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Abstract: The integration of artificial intelligence (AI) into drug discovery has markedly advanced
the search for effective therapeutics. In our study, we employed a comprehensive computational–
experimental approach to identify potential anti-SARS-CoV-2 compounds. We developed a predictive
model to assess the activities of compounds based on their structural features. This model screened a
library of approximately 700,000 compounds, culminating in the selection of the top 100 candidates
for experimental validation. In vitro assays on human intestinal epithelial cells (Caco-2) revealed
that 19 of these compounds exhibited inhibitory activity. Notably, eight compounds demonstrated
dose-dependent activity in Vero cell lines, with half-maximal effective concentration (EC50) values
ranging from 1 µM to 7 µM. Furthermore, we utilized a clustering approach to pinpoint potential
nucleoside analog inhibitors, leading to the discovery of two promising candidates: azathioprine and
its metabolite, thioinosinic acid. Both compounds showed in vitro activity against SARS-CoV-2, with
thioinosinic acid also significantly reducing viral loads in mouse lungs. These findings underscore
the utility of AI in accelerating drug discovery processes.

Keywords: SARS-CoV-2; artificial intelligence; compounds library; nucleoside analogs; azathioprine;
thioinosinic acid

1. Introduction

The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, has had a profound
global impact, resulting in millions of infections and a staggering death toll. This crisis has
necessitated an urgent search for effective treatments to reduce illness severity, prevent
complications, and curb viral transmission [1,2]. The development of new therapies is
crucial not only for managing the current pandemic but also in preparation for future
coronavirus outbreaks.

SARS-CoV-2, a positive-sense, single-stranded RNA virus, primarily spreads via
respiratory droplets. Its life cycle includes key stages such as binding to host cell receptors
(mainly ACE-2), entry into cells, genome replication, viral protein synthesis, virion assembly,
and release to infect additional cells. Essential viral proteins such as the spike protein, main
protease, and replicase complex (including RdRp) are critical for the virus’s replication
and spread [3–6]. A detailed understanding of these molecular interactions is vital for
developing effective SARS-CoV-2 treatments [7,8].
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Despite the significant impact of COVID-19, effective treatments for SARS-CoV-2
remain limited. Current strategies focus on supportive care, with antivirals like remde-
sivir showing some effectiveness in reducing hospital stay duration but having limited
impact on overall clinical outcomes [9–12]. Molnupiravir has shown promise in impeding
viral replication by introducing genetic mutations, though concerns about the spread of
mutation-bearing viral particles persist [13]. Paxlovid, a combination of nirmatrelvir and
ritonavir, has been effective but is not recommended for patients with renal or hepatic
impairments [14]. Ensitrelvir, targeting the viral 3CL protease, has shown encouraging
results in early studies, but its efficacy against newer variants remains unverified [15].
Corticosteroids like dexamethasone have reduced mortality in severe cases, but their
use is contentious [16,17]. Hence, there is a continued emphasis on discovering novel,
effective therapies.

The drug discovery process, traditionally reliant on experimental methods, is being
revolutionized by artificial intelligence (AI). AI enhances drug discovery by predicting
potential drug’s binding affinities to target proteins, identifying promising drug candidates
through analysis of protein–ligand interaction datasets [18–21]. AI also plays a pivotal role
in drug repurposing, predicting interactions of existing drugs with various proteins, thereby
uncovering new therapeutic applications [22–25]. Additionally, AI can optimize clinical
trials by predicting patient responses and effective drug dosages, potentially reducing trial
duration and costs [26,27].

AI success in drug discovery is contingent on access to extensive, high-quality datasets.
The COVID-19 pandemic has seen unprecedented collaboration in data sharing among
pharmaceutical companies and academic institutions, enriching the datasets available
for AI algorithms [28–30]. The National Center for Advancing Translational Sciences
(NCATS) has notably launched the SARS-CoV-2 Open Data Portal, consolidating extensive
datasets for AI analysis [31]. Past applications of AI have successfully identified SARS-
CoV-2 inhibitors [32–36] and proposed novel drug combinations [37], demonstrating the
feasibility of rapid antiviral compound development [38].

Our study embarked on a comprehensive search for potential SARS-CoV-2 treatments,
integrating AI-driven computational screening with experimental validation using in vitro
and in vivo models. This approach led to the identification of several compounds with
potent antiviral activity against SARS-CoV-2, including azathioprine, an existing FDA-
approved medication, as a promising candidate for inhibiting viral replication.

2. Materials and Methods
2.1. Data Preparation

Our predictive model was developed using data curated from the COVID-19 NCATS
repository. This repository encompasses a diverse range of compounds, including those that
are approved, investigational, bioactive, and natural—all screened for their activity against
SARS-CoV-2. For the training dataset, we meticulously selected 100 drugs known for their
potent antiviral properties and low toxicity profile in the Vero cell line. Additionally, over
2000 compounds demonstrating no inhibitory activity against SARS-CoV-2 were included to
enhance the model’s robustness. Following the initial training phase, the model was tasked
with analyzing a new dataset comprising approximately 700,000 compounds sourced from
the KCB database. This step aimed to identify potential inhibitors of SARS-CoV-2.

To further refine the model’s accuracy and predictive capabilities, we integrated a
subset of nucleoside analogs, including remdesivir and molnupiravir, along with their
parent compounds. These additions were particularly strategic, as these drugs have
established efficacy against SARS-CoV-2.

2.2. Model

For the identification of potential antiviral compounds against SARS-CoV-2, we uti-
lized DeepChem, an open-source drug discovery platform, to develop a classification model.
Our model was trained on a dataset, comprising molecules represented by Simplified Molec-
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ular Input Line Entry System (SMILES) strings. These molecules were categorized with
corresponding labels: active drugs were labeled as ‘1’ and inactive compounds, as ‘0’.

To discern patterns within the training data, we employed a graph convolutional
network (GCN). In this approach, each molecule is conceptualized as a graph. The GCN
processes the chemical properties of individual atoms and assimilates information from
their interconnectedness, thereby generating a new data vector for each atom. Through
successive GCN layers, the atomic embeddings are aggregated to construct a comprehen-
sive representation of the entire molecule. This molecular representation is then input into
a fully connected layer, which predicts the molecule’s potential antiviral activity.

To ensure robust generalization of new, unseen data, we partitioned the dataset into
two portions: 80% for training and 20% for testing. The model demonstrated notable
predictive proficiency, achieving a high Receiver Operating Characteristic–Area Under
Curve (ROC-AUC) score of 0.85 on the test dataset.

2.3. Compound Similarities

To evaluate the similarity among active compounds in our training dataset, we utilized
the Tanimoto similarity metric, a standard method in cheminformatics. For this purpose, we
employed the RDKit library to generate molecular fingerprints of each compound. These
fingerprints, expressed as binary values, signify the presence or absence of predefined
substructures within the compounds. By comparing these molecular fingerprints, we calcu-
lated similarity scores for each compound pair, with scores ranging from 0 (no similarity)
to 1 (identical). To facilitate an intuitive visualization of these similarities, we created a
heatmap using the Matplotlib and Seaborn libraries. This graphical representation provides
a clear, easily interpretable depiction of the relational structure among various compounds.

Furthermore, we extended our analysis using t-SNE plots, which were generated
through the Chemplot Python library. This technique allowed us to cluster compounds
based on their structural similarities. Notably, within these clusters, we identified com-
pounds predicted by KCB that were structurally proximal to known nucleoside analogs,
offering further insights into potential antiviral properties.

2.4. Cells and Virus

We cultivated three cell lines: Caco-2 epithelial cells (ATCC HTB-37), Calu-3 cells (ATCC
HTB-55), and Vero E6 cells (ATCC CRL-1586), using Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. These
cell cultures were maintained in an incubator set to a controlled environment of 37 ◦C and
5% CO2, ensuring optimal growth conditions.

For the virus studies, we procured SARS-CoV-2 and its variants from the National
Culture Collection for Pathogens (NCCP) at the Korea Disease Control and Prevention
Agency (KDCA) in Osong, Korea. The virus strains used included the B.1 (NCCP43326,
wild type) and B.1.351 (NCCP43382, beta variant). To amplify these viruses, we infected
Vero E6 cells and subsequently assessed viral infectivity using a plaque assay. This assay
enabled us to quantify the infectious units of the SARS-CoV-2 virus.

2.5. ELISpot Assay/Focus Reduction Neutralization Test (FRNT)

For the ELISpot assay, Vero cells were cultured in 96-well plates (Corning #3596,
Tewksbury, MA, USA) at a density of 2 × 104 cells per well for a duration of 24 h. The
drugs under investigation were serially diluted twofold in DMEM media supplemented
with 2% FBS. After removing the original media, the cells were treated with 50 µL of
these drug solutions and incubated for 2 h prior to SARS-CoV-2 virus infection. The
virus was introduced at a multiplicity of infection (MOI) of 0.1 and allowed to incubate
for 8–10 h. Post-infection, the cells were fixed in 4% paraformaldehyde overnight and
subsequently permeabilized with cold methanol for 15 min. For antibody staining, the cells
were washed with PBS and blocked for 30 min using 5% calf serum. The cells were then
incubated with a primary antibody targeting the SARS-CoV-2 nucleocapsid protein (Sino
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Biological, Beijing, China) for 1 h, followed by three PBST washes. This was succeeded by
incubation with a horseradish peroxidase (HRP)-conjugated secondary goat anti-rabbit IgG
antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, USA), and another set
of three PBST washes. Subsequently, the cells were treated with KPL TrueBlue™ peroxidase
substrate (SeraCare, Milford, MA, USA) for 5 min. After a final wash with water, cell foci
were imaged and quantified using an ImmunoSpot® S6 Micro Analyzer (CTL—Europe
GmbH, Bonn, Germany). The half-maximal effective concentration (EC50) of each drug was
calculated as the reciprocal of the last dilution, resulting in 50% foci reduction compared to
control wells (no drug inhibitor). EC50 values were interpolated using nonlinear regression
(curve fitting) in GraphPad Prism v.9 (GraphPad Software, San Diego, CA, USA).

2.6. Immunofluorescence Assay

For the immunofluorescence assay, Calu-3 cells were seeded in a 96-well plate at
a density of 3 × 104 cells per well and incubated overnight to facilitate adherence and
growth. The following day, the media was removed, and the cells were gently washed
with Dulbecco’s Phosphate-Buffered Saline (DPBS). This step was followed by the addition
of 50 µL of each drug to the wells, achieving a final concentration of 5 µM. After a 2 h
incubation period with the drugs, the cells were infected with SARS-CoV-2 at a multiplicity
of infection (MOI) of 0.1 and incubated for 72 h. Post-infection, the cells were fixed with
4% paraformaldehyde overnight. For antibody staining, the cells were first permeabilized
with cold methanol for 15 min. Following this, they were washed with PBST and blocked
for 30 min using 5% calf serum. To detect viral presence, the cells were incubated with a
primary anti-SARS-CoV-2 nucleocapsid antibody for 1 h. After three PBST washes, the
cells were incubated with a secondary goat anti-rabbit IgG antibody conjugated with Alexa
Fluor 488 (Thermo Fisher Scientific, Waltham, MA, USA). Subsequent to three additional
PBST washes, fluorescence signals were detected using a fluorescence reader, employing
an excitation wavelength of 488 nm.

2.7. Virus Inhibition Assay

To assess the inhibitory effects of drugs on SARS-CoV-2, we conducted a virus inhibi-
tion assay using Calu-3 cells. Initially, Calu-3 cells were seeded at a density of 3 × 104 cells
per well in 96-well plates and cultured overnight. Following this incubation period, the
media was discarded, and the cells were gently rinsed with Dulbecco’s Phosphate-Buffered
Saline (DPBS). Subsequently, the cells were infected with SARS-CoV-2 at a multiplicity
of infection (MOI) of 0.1. This infection was allowed to proceed for 1 h, after which the
cells were again washed with DPBS to remove unbound virus particles. Post-infection, the
cells were treated with varying concentrations of the drugs, ranging from 0.6 µM to 10 µM,
diluted in media containing 2% FBS. After a 72 h incubation period, the supernatants from
the cell cultures were collected. These supernatants were then subjected to plaque assays
to quantify viral infectivity, providing crucial insights into the effectiveness of the drug
treatments in inhibiting SARS-CoV-2 replication.

2.8. Plaque Assay

For the plaque assay, Vero E6 cells were plated at a density of 3 × 105 cells per well in
a 12-well plate and incubated for 24 h to allow for cell adherence and growth. Following
this incubation period, the growth medium was removed, and the cells were washed
with Dulbecco’s Phosphate-Buffered Saline (DPBS). To initiate infection, 200 µL of virus-
containing supernatants, diluted tenfold, were applied to each well. The cells were then
incubated for 1 h to facilitate virus entry. After this incubation, the virus-containing solution
was discarded, and a mixture of 2× DMEM and 2% low-melting-point agar solution at a 1:1
ratio was added to each well. This overlay medium served to immobilize the virus and limit
its spread. The cells were subsequently incubated for an additional 3–4 days, a duration
optimized for the development of visible virus plaques. Upon plaque formation, the cells
were stained using a solution of 0.5% crystal violet in 20% methanol. This staining allowed
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for the clear visualization and enumeration of virus plaques, facilitating the quantitative
analysis of viral infectivity.

2.9. Quantification of Virus Protein

To quantify viral protein levels, Calu-3 cells were plated at a density of 1 × 105 cells per
well in a 48-well plate and cultured overnight. The following day, these cells were infected
with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.1 for 1 h. After removing the virus,
the cells were treated with various drug concentrations for 72 h in fresh media. For protein
extraction, the infected cells were lysed using 50 µL of RIPA cell lysis buffer (GenDEPOT,
Baker, TX, USA). The lysed cells were then subjected to sonication in three 6 min cycles to
ensure complete disruption. The lysates were centrifuged at 15,000 rpm for 20 min, allowing
for the collection of supernatants containing the proteins of interest. The protein content in
these supernatants was quantified using the bicinchoninic acid (BCA) assay. Subsequently,
protein samples were separated via 10% SDS-PAGE gel electrophoresis and transferred
onto a nitrocellulose membrane for further analysis. To detect specific viral proteins, the
membrane was first blocked with 5% skim milk for 30 min to prevent nonspecific binding.
It was then incubated overnight at 4 ◦C with a primary antibody targeting the SARS-CoV-2
nucleocapsid protein (dilution 1:3000). Following this, the membrane was incubated for
1 h with a horseradish peroxidase (HRP)-conjugated secondary antibody (dilution 1:3000).
Finally, the viral proteins were visualized using a chemiluminescent solution.

2.10. Drug Cytotoxicity Assays

To assess the cytotoxicity of the drugs under investigation, we conducted an assay
using Vero cells. Initially, the cells were seeded in a 96-well plate at a density of 1 × 104 cells
per well and cultured for 24 h to ensure proper adherence and growth. Subsequently, the
culture medium was discarded, and the cells were exposed to various concentrations of the
drugs. These drugs were diluted in DMEM media supplemented with 2% FBS. Following a
72 h incubation period with the drugs, the extent of cellular toxicity was evaluated using
the Cell Counting Kit-8 (CCK-8) assay kit (Dojindo, Kumamoto, Japan). This assay is based
on the reduction of a water-soluble tetrazolium salt by cellular dehydrogenases in viable
cells, producing a colorimetric change that can be quantified. The intensity of the color
change is directly proportional to the number of living cells, thus providing an indication
of the cytotoxic effects of the drugs.

2.11. Animal Experiments

In vivo experiments were conducted using 7-week-old female BALB/C mice, which
were housed under sterile conditions with access to food and water in a Biosafety Level
3 (BSL-3) facility at the Department of Laboratory Animals, Avison Biomedical Research
Center, Yonsei University College of Medicine. This study received approval from the Insti-
tutional Animal Care and Use Committee at Yonsei University College of Medicine (permit
number: 2022-0228) and was carried out in strict adherence to the relevant guidelines and
regulations. Furthermore, this study conforms to the ARRIVE guidelines for reporting
in vivo experiments.

For the infection protocol, the mice were anesthetized and intranasally inoculated
with 1 × 105 plaque-forming units (pfu) of the beta variant of SARS-CoV-2, administered in
a volume of 50 µL. Two hours post-infection, the mice were treated with either 10% DMSO
as a vehicle control or with therapeutic doses of azathioprine (5 mg/kg) or thioinosinic
acid (5 mg/kg). A subsequent dose of the drugs was administered one day after the initial
infection. The mice were monitored daily for changes in body weight until four days
post-infection. At this endpoint, the mice were humanely sacrificed, and their lungs were
collected for subsequent analysis. Virus titers in the lung tissues were quantified using the
plaque assay method, providing insights into the efficacy of the treatments in reducing
viral loads in vivo.



Biomedicines 2023, 11, 3134 6 of 17

2.12. Statistical Analysis

The data in this study are presented as means ± standard deviation (S.D.). We
employed GraphPad Prism version 9 (GraphPad Software Inc., La Jolla, CA) for all data
calculations and statistical analyses. To assess the significance of differences between
experimental groups, we used a one-way analysis of variance (ANOVA), and p values < 0.05
were considered statistically significant. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3. Results
3.1. Computational Screening of Potential Anti-SARS-CoV-2 Inhibitors

Our initial step in identifying potential antiviral agents involved establishing a robust
computational pipeline. We utilized raw data from previous experimental screenings of
SARS-CoV-2, accessible through the COVID-19 Open Data Portal by the National Center
for Advancing Translational Sciences (NCATS). This dataset included assessments of the
cytopathic effect of SARS-CoV-2 on the Vero E6 cell line. From this dataset, we meticulously
selected approximately 100 compounds demonstrating high antiviral activity and minimal
toxicity to the host cells (Figures 1B and S1). Additionally, we included compounds that
showed no activity against SARS-CoV-2 for a comprehensive analysis.

We then developed a deep learning-based classification model using the chemical
structures and activity annotations (labeled 1 for active and 0 for inactive) of these com-
pounds. This model, trained to map the structural features of compounds to their functional
activity, was developed using the DeepChem open-source Python library for drug discov-
ery. We assessed the model’s performance on a separate test dataset, where it achieved a
high Receiver Operating Characteristic Curve–Area Under the Curve (ROC-AUC) score of
0.85, demonstrating its predictive capability in identifying antiviral compounds against
SARS-CoV-2 (Figure 1A).

To further our quest for novel antiviral drugs, we applied this trained model to a
comprehensive library of approximately 700,000 compounds from the Korea Chemical
Bank (KCB). This library includes a wide array of commercially available and proprietary
compounds. For each compound, we derived chemical structure data and used our model
to predict their potential anti-SARS-CoV-2 activity, assigning probability scores from 0 to 1,
with higher scores indicating a higher likelihood of antiviral efficacy.

Our search was then narrowed down to the top 100 compounds predicted by the model.
These compounds were physically retrieved from the KCB for subsequent experimental
validation across various cell lines.

3.2. In Vitro Experimental Validation of Candidate Drug Efficacy

In our in vitro studies, we focused on assessing the antiviral activity of the top
100 compounds shortlisted from the KCB library against SARS-CoV-2. For this purpose,
human intestinal epithelial Caco-2 cells [39–42] were pre-treated with each compound
at a fixed concentration of 2.5 µM before viral infection. Post-incubation, we quantified
the intracellular virus particles using the ELISpot assay (Figure 2A). Out of the 100 drugs
screened, 19 demonstrated significant inhibitory activity in this cell line, achieving up to
80% inhibition. This level of inhibition was notably comparable to that of camostat, a
known virus inhibitor that impedes SARS-CoV-2 entry by targeting the TMPRSS2 protease
in the host cell (Figure 2B).
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Figure 1. Overview of computational and experimental screening for SARS-CoV-2 inhibitors. (A) This
flowchart delineates the sequential stages involved in identifying potential anti-SARS-CoV-2 com-
pounds. The initial stage encompasses the collection of compound structures and their corresponding
activity labels (with ‘1’ indicating active and ‘0’ indicating inactive compounds). Subsequently, these
compounds are subjected to a training phase using a graph neural network, which analyzes their
structural and functional characteristics. In the inference stage, the trained model is applied to
the Korea Chemical Bank (KCB) drug collection to identify promising hit compounds. The final
stage involves experimental validation of selected compounds, conducted in various cell lines and
a mouse disease model. (B) Heatmap of structural co-similarity: This heatmap presents the struc-
tural co-similarity matrix of the compounds, calculated using the Tanimoto similarity score. The x
and y axes of the heatmap list the active compounds in the dataset. The diagonal line represents
the self-similarity of each compound. The color gradient in the heatmap conveys the degree of
similarity between compounds: darker colors signify lower similarity, while lighter colors indicate
higher similarity.
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Figure 2. In vitro screening for compounds active against SARS-CoV-2. (A) This panel depicts the
evaluation of a selected compound’s antiviral activity against SARS-CoV-2 in Caco-2 and Vero cell
lines. The cells were pre-treated with the drugs for two hours prior to viral infection. The detection
of intracellular virus particles was conducted using the ELISpot assay. (B) The primary screening
for anti-SARS-CoV-2 activity was performed in Caco-2 cells, which involved pre-treating the cells
with a single dose of the test drugs before infection with the virus. Camostat was used as a positive
control for this screening. The top active compounds, demonstrating significant inhibitory effects,
are highlighted in red in the figure. The data are presented as mean ± standard deviation (SD) for
two independent experimental replicates. (C) This panel illustrates the dose-dependent response and
associated toxicity of the identified hit compounds in the Vero cell line. The level of antiviral activity
is indicated in red, showing relative virus inhibition compared to DMSO control samples. The blue
color represents cellular toxicity. Data are expressed as mean ± SD for three independent biological
replicates. EC50 values were calculated and fitted using GraphPad Prism. Statistical significance
was determined using one-way ANOVA with Dunnett’s test, denoted as ** p < 0.05. ‘NS’ denotes
non-significant findings.
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To evaluate the concentration-dependent effects of these compounds, we employed
Vero cells, which are more susceptible to SARS-CoV-2 infection [43–45]. In this assay, cells
were treated with varying twofold concentrations of the drugs, ranging from 0.3 µM to
50 µM, prior to viral infection. Among the 19 compounds tested, eight exhibited dose-
dependent antiviral activity in Vero cells, with EC50 values ranging between 1 µM and
7 µM. Concurrent cytotoxicity assays revealed that these compounds maintained lower
cellular toxicity at effective concentrations, underscoring their potential as therapeutic
agents (Figure 2C, Table 1).

Table 1. The activity and cytotoxicity of active compounds.

Compound ID EC50 (µM) CC50 (µM)

C3 1 ± 2.1 21.18

C5 1 ± 1.9 >50

C7 3.9 ± 1.8 >50

C8 1.5 ± 1.7 >50

C9 6.6 ± 1.8 >50

C10 5.3 ± 1.7 >50

C11 6.7 ± 2.1 >50

C19 1.7 ± 2 >50

3.3. Elucidating Molecular Targets of Effective Drugs through Similarity-Based Analysis

In our quest to understand the molecular mechanisms driving the antiviral efficacy
of the identified hit compounds, we applied the similarity ensemble approach (SEA)
analysis [46]. SEA is a computational method designed to predict the biological activity
of compounds based on their structural resemblance to other compounds with known
activities. The underlying premise of SEA is that structurally similar molecules are likely to
exhibit analogous biological functions. This approach involves scouring a comprehensive
database of active compounds, along with their respective biological activities, and calculat-
ing similarity scores. These scores are derived by comparing the structural features of our
query compounds against the database entries. The calculated similarity scores are then
utilized to infer the potential biological activities of the query compounds. From the SEA
analysis, we hypothesized that our identified compounds might exert their antiviral effects
indirectly, possibly by targeting specific host cell proteins. This inference suggests that
these compounds could interfere with critical virus–host interactions or disrupt host cell
processes essential for viral replication. Such a mechanism would highlight the potential of
these compounds to function as indirect antivirals by modulating host pathways (Table 2).

Table 2. Potential biological activities of the hit drugs.

Compound ID EC50 (µM) Predicted Targets

C3 1.0 Atypical chemokine receptor 3

C5 1.0 Estrogen-related receptor gamma

C8 1.5 Low molecular weight phosphotyrosine protein phosphatase

C19 1.7 Retinal rod rhodopsin-sensitive cGMP 3’,5’-cyclic
phosphodiesterase subunit delta

C7 3.9 Adenosine kinase

C10 5.3 Urotensin-2 receptor

C9 6.6 Potassium/sodium hyperpolarization-activated cyclic
nucleotide-gated channel 1

C11 6.7 Sigma intracellular receptor 2
Table showing hit compounds EC50 values and their predicted targets based on similarity prediction analysis.
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3.4. Identifying Potential Direct-Acting Antivirals through Compounds Clustering

To pinpoint compounds capable of directly inhibiting SARS-CoV-2 replication, we
enhanced our deep learning model by incorporating additional examples into our training
dataset. This expansion included nucleoside analog inhibitors, such as remdesivir and
molnupiravir, and their parent compounds, all known for their direct antiviral activity.
Utilizing this augmented model, we performed computational analyses on the Korea
Chemical Bank (KCB) dataset to identify potential direct-acting antiviral agents. Given the
inclusion of nucleoside analogs in our training dataset, we anticipated that some of the
model-predicted compounds might also belong to this class.

To distinguish potential nucleoside analogs from other compounds, we employed the
t-distributed stochastic neighbor embedding (t-SNE) method from the ChemPlot chem-
ical space visualization library [47]. This clustering technique was applied to the top
1000 compounds predicted by our model, along with the original nucleoside analogs used
during training. The analysis resulted in the identification of a distinct cluster of nucleoside
analogs. Notably, several compounds predicted by the KCB were closely aligned with this
cluster, suggesting their potential as nucleoside analog inhibitors (Figure 3A).

To explore the antiviral capabilities of these compounds, we selected nine KCB com-
pounds located near the nucleoside analog cluster for in vitro validation in Calu-3 cells
(Figure 3A). The efficacy of these compounds was evaluated by quantifying intracellular
virus concentrations using immunofluorescence staining. Remarkably, one of these com-
pounds, azathioprine, demonstrated antiviral activity comparable to established nucleoside
analog inhibitors, specifically remdesivir and molnupiravir (Figure 3B,C).

3.5. In Vitro Efficacy of Azathioprine and Thioinosinic Acid against SARS-CoV-2

We investigated the dose-dependent antiviral effects of azathioprine on the Calu-3 cell
line, a model commonly used in SARS-CoV-2 research [48–50]. After infecting the cells with
the virus, we treated them with varying concentrations of azathioprine, up to a maximum
of 10 µM. As a control, we used molnupiravir, a known virus inhibitor. Our analyses,
including plaque assays and Western blotting, indicated a significant reduction in viral
progeny within the cells treated with azathioprine (Figure 4A,C), highlighting its potential
as a potent antiviral agent against SARS-CoV-2. Furthermore, the low cellular toxicity
observed at these concentrations reinforces the drug’s safety profile (Figure 4B). While
molnupiravir exhibited moderate inhibitory effects, which we further confirmed using RT-
PCR assay (Figure S3), it is important to note that the antiviral efficacy observed may vary
depending on the cell line used, given differences in drug uptake and metabolic pathways.

Azathioprine, a prodrug, undergoes metabolic activation in the body. Initially, it con-
verts into 6-mercaptopurine (6-MP) via non-enzymatic reduction, facilitated by glutathione
and similar compounds present in the intestinal wall, liver, and red blood cells. This
transformation yields the intermediate metabolite thioinosinic acid, which then follows
one of two metabolic pathways. In one pathway, it produces thioguanosine triphosphate,
contributing to the drug’s therapeutic activity. Alternatively, the compound undergoes
methylation and is eventually excreted in the urine [51]. We extended our investigation
to examine the direct anti-SARS-CoV-2 effects of thioinosinic acid. Post viral infection,
Calu-3 cells were treated with various concentrations of thioinosinic acid. This assessment
revealed the notable antiviral efficacy of thioinosinic acid against SARS-CoV-2 in the Calu-3
cell line (Figure S4).
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 Figure 3. Identification and validation of potential nucleoside analog inhibitors. (A) This panel
presents a t-SNE plot that demonstrates the clustering of antiviral compounds as predicted by the
deep learning model, alongside previously identified nucleoside analogs known to disrupt virus
replication. The top 1000 compounds predicted by the model are represented in blue, while the known
nucleoside analogs are depicted in orange, illustrating their relative positions in the chemical space.
(B) The antiviral efficacy of compounds located near the nucleoside analogs cluster was assessed in
the Calu-3 cell line. Cells were pre-treated with these compounds (or DMSO as a mock control) for
two hours before being infected with SARS-CoV-2 at an MOI of 0.1. The inhibitory effects on viral
replication were evaluated after 72 h using an immunofluorescence assay. Established nucleoside
analogs, molnupiravir and remdesivir, were employed as controls. The graph shows the percentage
of the intracellular fluorescent signal relative to the mock sample, with error bars indicating the mean
± standard deviation (SD) from triplicate biological replicates. Statistical significance was assessed
using one-way ANOVA with Dunnett’s test, denoted as *** p < 0.001. (C) This panel displays the
molecular structures of the compounds tested, with azathioprine highlighted in red.
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Figure 4. In vitro inhibition of SARS-CoV-2 infection by azathioprine. (A) This panel illustrates the
inhibitory effect of azathioprine on SARS-CoV-2 in the Calu-3 cell line. The cells were first infected
with the virus at a multiplicity of infection (MOI) of 0.1. One hour post-infection, azathioprine was
administered at various twofold dilutions and maintained for 72 h. The infectious virus titers in the
cell supernatants were quantified using a plaque assay. The error bars represent the mean ± standard
deviation (SD) of duplicate samples. Statistical significance was evaluated using one-way ANOVA
with Dunnett’s test, indicated by ** p < 0.05. (B) In this panel, the cytotoxicity of azathioprine
in uninfected Calu-3 cells was measured and normalized against cells treated with DMSO. The
graph provides a comparison of the cytotoxic effects of azathioprine relative to the DMSO control.
(C) Calu-3 cell lysates were subjected to Western blot analysis using an anti-SARS-CoV-2 nucleocapsid
antibody. An anti-ß-actin antibody was used as a control.

3.6. In Vivo Efficacy of Thioinosinic Acid in Reducing SARS-CoV-2 Infection in a Mouse Model

To assess the in vivo efficacy of azathioprine and thioinosinic acid against SARS-CoV-2,
we conducted an experiment using a mouse model. Mice were infected intranasally with the
virus and subsequently administered either azathioprine or thioinosinic acid intranasally,
beginning two hours post-infection and followed by a single dose on the subsequent day.
A control group was treated with 10% DMSO intranasally as a vehicle control (Figure 5A).
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Over a four-day observation period, all of the infected mice exhibited a slight weight loss.
However, there was no significant difference in weight changes between the control group
and those treated with either drug (Figure 5B). Remarkably, lung viral titers in mice treated
with thioinosinic acid at a dosage of 5 mg/kg showed a substantial reduction compared to
the vehicle control group. The viral load in these mice was approximately tenfold lower
than that in the vehicle-treated group (Figure 5C). By contrast, treatment with azathioprine
at the same dosage did not demonstrate a significant reduction in viral titers compared to
the control group. This outcome might be attributed to the pharmacodynamic properties of
azathioprine, suggesting a differential efficacy profile between the two drugs.
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Figure 5. Effect of thioinosinic acid on virus load in a mouse model. (A) This panel outlines an
in vivo experiment involving the intranasal inoculation of mice with 1 × 105 plaque-forming units
(pfu) of the SARS-CoV-2 beta variant. Two hours after inoculation, an intranasal administration of the
drugs was initiated, followed by a second dose administered 24 h later. Four days post-inoculation,
the mice were euthanized, and their lungs were harvested for subsequent analysis. (B) This graph
tracks the body weight changes over time for different groups: uninfected mice, shown in black
(n = 3), infected mice treated with the vehicle, shown in blue (n = 4), and infected mice treated with
azathioprine (AZA) at 5 mg/kg, shown in green (n = 5) or thioinosinic acid (TA) at 5 mg/kg, shown
in orange (n = 5). (C) The viral load in the lung tissues of the mice was quantified using a plaque
assay. The error bars represent the mean ± standard deviation (SD) of duplicate samples from each
group. Statistical significance was assessed using one-way ANOVA with Dunnett’s test, denoted as
** p < 0.005. This panel provides crucial data on the efficacy of the drug treatments in reducing viral
titers in the lungs.
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4. Discussion

This study leveraged a hybrid computational–experimental approach to unearth po-
tent inhibitors of SARS-CoV-2. Our efforts led to the identification of 19 compounds that
effectively curbed virus infection in vitro, with eight exhibiting broad-spectrum activity
across diverse cell lines such as Caco-2 and Vero cells. A noteworthy discovery is the
antiviral efficacy of azathioprine, an FDA-approved immunosuppressant, against SARS-
CoV-2. Its active metabolite, thioguanosine triphosphate (TGTP), integrates into DNA and
RNA during cell division, disrupting the proliferation of rapidly dividing cells, includ-
ing lymphocytes. This mechanism suggests that TGTP might also incorporate into the
rapidly replicating RNA of SARS-CoV-2, potentially inducing mutations that hinder viral
replication [52].

Our findings are particularly significant when compared to existing COVID-19 treat-
ments such as remdesivir, molnupiravir, and the nirmatrelvir–ritonavir combination
(Paxlovid). While remdesivir can shorten recovery times, its high cost and intravenous
administration limit its utility for mild cases. Molnupiravir shows promise in reducing
hospitalization risk in high-risk individuals but is less effective when administered later in
disease progression. Paxlovid significantly lowers hospitalization or death risk but poses
challenges in cost and potential drug–drug interactions, especially in patients with chronic
health conditions [53]. By contrast, azathioprine, with its antiviral and anti-inflammatory
properties, emerges as a promising candidate. It could potentially mitigate severe im-
munological responses, such as cytokine storms and hyperimmune activation, which are
observed in advanced COVID-19 stages. The existing FDA approval of azathioprine ac-
celerates its potential integration into clinical trials, either as a standalone treatment or in
combination with other antivirals.

While advanced drug discovery methods like molecular docking and molecular dy-
namics simulations offer insightful predictions, they have inherent limitations. Molecular
docking often uses fixed protein structures, failing to represent their dynamic physiological
state. Molecular dynamics simulations, though detailed, require extensive computational
resources and capture only short timescales, missing broader structural transitions. Artifi-
cial intelligence algorithms can expedite the prediction of new compound activities but are
constrained by the need for large, high-quality datasets of established active compounds.

Our computational screening identified virus inhibitors using data primarily from Vero
cell screenings. To enhance translation success, future efforts should develop comprehensive
training data pipelines incorporating diverse cell screenings. This strategy can help avoid
compounds active only in specific cell lines, widening the search for effective inhibitors.

Experimentally, several critical questions remain. Identifying the molecular targets
of the initial hit compounds and evaluating their antiviral efficacy in human primary
cells are essential next steps to validate their clinical relevance. Furthermore, while aza-
thioprine showed limited inhibition in mouse models, additional studies on dosage and
administration are warranted to fully assess its therapeutic potential.

In conclusion, our study underscores the potent synergy between computational
and experimental methods in identifying antivirals against SARS-CoV-2. This integrated
approach has expedited the discovery of promising therapeutic candidates, marking a
significant stride in the ongoing battle against the virus.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biomedicines11123134/s1, Figure S1. Data to train SARS-
CoV-2 drugs classification model. A: The preparation of preliminary data, showing the proportion of
effective drugs (100 drugs) to ineffective ones (2000 drugs). B: Box plot shows the size distribution of
compounds within the training dataset. The number of atoms present in the active and non-active
subsets were calculated and plotted with an RDkit and matplotlib libraries. Figure S2. Structures
and sources of the potential SARS-CoV-2 inhibitors. This collection comprises compounds that are
commercially accessible, as well as those provided to KCB by independent researchers. Figure S3.
Thioinosinic acid inhibits in vitro SARS-CoV-2 infection. A: The dose-dependent inhibition of SARS-
CoV-2 by thioinosinic acid in the Calu-3 cell line. The cells were infected with the virus one hour

https://www.mdpi.com/article/10.3390/biomedicines11123134/s1
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prior to treatment, and then the drug was added at twofold dilutions for 72 h. A plaque assay was
used to measure the infectious virus titer in cell supernatants. The error bars represent the mean ±
SD of duplicate samples. Statistical analysis was performed using one-way ANOVA with Dunnett’s
test, with *** p < 0.0002. B: Drug cytotoxicity in cells without infection was measured and normalized
to DMSO-treated cells. Figure S4. In Vitro Inhibition of SARS-CoV-2 Infection by Thioinosinic Acid.
A. Illustrates the effect of thioinosinic acid on SARS-CoV-2 in the Calu-3 cell line. The cells were first
infected with the virus at an MOI of 0.1. One hour after infection, thioinosinic acid was administered
in two-fold dilutions, and the treatment continued for 72 h. The infectious virus titers in the cell
supernatants were quantified using a plaque assay. The error bars represent the mean ± standard
deviation (SD) of duplicate samples. Statistical significance was evaluated using one-way ANOVA
with Dunnett’s test, indicated by *** p < 0.0002. B. The cytotoxicity of thioinosinic acid in uninfected
Calu-3 cells was measured. The results were normalized against cells treated with DMSO to assess
the drug’s safety profile.
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