radiation and β particles; thus, γ-counting
can be applied to detect and quantify the radioactive signal in tumors and tissues upon
mouse sacrifice. Because both zelavespib and [131I]-PU-AD bind to the same target, the
epichaperome, the more zelavespib that is present in the tumor and is target-bound, the
lower the radioactivity signal is in the tumor. Indeed, we observed that as the intratu-
mor concentration of zelavespib decreased, the radioactivity in the tumor proportionally
increased (Figure 3a,b).
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Figure 3. Relationship between molar concentration and target engagement in MDA-MB-468 tumor-
bearing mice. (a) Tumor molar concentrations of zelavespib experimentally determined by LC–
MS/MS upon administration of single-dose 50 mg/kg zelavespib and sacrificing the mice at 30 h,
48 h, and 72 h post-zelavespib administration (n = 5 mice per time-point). Data are presented as
means ± s.e.m., n = 5, one-way ANOVA with Dunnett’s post hoc. Controls: PU-24h, mice were
injected 50 mg/kg zelavespib, and tumor concentrations of the drug were determined at 24 h
post-injection using LC–MS/MS. Vehicle, mice were injected vehicle only. (b) Target engagement
by zelavespib was determined by co-injection of zelavespib with a trace amount of [131I]-PU-AD.
Zelavespib was administered 6, 24, and 48 h prior to [131I]-PU-AD. Following mouse sacrifice at 24 h
post [131I]-PU-AD injection, thus 30, 48, and 72 h post-zelavespib injection (see experimental design
in Figure 2a), radioactivity was determined using a G-counter to yield the activity concentration in
%ID/g. Control: vehicle, mice were injected vehicle and [131I]-PU-AD only. Data are presented as
means ± s.e.m., n = 5, one-way ANOVA with Dunnett’s post hoc. Experiment design in Figure 3a,b
is as shown in Figure 2a.
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According to this study, we estimated target occupancies of 38.8%, 24.9%, and 11.3%
at 30 h, 48 h, and 72 h post-single dose injection of 50 mg/kg zelavespib. Accounting
for background signal (i.e., subtracting the background radioactivity signal recorded in
normal tissues or organs, such as the heart) we calculated similar target occupancies,
41.5%, 22.4%, and 3.5% at 30 h, 48 h, and 72 h, consistent with the notion that little, if
any, zelavespib is present in normal tissues or organs, as reported [32]. Combined with
prior pharmacodynamic and efficacy studies of 50 mg/kg PU-H71 in the MDA-MB-468
xenograft [32], these data propose that intratumoral zelavespib is target-bound, with
approximately half to minimal target occupancy observed in the time interval of 30 to 72 h
post-administration (Figure 3b).

3.4. Modulation of Epichaperomes by Zelavespib

In cellular studies, it has been proposed that zelavespib, upon binding, becomes
trapped inside the epichaperome assemblies, leading to the disassembly of epichaperomes
into individual components [24,27,29]. However, this biochemical mechanism’s impact on
the residence time of zelavespib at the site of action remains poorly understood in vivo.
To investigate this, we analyzed the epichaperome target in tumors at 30 h and 72 h
post-zelavespib administration using non-denaturing electrophoresis (native PAGE) [49]
(Figure 4a–c).

As previously mentioned, epichaperomes are comprised of various tightly associated
chaperones, co-chaperones, and scaffolding proteins, including HSP90, HSC70, HSP110,
CDC37, and HOP [26,29,50]. Epichaperomes represent only a fraction of the total chaperone
pool, constituting a relatively small portion when compared to the abundant chaperones
(typically ranging from 5–35%, depending on the specific cancer cell line, with approxi-
mately 30% reported for MDA-MB-468 cells, as referenced [26,27,29]). Consequently, when
epichaperome-positive tumor homogenates are subjected to analysis using native PAGE
gels, a limited number of both distinct and less distinct high-molecular-weight species
become apparent for the epichaperomes (which remain tightly bound and thus retained dur-
ing Native PAGE) in addition to the prevalent primary band(s) characteristic of chaperones
(as illustrated in Figure 4a, top). This difference arises from the dynamic and short-lived
nature of folding chaperone complexes, causing them to disassemble when subjected to
native PAGE.

At the 30 h time point following zelavespib administration, we observed what ap-
peared to be a temporary increase in the epichaperome signal on native PAGE (approxi-
mately a 2.29-fold increase compared to baseline). However, no corresponding alteration
was noted in the total chaperone levels on SDS-PAGE (refer to Figure 4a, bottom). Preclini-
cal studies [24,26,27,29,32] lend support to the idea that this signal increase is attributable to
the trapping or stabilization of epichaperome components by ligands upon binding to the
target, rather than an increase in epichaperome levels (as demonstrated in Figure 4a, which
shows an increase in the levels of epichaperome-component chaperones but no increase in
their overall levels).

By contrast, at 72 h post-zelavespib administration, we observed a decrease in the
epichaperome signal on native PAGE (approximately 4.15-fold decrease compared to 30 h).
Epichaperome levels at 72 h were thus found to be lower than the baseline levels (approx-
imately 1.8-fold decrease), while no observable change was seen in the total chaperone
levels on SDS-PAGE (Figure 4a,b). This suggests that the disassembly of the epichaperomes
occurred by 72 h. Whether this disassembly is due to a direct drug allosteric effect, an
indirect cellular mechanism following epichaperome inhibition, or a combination of both
remains unknown.

On the basis of these findings, it can be inferred that approximately 24.09% of the
baseline epichaperome target remains in tumors at 72 h post-zelavespib administration.
This finding aligns with the value determined for target occupancy by zelavespib (approxi-
mately 11.3% occupied at 72 h). Hence, about 50% of the remaining intratumoral zelavespib
at 72 h post-injection is target-bound, indicating that zelavespib’s target residence is influ-
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enced not only by drug–target unbinding kinetics (i.e., koff) but also by target disassembly
kinetics (Figure 4c). In other words, both target disassembly and drug–target unbinding
contribute to the observed residence time of zelavespib at the site of action, suggesting that
the off-rate of zelavespib from epichaperomes is much slower than anticipated from the
recorded tumor pharmacokinetic profile.
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Figure 4. Epichaperome modulation by zelavespib in MDA-MB-468 tumor-bearing mice. (a) native-
PAGE (top) or SDS-PAGE (bottom) followed by immunoblotting of epichaperome components
(i.e., constituent chaperones and co-chaperones) in MDA-MB-468 tumors. Tumor-bearing mice were
injected with a single dose of 50 mg/kg zelavespib, and tumor analysis was performed after sacrificing
the mice at 30 h and 72 h post-zelavespib administration (n = 5 mice per time-point). Experiment
design in Figure 4 is as shown in Figure 2a. Gels, representative tumors. To account for tumor
heterogeneity (i.e., MDA-MB-468 are aggressive tumors with highly proliferative periphery adjacent
to areas of necrosis), several cuts from the same tumor were analyzed when tumor size permitted.
β-actin and GAPDH, protein loading controls; black arrowhead, biochemical signature of folding
HSP90 pools as detected by native PAGE separation and immunoblotting; red arrowhead, non-
specific signal, LE, low exposure; HE, high exposure. (b) Graph, data are presented as means ± s.e.m.,
n = 7, one-way ANOVA with Dunnett’s post hoc of tumors as in a. Because HSP90 in epichaperomes
was not well separated from the folding HSP90 pool, we performed epichaperome quantification
using CDC37 in epichaperomes as a surrogate marker. (c) Cartoon showing the proposed biochemical
mechanism in vivo. Initially, zelavespib becomes trapped when epichaperomes bound, a mechanism
that results in epichaperome disassembly, with no change in the expression level of epichaperome
constituents. We propose that the initial trapping stage of epichaperomes is a main contributing factor
to the extended on-target residence time observed for this agent in clinical settings. Zelavespib’s
residence time in tumors seems to be dictated by target disassembly kinetics rather than by frank
drug–target unbinding kinetics.
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4. Discussion

The present study aimed to investigate the zelavespib–epichaperome interaction in an
in vivo model and its impact on drug residence time at the site of action. Our findings shed
light on the complex relationship between zelavespib binding, epichaperome disassembly,
and drug target occupancy.

The pharmacokinetic analysis revealed that zelavespib displayed a prolonged presence
in MDA-MB-468 tumors, with a half-life of approximately 60 h, consistent with prior
clinical studies in humans [32]. Notably, zelavespib rapidly cleared from non-disease, non-
metabolizing tissues within 8 h, and normal tissues with chaperone expression but lacking
epichaperome presence [32]. To understand the mechanism underlying zelavespib’s target
residence, we explored its interaction with epichaperomes in tumors. In vitro studies have
previously proposed that zelavespib becomes trapped within the epichaperome assemblies,
leading to their disassembly into individual components [24,27,29]. However, the in vivo
implications of this biochemical mechanism remained elusive.

Our analysis using non-denaturing electrophoresis (native PAGE) confirmed the
presence of epichaperomes in MDA-MB-468 xenograft tumors, marked by distinct high-
molecular-weight species along with characteristic chaperone bands. The observed tran-
sient increase in epichaperome signal at 30 h post-zelavespib administration suggested the
trapping or stabilization of epichaperome components upon drug binding. However, this
increase did not correspond to an elevation in total chaperone levels, supporting the notion
of specific ligand-induced trapping within the epichaperomes. By 72 h post-zelavespib
administration, a decline in the epichaperome signal was evident, indicating the disassem-
bly of epichaperomes in the tumor. While the exact mechanism behind this disassembly
remains unknown, our findings suggest that it might be a result of zelavespib’s direct
allosteric effect or an indirect cellular response following epichaperome inhibition. The
quantification of target occupancy at 72 h post-administration revealed that approximately
24.09% of the baseline epichaperome target remained in the tumors. This value aligned with
the estimated target occupancy of zelavespib at the same time point (approximately 11.3%).
Importantly, with about 50% of the remaining intratumoral zelavespib found to be target-
bound, both target disassembly kinetics and drug–target unbinding kinetics contribute to
the observed drug residence time at the site of action.

The mechanisms proposed to rationalize the long residence times of drugs can vary
depending on the specific drug–target interaction and the biological context [4,8,51–56].
One common mechanism involves covalent binding, in which the drug forms a covalent
bond with its target, leading to a stable drug–target complex that persists over an extended
period. Another mechanism is the slow dissociation of the drug from its target due to
strong non-covalent interactions, such as hydrogen bonding or hydrophobic interactions.
This slow off-rate allows the drug to remain bound to the target for an extended time,
ensuring sustained pharmacological effects. Additionally, drugs with large molecular sizes
or those that undergo slow metabolic degradation may exhibit prolonged residence times
in target tissues. Furthermore, certain drugs may be sequestered or trapped within specific
cellular compartments or structures, contributing to their extended retention at the site
of action. Understanding these mechanisms can aid in the rational design of drugs with
optimized pharmacokinetic properties, allowing for enhanced drug efficacy and potentially
reducing dosing frequency, leading to improved patient outcomes and therapeutic success.

The mechanism of residence time for zelavespib appears to be different from what has
been observed for other drugs due to its unique interaction with the epichaperome target.
Zelavespib’s ability to become trapped inside the epichaperome assemblies and induce their
disassembly sets it apart from conventional drug–target interactions. While many drugs
rely on covalent binding or strong non-covalent interactions to prolong their residence
times [5,57–59], zelavespib’s specific binding and stabilization within the epichaperome
complex lead to an extended target residence. This phenomenon allows zelavespib to
remain associated with its target over a longer duration compared with other drugs. More-
over, the slow off-rate of zelavespib from the epichaperome contributes to its sustained
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presence in the tumor microenvironment, which is distinct from the clearance profiles of
many other drugs. The intricacies of the epichaperome assembly, the unique dynamics of
epichaperome disassembly, and the interplay between drug binding and target kinetics
contribute to zelavespib’s long residence time at the site of action. Understanding these
distinctive mechanisms provides valuable insights into zelavespib’s pharmacological be-
havior and highlights the need for targeted approaches in the development of drugs with
extended residence times. The elucidation of these mechanisms may have implications
beyond zelavespib, potentially guiding the design of future therapies aimed at harness-
ing unique drug–target interactions to achieve prolonged and effective drug residence in
specific tissues or cell compartments.

5. Conclusions

Drugs with long residence times at their target sites have garnered increasing interest
in the field of drug development [3,8,12,15,60–65]. These compounds exhibit prolonged
binding to their respective targets, leading to sustained pharmacological effects and en-
hanced therapeutic efficacy. In the case of zelavespib, our study demonstrates a remarkably
long residence time within epichaperomes in tumors, possibly due to its specific binding
and trapping mechanism. Such prolonged drug residence not only allows for sustained
target inhibition but may also limit the frequency of drug administration, potentially reduc-
ing the risk of side effects and improving patient compliance. Understanding the factors
influencing drug residence time, such as target interactions and intracellular dynamics,
is crucial for designing more effective and durable cancer therapies. The insights gained
from our investigation of zelavespib’s interaction with the epichaperome highlight the
importance of considering drug residence time as a key determinant of therapeutic success
and provide valuable groundwork for the development of future treatments with extended
drug residence times in their target tissues. This study has implications for the development
of agents such as zelavespib and icapamespib in cancers and neurodegenerative diseases.
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