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Abstract: The objective of this study was to investigate regulatory T cells (Tregs) and monocytes;
specifically, the expression of CTLA-4 (CD152) and FOXP3* in CD4*CD25" Tregs and the expression
of CD40+ and CD192+ monocyte subpopulations in subjects with primary progressive multiple
sclerosis (PPMS). Immunological analysis was conducted on peripheral blood samples collected from
the 28 PPMS subjects (15 treated with ocrelizumab and 13 untreated PPMS subjects) and 10 healthy
control subjects (HCs). The blood samples were incubated with antihuman CD14, CD16, CD40,
and CD192 antibodies for monocytes and antihuman CD4, CD25, FOXP3, and CTLA-4 antibodies
for lymphocytes. The study results showed that in comparison to HCs both ocrelizumab treated
(N = 15) and untreated (N = 13) PPMS subjects had significantly increased percentages of CTLA-
4* and FOXP3" in CD4*CD25* Tregs. Further, ocrelizumab treated PPMS subjects, compared
to the untreated ones, had significantly decreased percentages of CD192+ and CD40+ nonclassical
monocytes. Increased percentages of CTLA-4* and FOXP3* in CD4*CD25" Tregs in both ocrelizumab
treated and untreated PPMS subjects indicates the suppressive (inhibitory) role of Tregs in abnormal
immune responses in PPMS subjects. Decreased percentages of CD40+ and CD192+ non-classical
CD14*CD16™* monocytes for treated compared to untreated PPMS subjects suggest a possible role
for ocrelizumab in dampening CNS inflammation.

Keywords: PPMS; regulatory T cells (Tregs); lymphocytes; Forkhead box protein P3; CTLA-4;
monocyte subpopulations; ocrelizumab

1. Introduction

Multiple sclerosis (MS) is a disease characterized by multifocal demyelination leading
to progressive neurodegeneration. It is caused by an autoimmune response directed against
self-antigens within the central nervous system [1]. MS predominantly affects female
subjects, with symptoms often starting to present in early adulthood. MS can be classified
into two primary forms: the more common relapsing-remitting MS (RRMS), which is seen
in about 85-90% of cases, and primary progressive MS (PPMS) [2]. RRMS exhibits cycles
of neurological setbacks (relapses) followed by remission phases. However, eventually,
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most RRMS cases evolve into the consistently deteriorating condition known as secondary
progressive MS (SPMS). On the other hand, the rarer form, PPMS, accounting for about
10-20% of MS diagnoses, presents as a persistent decline in neurological function from its
onset, without periods of remission [3]. The fundamental pathological occurrence in MS
is demyelination, accompanied by axonal degeneration and loss, leading to permanent
functional impairments [4-6]. From an immunological perspective, MS arises due to
aberrant immune system activation. Autoreactive CD4+ T cells bypass both negative
selection and clonal elimination and penetrate the compromised blood-brain barrier to
access the CNS and initiate the attraction of other inflammatory agents, including microglia,
macrophages, and B cells. This cascade promotes antibody production and the release
of proinflammatory cytokines, ultimately damaging the myelin sheath [7-9]. It is well
established that autoreactive T cells play an important role in MS, as well as in other
conditions such as psoriasis, diabetes mellitus type 1, oral lichen planus, myasthenia
gravis, etc. [8,10-13]. Regulatory T cells (Tregs), a specific subset of T cells, are functionally
changed in different autoimmune diseases [14-20], including MS [21-26]. Treg cells are
distinguished as a CD4+ T cell subset that express the interleukin-2 receptor alpha chain
CD25 and the pivotal transcription factor Forkhead box protein P3 (FOXP3). The presence
of FOXP3 is vital for Treg cell development, functionality, and stability [27-30]. Also, Tregs
markedly express the immune checkpoint receptor cytotoxic T-lymphocyte-associated
antigen-4 (CTLA-4), also known as CD152. A deficiency in Treg-associated CTLA-4 can
result in severe systemic autoimmune reactions [31,32]. Treg cells inhibit the activity
of numerous cell types, including cytotoxic CD8+ T cells (Teffs) and antigen-presenting
cells (APC). Tregs employ a variety of mechanisms to achieve inhibition of various cells
(Teffs, APCs, etc.) ranging from direct cell-to-cell interactions to the release of suppressive
cytokines [33].

Besides the role of autoreactive T cells in MS, monocytes and macrophages also contribute
to proinflammatory and anti-inflammatory responses [34,35]. Monocytes are classified into
three distinct subpopulations: classical (CD14**CD16™), intermediate (CD14*+*CD16"), and
nonclassical (CD14*CD16**). Gjelstrup et al. [36] reported an increase in nonclassical
monocytes, accompanied by a notable decrease in classical monocytes, as well as variations
in the expression of CD40 and CD192, among MS subjects when compared to controls.

There are different treatment approaches for MS depending on the patient’s clinical
symptoms. They may include treatment of relapse symptoms with steroid drugs and
reducing the number of relapses with disease-modifying drugs (DMD) [37]. Ocrelizumab
stands out as the sole approved DMD for PPMS. It reduces the progression of clinical
impairment by around 25% and improves both clinical and magnetic resonance imaging
(MRI) indicators of inflammation and degeneration in PPMS [38].

The present study aimed to investigate the expression of CTLA-4" and FOXP3* in
CD4*CD25" in Tregs, and CD40 and CD192 in the classical (CD14**CD167), intermediate
(CD14**CD16%), and nonclassical (CD14*CD16**) monocyte subsets in PPMS (ocrelizumab
treated and untreated) subjects.

2. Materials and Methods
2.1. Participants

The study sample included twenty-eight PPMS subjects recruited from the University
Hospital of Split, Croatia, who met the inclusion criteria and agreed to participate in the
study. The healthy control group (HCs) comprised ten subjects. Fifteen out of twenty-
eight PPMS subjects were treated with ocrelizumab (Ocrevus, Roche, Grenzach-Wyhlen,
Germany) for >12 months. The ocrelizumab dosage of 600 mg was administered per
month. Thirteen PPMS subjects refused the treatment (untreated PPMS). The mean age
of the PPMS subjects was 54.57 £ 8.71, and for HCs the mean age was 37 £ 13.9. The
mean age of the PPMS subjects was significantly higher (p < 0.003) compared to HCs. Most
PPMS subjects were women (75%). The mean disease duration was 10.74 £ 7.57 years
and the median Expanded Disability Status Scale (EDSS) score was 4.94. The duration of
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the MS disease was significantly longer in untreated PPMS subjects (p < 0.01) compared
to ocrelizumab treated PPMS subjects. No significant differences were evident in EDSS
scores between ocrelizumab treated and untreated PPMS subjects. Table 1 presents the
basic demographic and disease related characteristics of PPMS subjects and HCs submitted
to the immunological analysis.

Table 1. Demographic and disease related characteristics of ocrelizumab treated and untreated PPMS
subjects and HCs.

Parameter All Treated Untreated
Mean = SD PPMS (N=28) PPMS(N=15) PPMS(N=13) HCs(N=10
Age (years) 5457 £8.71 53 +7.47 56.3 +9.97 37 £13.90
EDSS 494 +1.54 48 +£1.53 511 £ 1.6 /
Disease duration (years) 10.74 + 7.58 6.86 £+ 5.39 15.58 +7.26 /
Female/Male (N) 21/7 13/2 8/5 6/4

Basic parametric data are presented as mean =+ standard deviation. Categorical data are presented as numbers.
Abbreviations: PPMS—primary progressive MS; HCs—healthy controls; N—number of subjects.

2.2. Data Collection Procedures: Peripheral Blood (PB) Collection, Flow Cytometry, and Clinical
Assessment (Neurological)

PB was collected, followed by a neurological examination on the same day. Collec-
tion of PB and neurological examination was performed at the Department of Neurology,
University Hospital of Split. Functional disability assessments of PPMS subjects were eval-
uated by an experienced neurologist who applied the EDSS. PB analyses were conducted
at the Department of Medical Chemistry and Biochemistry, University of Split, School
of Medicine.

2.3. Flow Cytometry

Blood samples for flow cytometry analysis were collected from the antecubital veins
of PPMS subjects after they signed an informed consent form. In the first test tube, one
hundred microliters of whole blood were incubated for 20 min in a dark environment
at 25 °C using the following mixture of antibodies: 4 pL of phycoerythrin-conjugated
antibodies targeting human CD16 (BD Pharmingen, San Diego, CA, USA); 4 uL of FITC-
conjugated antihuman-CD14 antibodies (from BD Pharmingen, San Diego, CA, USA); 3 puL
of BB700-conjugated mouse antibodies specific to human CD192 (provided by BD Horizon,
San Diego, CA, USA); and 5 pL of Alexa Fluor 647-conjugated antibodies against human
CD40 (sourced from BD Pharmingen). In the second test tube, one hundred microliters of
whole blood were incubated with 20 pL of phycoerythrin-conjugated antibodies reactive to
human CD152 (CTLA-4) (BD Pharmingen, San Diego, CA, USA); 20 pL of antihuman-CD25
FITC antibodies (BD Pharmingen, San Diego, CA, USA); 5 uL of mouse antibodies reactive
to human FOXP3 conjugated with BB700 (BD Horizon, San Diego, CA, USA); and 5 uL
of Alexa Fluor 647 antibodies reactive to human CD4 (BD Pharmingen, San Diego, CA,
USA). Following red blood cell lysis with BD Pharm Lyse™ solution (BD Biosciences, San
Diego, CA, USA), flow cytometric analyses were performed using a BD Accuri C6 (BD
Biosciences, Aalst, Belgium). Unstained cell samples, together with samples stained with
only one antibody, were measured and processed as negative controls to set the appropriate
regions. Cell acquisition was halted at 10° cells. The flow cytometry data for each marker
was collected in one flow run.

Data acquired by cytometer were analysed using FlowLogic Software version 8 (Inivai
Technologies, Melbourne, Australia). Monocytes (from the first test tube) and lymphocytes
(from the second test tube) were recognized in the forward scatter/side scatter (FSC/SSC)
dot plots. The FSC parameter indicates cell diameter, while SSC indicates cell granularity.
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2.4. Statistical Analysis

For continuous parametric variables, the data were expressed as mean + standard
deviation. For continuous nonparametric variables, the median (interquartile range) was
used. Categorical variables were presented as whole numbers and percentages. Student’s
t-test was applied to analyze differences in continuous parametric variables, while the
chi-squared test was used to compare categorical variables across different groups. Groups
were compared by one-way ANOVA. Correlation analyses were conducted using the
Spearman rank-order correlation coefficient (p).

All statistical analyses were performed using Past software (version 3.14, University
of Oslo, Oslo, Norway) with the significance set at p < 0.05.

3. Results
3.1. Flow Cytometry Results on Lymphocytes of PPMS and HC Subjects

Al PPMS subjects’ findings differed from the HCs in the percentage of CD4*CD25+hish,
CD4*CD25%, and surface expression of CD4*CD25highFOXP3* and CD4*CD25*FOXP3*
(Table 2). Figure 1 presents median fluorescence intensity (MFI) increased surface ex-
pression of CD4+CD25*highFOXP3* (A) and CD4*CD25*FOXP3* (B) in PPMS subjects
(treated and untreated), compared to the HCs. Untreated PPMS subjects had significantly
increased percentages of CD4*CD25*high (» < 0.01), as well as significantly increased per-
centages of CD4"CD25" (p = 0.05). All PPMS subjects’ findings differed from the HCs in
their percentages of CD4+*CD25+M8hFOXP3* and CD4+*CD25*FOXP3*. Untreated PPMS
subjects had significantly increased percentages of CD4*CD25+Mig"FOXP3* (p < 0.05), as
well as significantly increased percentages of CD4*CD25*FOXP3* (p < 0.001). Treated
PPMS subjects had significantly increased percentages of CD4"CD25"FOXP3* (p < 0.01)
but had no significantly increased percentages of CD4*CD25M8"FOXP3* when compared
to HCs (Table 2).

Table 2. Lymphocyte marker expression in PPMS subjects and HCs.

MFI of MEFI of
o, + o, +
% of CD4* “g)l 4‘1f gg;;;‘ggh CD4*  %ofCD4*  MFIof g)czl;‘* CD4*
CD25*high CD25+high FOXP3* CD25*high CD25* CD4*CD25" O s CD25*
FOXP3* FOXP3*
Treated PPMS M 3.02 3720.74 10.57 1798.26 5.502 36,098.34 21.89 1866.49
(N =15) SD 0.66 399.85 3.06 433.07 1.28 3422.33 5.41 47453
HCs (N = 10) M 256 3550.99 8.63 1417.0.3 4.54 34,907.46 15.48 1415.77
- SD 0.65 154.51 1.28 233.17 0.91 2195.62 2.63 209.94
Untreated M 37 3679.51 11.06 1687.15 6.26 35,148 44 21.03 1744.54
PPMS (N = 13) SD 1.08 215.02 2.68 258.27 1.76 3060.79 3.91 232.4
All PPMS M 3.33 3701.6 10.76 1746.68 5.85 35,657.31 21.49 1809.87
(N =28) SD 093 322.32 2.89 360.6711 1.54 3235.67 471 380.26
All t 24 1.14 2.22 2.69 2.47 0.67 3.8 3
PPMS ve. HC df 37 37 37 37 37 37 37 37
vs. HLS p 0.02 * 0.16 0.03 * 0.01* 0.01* 0.05 0.0005 *** 0.003 **
Treated t 17 127 1.88 255 1.99 0.97 3.46 2.81
PPMrSeate HC df 24 24 24 24 24 24 24 24
vs. HLs p 0.1 0.21 0.07 0.01* 0.058 0.34 0.002 ** 0.009 **
4 t 29 1.56 2.62 2.63 2.76 0.21 3.84 35
U“Streate c df 2 2 22 2 2 2 2 2
PPMS vs. HCs ) 0.008 ** 0.12 0.01* 0.01* 0.01* 0.83 0.0009 *** 0.002 **
Treated PPMS t 2 0.33 0.43 0.8 1.32 0.76 0.47 0.84
vs. Untreated df 27 27 27 27 27 27 27 27
PPMS p 0.053 0.74 0.66 0.42 0.19 0.4 0.63 0.4

Abbreviations: PPMS—primary progressive multiple sclerosis; HCs—healthy controls; %—percentage;
MFI—median fluorescence intensity; M—arithmetic mean; SD—standard deviation; df—degree of freedom;
t—t-test. * p < 0.05; ** p <0.01; *** p < 0.001.
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Figure 1. MFI of FOXP3 on CD4*CD25*high (A) and CD4*CD25* (B) in HCs and PPMS subjects
(p < 0.05; p < 0.01).

Treated PPMS subjects had significantly increased surface expression of CTLA-4" in
CD4*CD25 (p < 0.05) compared to HCs (Table 3). Untreated PPMS subjects had signif-
icantly increased percentages of CD4*CD25"CTLA-4* (p < 0.05) compared to HCs. All
PPMS subjects’ findings differed from the HCs in the percentages of CD4*CD25* FOXP3*,
and CTLA-4* (p < 0.005) (Table 3). Treated PPMS subjects had significantly increased
percentages of CD4*CD25", FOXP3", and CTLA-4" (p < 0.004) compared with untreated
PPMS subjects (p < 0.01) (Table 3).

Table 3. CTLA-4 marker expression in CD4+CD25- lymphocytes and Tregs in PPMS subjects and HCs.

MFI of % of MFI of
%of CD4*CD25~ ot O %of CD&*  MFlofCD4*  CD4*CD25*  CD4*CD25*
CTLA-4* D4 Cmo CTLA-4* CTLA-4* FOXP3* FOXP3*
CTLA-4* CTLA-4*
Treated PPMS M 39.96 1327.11 15.29 27424 34.01 2378.26
(N =15) SD 9.59 196.92 434 144.93 7.84 294.41
M 36.61 1179.32 12.65 271142 2557 2291.86
HCs (N =10) SD 7.01 60.62 3.51 194.87 3.89 294.41
Untreated PPMS M 216 1278.63 14.86 2652.08 3041 2372.1
(N =13) SD 5.67 151.23 3.72 124.01 499 259
M 40.98 1308.14 15.09 2700.47 3234 23754
AIPPMS (N=28) g 7.95 178.37 4,00 140.82 6.08 27344
t 1.53 21 17 0.19 2.96 0.85
AIPPMSvs. HCs ~ df 37 31 37 37 37 36
p 0.13 0.04* 0.09 0.85 0.005 ** 04
Treated t 0.94 217 1.59 0.45 3.14 0.78
df 24 2 24 2 24 23
PPMS vs. HCs p 0.35 0.04 * 0.12 0.93 0.004 ** 0.44
. t 2.09 1.82 144 0.89 2.53 0.79
U“Streate - df 2 17 2 22 2 21
PPMS vs. HCs p 0.04 * 0.08 0.16 0.38 0.01 * 0.43
t 0.72 0.62 0.27 175 142 0.05
geated Péjll\)’lpsl\;[’g df 27 2 27 27 27 27
nreate P 0.47 0.53 0.78 0.09 0.16 0.95

Abbreviations: PPMS—primary progressive multiple sclerosis; HCs—healthy controls; %—percentage;
MFI—median fluorescence intensity; M—arithmetic mean; SD—standard deviation; df—degree of freedom;
t—t-test. * p < 0.05; ** p < 0.01.
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3.2. Flow Cytometry Results for Monocytes of PPMS and HC Subjects

All PPMS subjects’ findings differed from the HCs in the surface expression of CD192
in classical CD14**CD16~ monocytes, the percentages of CD14**CD16* monocytes, and
the percentages of CD40* and CD192* in nonclassical CD14*CD16** monocytes differed be-
tween treated and untreated PPMS subjects (Table 4). All PPMS, treated and untreated, had
significantly increased surface expression of CD192 in classical monocytes (both p < 0.001).

Table 4. The differences in monocyte marker expression in PPMS subjects and HC subjects.

+ + +
o0 of CDagr MFIOfCD40 o oo MEI of %of  %of CD40 MEI of % of CD40* % of CD192
CD14**CD16- in CD14**CD16- CD192* in CD14 in CD40* in in in
CD14**CD16~ CD14**CD16~ CDI16*  CD14**CD16* CD14**CD16* CD14*CD16** CD14*CD16*
Treated PPMS M 60.48 4200.943 83.92 101,066.2 7.37 79.59 9922.6 61.09 62.82
(N =15) SD 2326 1398.083 9.665 8739.41 459 16.34 3149.26 11.67 15.3
HC M 49.82 3442.95 97.77 81,837.85 353 83.274 8774.08 65.4 70.3
(N =10) SD 199 796.503 153 8242.14 237 6.36 2163.78 20.32 20.95
Untreated M 52142 3596.253 84.1 95,454.87 6.11 83.02 10,381.84 75.69 76.19
PPMS(N=13) SD  19.20 751.187 13.04 10,285.6 46 18.16 4155.25 13.61 13.13
All PPMS M 56.61 3920.19 84.003 98,461 6.79 81.18 10,135.82 67.58 68.76
(N =28) SD 215 1165.84 11.13 9733.66 6.75 16.97 3586.68 14.36 15.65
. t 0.87 1.19 39 48 211 037 112 0.36 0.24
PPMSA Hee  df 37 37 37 37 37 37 37 36 36
Ve oSy 0.38 0.24 0.0004 ** 0.00002 *** 0.041* 0.7 0.26 0.7 0.81
4 t 1.19 15 4.46 55 242 0.67 1 0.67 1.03
PPI\}rSeate Hes 4 24 24 24 24 24 24 24 24 24
ve. HGs oy 0.24 0.13 0.0001 *** 0.00001 *** 0.02* 05 032 05 031
t 0.28 0.47 3.8 34 —156 0.04 11 141 0.8
Untreated df 22 22 22 22 22 22 22 21 21
PPMSvs. HCs 077 0.64 0.003* 0.002% 013 096 027 017 043
Treated PPMS  t 1.02 13 0.04 15 071 0.52 0.33 3 2.39
vs. Untreated  df 27 27 27 27 27 27 27 36 2
PPMS p 031 0.17 0.96 0.13 048 0.6 0.74 0.006 *** 0.02*
Abbreviations: PPMS—primary progressive multiple sclerosis; HCs—healthy controls; %—percentage;
MFI—median fluorescence intensity; M—arithmetic mean; SD—standard deviation; df—degree of freedom;
t—t-test. * p < 0.05; ** p < 0.01; ** p < 0.001.
Monocyte subpopulations are shown in Figure 2. The cell population expressions of
CD14 and CD16 were displayed in a plot to identify CD14**CD16~, CD14**CD16", and
CD14*CD16™ monocyte subsets. The gated subpopulation was analyzed for its percentage
and surface receptor expression of CD40 and CD192.
A B
107
.
20 10 CD14*CDle+
d 5.23% CD14+CD16*
« B 1057 6.01%
& S
7 ] 43
N 90 10
1031 CD147CD16”
T ] 79.41%
0
s} : : ] _ R NV S R ——
0O 1 20 30 40 50 60 70 0 104 109 10% 107
FSC-A CD14-FITC

Figure 2. Representative gates for monocyte (A) and the monocyte subpopulations nonclassical
(CD14*CD16*"), intermediate (CD14**CD16"), and classical (CD14**CD167) (B).
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Figure 3 shows total monocyte control plots to monitor instrument setup and analy-

sis strategy.

A B C
073 251% 1.08% 1077 073% 0.97% 1077 9633% 0.65%
- 1081 - 108 = 10°3
= = =
B 051 - =) ] sk
/@ /@ B 4o e
3 & 1093 &
= 104} - 10 =
A A A g1
v 10° v 1037 AR v
) 5 ] b 01
071 9855% 0.37% 01 2.63% 95.67% 2.16% 0.06%
0 100 0% 105 10® 107 o 10° 104 108 108 107 o 108 104 105 0® o7
CD14-FITC CD14-FITC CD14-FITC
Figure 3. Representative dot plots for unstained sample (A), control total monocyte dot plots stained
for CD14 (B), and only CD192 (C).
Further, treated PPMS subjects in comparison with untreated PPMS subjects also had
significantly decreased percentages of CD192 and CD40 in nonclassical monocytes (p < 0.05;
and p < 0.01) (Figure 4).
107 3 R 107 .
treated patients treated patients
[
3
o 1083 o 1087
B 56.41% 2
B 1092 B 051 60.34%
@ 2 10
— 49 -
< 1079 A 1043
= : O
5 . -
T T ol T T " T T i, T T T
0 10 105 10 107 0 1% 105 1% 107
107 ney ‘
~ untreated patients untreated patients
=
\g 108 3 8 1°
E| 87.18% 2
o
F4 1053 [ 5 87.74%
,c ' 10
3 2
2 o 2
< 10° 473
\ (@) 107 3
g E
O o] o1
0 104 105 1% 107 0 1% 105 1% 107
CD14-FITC CD14-FITC

Figure 4. Percentages of CD40" and CD192* nonclassical monocytes in treated and untreated subjects.

p <0.01; p <0.05.

4. Discussion

This study investigated the expression of CTLA-4 and FOXP3 in CD4"CD25" Treg
cells, and CD40 and CD192 in monocyte subpopulations in PPMS (ocrelizumab treated
and untreated) subjects compared to healthy controls. The results showed significantly in-
creased percentages of CTLA-4 and FOXP3 in CD4*CD25* lymphocytes for PPMS subjects,
both treated and untreated, significantly increased percentages of CD4*CD25+M8h"FOXP3*
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in untreated PPMS subjects and CD4*CD25"FOXP3" in all PPMS subjects, and signifi-
cantly decreased percentages of CD192* and CD40* nonclassical monocytes in treated
PPMS subjects.

4.1. Discussion Related to Lymphocytes Results in PPMS and HC Subjects

Tregs are CD4" regulatory cells, which were discovered to be a unique population
that inhibits the function of inflammatory cells. CD4"* Treg cells express several surface
markers, including CD25, CD127 (negative-low), and FOXP3 [39]. CD25 is an IL-2 receptor
« chain and is expressed abundantly on Tregs [30]. FOXP3, recognized as a master tran-
scriptional regulator, is integral to the function and identity of regulatory T cells (Tregs).
Its persistent expression is crucial for the maintenance of the suppressive functionality of
mature, differentiated Treg cells. The expression of FOXP3 ensures that Tregs can effectively
modulate immune responses, preventing autoimmune diseases and maintaining immune
system homeostasis [40]. The mutation of FOXP3 in Tregs can induce a shift towards an
autoimmune disease in both mice and humans [41,42]. The expression and mutation of
FOXP3 highlight its pivotal role in maintaining the regulatory and suppressive characteris-
tics of Tregs. Its absence can lead to the loss of these properties, resulting in the adoption of
proinflammatory functions by these cells.

In the present study, all PPMS subjects, treated and untreated, showed an increase in
FOXP3 expression on CD4*CD25"8" and also CD4*CD25* Tregs compared with HCs, with-
out significant differences between treated and untreated PPMS subjects. Treated PPMS
subjects had slightly higher expression of FOXP3 on CD4*CD25* compared to untreated
ones. Li, Y.F. et al. [43] have performed a meta-analysis which included 16 studies, five
of which identified Tregs as CD4+, CD 25+, and FOXP3+ cells. The studies in the review
dated from the years 2009 to 2013. Pooling the data from these five studies showed that the
proportion of Tregs in the MS patients appeared to be lower than in the controls. This meta-
analysis had several limitations, such as the inclusion of various clinical subtypes of MS
patients and different treatments of MS patients across the studies. These treatments may
have had an influence on the proportion of Tregs in MS patients, and it is difficult to remove
that influence from the results. The authors also stated that further studies are needed
with independent cohorts of patients and larger sample sizes to validate their results, and
that Tregs should be defined as CD4-positive, CD25-positive, and FOXP3-positive. The
results from the present study also show differences in the percentages of Tregs. All PPMS
subjects had significantly increased percentages of CD4*CD25*FOXP3*, while only un-
treated PPMS subjects had significantly increased percentages of CD4*CD25M8M*FOXP3™.
Gonzales-Oria et al. [44] also found that percentages of Tregs (CD4*CD25M8"FOXP3+)
were significantly higher in MS subjects (those with RRMS, PPMS, and CIS-clinical iso-
lated syndrome). On the other hand, Kouchaki et al. [45] found a significantly lower
frequency of CD4*CD25*FOXP3* Tregs in MS subjects (with RRMS, PPMS, SPMS, CIS,
and PRMS-progressive relapsing multiple sclerosis,) than in HCs, with the frequency of
Tregs significantly higher in severe forms of MS (PPMS, SPMS, and PRMS) compared to
the mild forms (CIS and RRMS) [44]. Ocrelizumab did not increase the percentage of CD4
Tregs over time, but markedly elevated the percentages of CD8 Tregs [46]. Chi et al. [20]
documented the dysfunction of Tregs CD4*CD25M8"CD127!°WFOXP3* cells, which play a
key role in maintaining self-tolerance.

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a surface molecule of acti-
vated T cells that maintains the homeostasis of the immune system. It modulates immune
responses by competitively binding to CD80 and CD86, obstructing CD28 interaction,
which raises T cell activation thresholds, markedly diminishing immune activity [47].
CTLA-4 is expressed in Tregs but can also be upregulated in other T cell subsets, notably
CD4* T cells, following activation [48]. Exhausted T cells often express CTLA-4, among
various inhibitory receptors. Exhausted T-cell responses are observed in various infec-
tions, including hepatitis B and C viruses, adenovirus, lymphocytic choriomeningitis virus,
leukemia virus, polyoma virus, and Friend leukemia virus. Exhausted T-cell phenomenon
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is also noted in patients with malignancies [49]. In our study, all PPMS subjects showed an
increased percentage of CD4*CD25"* FOXP3™" (Treg) CTLA-4" compared to HCs. Treated
PPMS subjects had more significant increases in the percentages of CD4*CD25* FOXP3*
(Treg) CTLA-4", compared to untreated PPMS subjects. There were no significant differ-
ences in the surface expression of CTLA-4 in CD4*CD25*FOXP3* between all PPMS groups
and HCs. However, our results differ from those of Sellebjerg et al. [50], who found lower
percentages of CD4*CD25Ms8h cells that were CTLA-4 positive in untreated RRMS patients
and increased percentages of the same cells after IFN- (3 treatment. There was no correlation
with the EDSS for lymphocytes and monocyte populations in PPMS subjects (treated and
untreated) in the present study. Nevertheless, our finding of a more significant increase in
the percentage of Treg CTLA-4" cells in ocrelizumab treated PPMS subjects compared to
untreated PPMS subjects corresponds to a slight EDSS decrease (6%) in ocrelizumab treated
PPMS subjects. This suggests that CTLA-4, expressed on Treg cells, engages in trogocytosis
to remove CD80/CD86 molecules from antigen-presenting cells, subsequently increasing
the availability of programmed death ligand 1(PD-L1) on these cells. This process effec-
tively reduces the presence of CD80/CD86, while enhancing free PD-L1 on the surface
of antigen-presenting cells [32]. PD-L1, a molecule that plays a key role in autoantigen
tolerance, can contribute to the suppression of abnormal immune responses in multiple
sclerosis [51].

Untreated PPMS subjects showed increased percentages of CD4*CD25"CTLA-4* and
treated PPMS subjects showed increased expression of CTLA-4 on CD4*CD25" cells. This
could indicate the activity of CD4* activated cells due to an attempt to regulate autoimmune
responses, because CTLA-4, regardless of the cell type it is expressed on, downregulates
CD80 and/or CD86 on APCs by binding to and removing these molecules, thereby inhibit-
ing T cell activation and differentiation [52]. It could also be due to the exhaustion of T cells
due to chronic disease [49]. Previous studies have reported contradictory results regarding
the expression of CTLA-4 in MS patients compared with HCs. While some have reported
that the expression of CTLA-4 is decreased in MS patients compared with HCs [53-55], oth-
ers have found no significant difference [56-58], while Kosmaczewska et al. [59] reported
an increased median percentage of freshly isolated peripheral blood CD4* CTLA-4" T cells
in MS patients. The reason for these discrepancies could be that these studies [53-59] were
mostly performed on various different forms of MS patients (RRMS, SPMS, PPMS, CIS,
etc.), while none focused solely on PPMS subjects.

4.2. Discussion Related to Monocyte Results in PPMS and HC Subjects

Monocytes are often divided into subpopulations (nonclassical CD14*CD16™, in-
termediate CD14**CD16", and classical CD14**CD16 ™) depending on the expression of
CD14 and CD16 [60]. Steinbach et al. [61] suggest that circulating monocytes and neu-
trophils produce inflammatory cytokines, leading to axonal damage [62]. It has been
shown that the same cells, or certain subsets of classical monocytes and neutrophils, can
actually oppose the initial activation and subsequent increase in pathogenic T cells [63].
CD16" monocytes are described as being superior at activating T cells, suggesting that
they are more active inducers of inflammation than the CD14* monocytes [64] and that
they can migrate through the blood—brain barrier more effectively than lymphocytes and
CD14" [65]. The findings of Waschbisch et al. [35] support the idea of the important
role of CD16* monocytes in shifting to sites of inflammation in the steady-state immune
surveillance of the CNS, and they suggest that CD16* monocytes cause the breakdown of
the blood-brain barrier in CNS autoimmune diseases. Haschka et al. [66] reported that
nonclassical monocyte proportions were elevated in RRMS subjects treated with natal-
izumab and suggested that myeloid cell immunophenotyping in MS may help to identify
inactive RRMS earlier and facilitate monitoring of DMT response. Previous research in
patients with systemic lupus and sepsis demonstrated that nonclassical monocytes have
an inflammatory phenotype upon activation by high levels of proinflammatory cytokines
and low levels of anti-inflammatory IL-10 [67]. The results from the present study show
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a significantly decreased percentage of CD40", CD192*, and CD14*CD16"* monocytes
for treated PPMS compared to untreated PPMS. Monocyte CD192 expression enables it to
cross the blood—-CNS barrier [68]. Further, monocyte CD40 binding to soluble CD40 ligands
(CD40L) converts it to an antigen-presenting cell, which leads to T and B cell activation
and CNS inflammation [69]. Therefore, our study finding of the decreased percentage of
CD40* and CD192*CD14*CD16** monocytes probably indicates the beneficial effects of
ocrelizumab therapy, which causes decreased entrance of monocytes into the CNS and de-
creased T and B cell activation compared to untreated PPMS subjects. In the present study,
all PPMS subjects had decreased percentages of classical monocytes positive for CD192, but
the surface expression of CD192 (MFI), both in untreated and treated PPMS subjects, was
increased. The original studies of anti-CD20 antibodies in patients with multiple sclerosis
assumed that depletion of CD20-expressing B cells may reduce elevated cerebrospinal fluid
immunoglobulins [70]. Furthermore, small subsets of CD4" and CD8* T cells that also
express CD20 can be depleted with anti-CD20 [71,72], indicating that anti-CD20 treatment
directly removes pathogenic T CD20*. The presence of abnormally proinflammatory B
cells in, which serve as antigen-presenting cells, in untreated MS patients was found to
activate potentially pathogenic T cells and myeloid cells [73]. In addition, CD16* nonclas-
sical and intermediate monocytes can serve as antigen-presenting cells, which activate
cytotoxic CD8* T cells and destroy myelin [74]. Wong et al. [75] found the highest MHC
class I (responsible for antigen presentation) expression in intermediate monocytes, and
Zawada et al. [76] found their highest expression in nonclassical monocytes. Knowing
these pathogenesis steps, we can assume the lower percentages of CD40* and CD192*
nonclassical monocytes in treated patients in our study to be novel markers of the beneficial
effect of anti-CD20 therapy (Figure 5).

—» citotoxic activity (demyelination)

Figure 5. The role of nonclassical monocytes in mediating demyelination.

The CD16" monocyte subpopulations preferentially become migratory dendritic
cells [77]. These CD16* monocyte-derived cells may promote their survival as well as
the survival and differentiation of CD16™ cells derived from classical monocytes. This
means that some nonclassical monocyte subpopulations are superior and direct the destiny
of major classical monocyte subpopulations. Recently, it was shown that the removal
of T and B cells by anti-CD20 therapy alters their interactions in vivo [78]. Considering
that CD40" and CD192" nonclassical monocytes lack the CD20 antigen, their decreased
percentages in ocrelizumab-treated patients are the indirect results of altered T and B
cell interactions.

Tregs express several surface markers and their persistent expression is crucial for
maintaining the suppressive functionality of differentiated Treg cells (FOXP3) and effective
modulation of the immune responses of CTLA-4. Their increased percentages can possibly
contribute to inhibiting the abnormal immune response in PPMS. All PPMS subjects had
significant increases in their percentages of CD4*CD25"FOXP3", with greater significance
levels in untreated PPMS subjects. Untreated PPMS subjects had a significant difference
in CD4*CD25"ighFOXP3* compared to HCs, but treated PPMS subjects did not. This
may prove that ocrelizumab suppresses autoimmune response, which is reflected in lower
numbers of Tregs in ocrelizumab-treated PPMS subjects. Knowing that monocyte CD40
leads to T and B cell activation and CNS inflammation, and that monocyte CD192 enables
monocytes to cross the blood-CNS barrier, decreased percentages of CD14*CD16*" mono-
cytes may indicate a beneficial effect of ocrelizumab therapy. Lastly, our study has several
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limitations to mention. First, it comprises a relatively small number of PPMS subjects who
could be enrolled in the study from the University Hospital of Split. Second, the possible
effects of differences in MS disease duration between ocrelizumab treated and untreated
PPMS subjects were not investigated due to the relatively small sample size.

It is recommended that further studies include PPMS subjects with higher EDSS scores,
control for the duration of the MS disease between ocrelizumab-treated and untreated
PPMS subjects, and balance more appropriately the age of the healthy control subjects. Lon-
gitudinal follow-up is also recommended to gain more insights into the clinical relevance of
the expression of CD40 and CD192 in monocytes and Treg lymphocytes in PPMS subjects.
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