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Abstract: Isothiocyanates (ITCs) belong to a group of natural products that possess a highly re-
active electrophilic −N=C=S functional group. They are stored in plants as precursor molecules,
glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release
ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied
antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear fac-
tor erythroid 2–related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins.
Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive
oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the
common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to
assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and
in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cy-
tokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The
signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator
sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory
actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of
cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper:
paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms;
crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and
disease states.

Keywords: sulforaphane; Nrf2; antioxidant; anti-inflammatory; nuclear factor κB; signalling paradox

1. Overview of Chemistry and Biological Relevance

Sulforaphane is a small-molecular-weight sulphur-containing compound that belongs
to a structural group of natural products called isothiocyanates (ITCs). Other examples
of ITCs include benzyl, phenethyl, and allyl ITCs (Figure 1). The distinguishing feature
of this class of compounds is the highly reactive electrophilic −N=C=S structural moiety,
which undergoes several reactions in biological systems. The structural diversity of isothio-
cyanates in nature is represented by the side-chain R group (R-N=C=S), which can be made
of aralkyls such as benzyl, 2-phenyl and 4-hydroxybenzyl, indoles such as indol-3-methyl
or 4-hydroxyindol-3-ylmethy, or several aliphatic chain derivatives. Plants that produce
ITCs store them in special cellular and subcellular sites in the form of precursor compounds
called glucosinolates.

Structurally, the glucosinolates are thiohydroximates that contain an S-linked β-
glucopyranosyl and O-linked sulphate residues (Figure 2). As it has been said above
for ITCs, structural diversity is based on the nature of the R group of either the alkyl, ar-
alkyl, or indolyl side chains that derive from amino acids (e.g., phenylalanine, tryptophan,
and methionine). Agerbirk and Olsen [1] reported in the year 2012 the existence of around
132 glucosinolates isolated from plants, and this number has been further increased over
the past decade. Glucosinolates and their ITC products are generally considered defensive

Biomedicines 2024, 12, 1169. https://doi.org/10.3390/biomedicines12061169 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12061169
https://doi.org/10.3390/biomedicines12061169
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-6743-2244
https://doi.org/10.3390/biomedicines12061169
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12061169?type=check_update&version=2


Biomedicines 2024, 12, 1169 2 of 49

or protective chemicals against herbivores, insects, and pathogens [2,3]. Upon damage
of the plant tissues, say by herbivores, glucosinolates encounter the enzyme myrosinase
(β-D-thioglucosidase; EC 3.2.1.147), leading to their breakdown into various products
such as nitriles, thiocyanates, and isothiocyanates, with the latter being the most stable.
Other products known to derive from hydrolysis by the enzyme include epithionitriles,
hydroxynitriles, oxazolidine-2-thiones, and indoles. Thus, the key to ITC production is
that the relevant enzyme (myrosinase) and substrates (glucosinolates) are stored in plants
in separate cellular compartments [4], and the hydrolysis reaction is only initiated upon
cellular damage. The enzyme cleaves the thio-linked glucose from glucosinolates to form
an unstable intermediate, thiohydroximate-O-sulphonate. The final product depends on
a variety of factors, including the immediate pH, temperature, specifier proteins, and
ferrous ions [5–7]. For example, a neutral or alkaline pH can spontaneously lead to ITC
formation. As shown by Williams et al. [8] on myrosinase activity in Lepidium sativum
and Nasturtium officinale seeds, a pH of less than 4 along with ferrous ions (Fe2+) and the
epithiospecifier protein favour nitrile formation. Further variations in the degradation
products also depend on the nature of the side chain.
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Figure 1. Examples of some common isothiocyanates from plant sources.

Glucosinolate- or ITC-producing plants mostly belong to plants of the order Brassicales,
which include families such as the Brassicaceae, the Capparaceae, and the Caricaceae. The
Brassicaceae family, which is also called the family of cruciferous vegetables, has around
346 accepted genera and over 3000 species, including cultivated crops such as broccoli,
cabbages, Brussel sprouts, cauliflowers, mustard seeds, etc. Sulforaphane is among the best
investigated ITCs, and, biogenically, it is derived from the glucosinolate glucoraphanin
(Figure 2). Broccoli is the best-known source of sulforaphane and the C3-C6 aliphatic chain,
as the R group is commonly found in Brassica species. Allyl ITC is the main component
behind the pungency of wasabi (Japanese horseradish; Wasabia japonica) and black mustard
(Brassica nigra) seeds and is formed from its corresponding glucosinolate, sinigrin [9–11].
In contrast, white mustard (Sinapis alba L.) seeds have p-hydroxybenzyl ITC as a main
component for their flavour and aroma. This is generated via a myrosinase action on the
corresponding glucosinolate, sinalbin [12]. 4-(Methylthio)-3-butenyl ITC is a component of
Japanese white radish (Raphanus sativus), while 6-methylsufinylhexyl ITC has been isolated
in a good amount from wasabi [13]. Benzyl ITC has been isolated from papaya (Carica
papaya Linn.) peel, pulp, and seeds [14] and phenethyl ITC from watercress (Nasturtium
officinale) [15]. The sugar derivatives of hydroxybenzyl ITC are represented by moringin,
isolated from Moringa oleifera and M. stenopetala [16].
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mostly isothiocyanate. In the case of sulforaphane, the glucosinolate precursor is glucoraphanin.

The bioactivity and electrophilic nature of ITCs are attributes of the R−N=C=S struc-
tural skeleton, which undergoes several reactions in biological systems. The electron-
deficient central carbon atom in such structure is susceptible to nucleophilic attacks by
the electron-rich centre. For example, thiol groups such as glutathione can be added to
ITC molecules. The implication of this reaction is huge and includes the generation of
reactive oxygen species (ROS) by depleting glutathione, through a direct covalent reaction
with the glutathione S-transferase (GST) of other thiol-containing biological molecules
such as proteins and enzymes. Hence, sulforaphane is among the best-known compounds
generating the oxidative stress-based induction of apoptosis in cancer cells. In fact, by
far the most studied biological activity of isothiocyanates is in the cancer field, where sul-
foraphane from broccoli, among others, has been shown to prevent carcinogenesis [17–19]
and induce apoptosis in cancer cells [20–22]. For example, sulforaphane suppresses the
incidence of tumours in mice exposed to UV light [23]. Sulforaphane also suppresses
cancer cell migration and invasion [24], prostate carcinogenesis and pulmonary metasta-
sis [25], and carcinogenicity induced by cadmium [26]. The immunomodulatory effect
of sulforaphane in cancer is also well established and includes boosting the activity of
immune cells such as natural killer cells against cancer [25]. It augments natural killer cell-
and antibody-dependent cellular cytotoxicity by enhancing the production of cytokines
IL-2 and IFN-γ [27]. In B16F-10 melanoma-induced metastasis-bearing C57BL/6 mice,
sulforaphane has been shown to enhance natural killer cell activity while also enhancing
antibody-dependent cellular cytotoxicity in metastatic tumour-bearing animals [28]. It is
also worth noting that electrophiles and oxidants are detoxified in the body by phase II
metabolic enzymes such as GST and NAD(P)H:quinone oxidoreductase 1 (NQO1). Inter-
estingly, the antioxidant and antimutagenic effects of ITCs, including sulforaphane, are
associated with the induction of GST and NQO1 [29,30]. Not surprisingly, isothiocyanates
have numerous other biological activities, such as antifungal and bactericidal [31–34] as
well as antiparasitic [35] activities. In this paper, the anti-inflammatory mechanisms of
sulforaphane are scrutinised by assessing all the publications sourced from the literature
(Web of Science, PubMed, and ScienceDirect) until February 2024.
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2. Anti-Inflammatory Effects In Vivo

Readers should note that the present paper was designed to present a mechanistic
overview of sulforaphane as an anti-inflammatory agent. This was achieved (see below) by
assessing the in vitro studies in which sulforaphane had been shown to target inflamma-
tory cells such as leukocytes, astrocytes, and endothelial, epithelial, and other cell types
(Tables 1–5). With this in mind, it is worth highlighting that the anti-inflammatory effect of
sulforaphane has further been confirmed through in vivo studies. These include experimen-
tal models in rats such as acetaminophen hepatitis [36] and hepatic ischaemia/reperfusion
injury, where the expression of inflammatory mediators (cyclooxygenase-1 (COX-2), tu-
mour necrosis factor-α (TNF- α), interleukin (IL)-6, and monocyte chemoattractant protein-1
(MCP-1)) and reactive oxygen species (ROS) production have been demonstrated to be
inhibited. At the same time, the expression of the oxidative stress regulator transcrip-
tion factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), and its downstream
gene/protein products (NQO1, haeme oxygenase-1 (HO-1), glutathione (GSH), catalase
(CAT), and superoxide dismutase (SOD)) have been shown to be upregulated. Interestingly,
the Nrf-2 inhibitor ML385 has been shown to reverse the observed anti-inflammatory
and antioxidant effect [37]. Other rat models of inflammation in the liver where sul-
foraphane has shown positive results include non-alcoholic fatty liver disease [38] and
sodium valproate-induced acute liver injury [39]. In a rat heart inflammation model, sul-
foraphane ameliorated doxorubicin-induced chronic heart failure [40] and reduced fibrosis
and the scores of post-myocardial infarction associated with an increased HO-1 level [41],
as well as the positive anti-inflammatory score in acrolein-induced cardiomyopathy [42],
the cardiac ischaemia/reperfusion model [43], and cuprizone-induced cardiotoxicity [44].
Ischaemia/reperfusion injuries in rats have been further used to demonstrate the anti-
inflammatory activity of sulforaphane in various organs, including the lungs [45] and
retina [46,47]. Inflammation associated with diabetes in rats has been extensively used in
sulforaphane studies and includes efficacy in diabetic neuropathy [48], a diabetic model of
renal inflammation [49], experimental diabetic peripheral neuropathy in rats [50], and strep-
tozotocin (STZ)-induced diabetic rats [51]. Further research on renal inflammation in rats
has included folic acid-induced acute renal injury [52] and cisplatin-induced nephropathy
where the expression of pro-inflammatory cytokine (TNF-α) and nuclear factor κB (NF-κB)
were suppressed [53]. Other inflammation models in rats for sulforaphane research were
cancer-induced bone pain [54], carrageenan-induced oedema [55], the traumatic haemor-
rhagic shock model [56], chromium-induced lung injury [57], arsenic-induced nephrotoxic-
ity [58], ioversol-induced nephropathy [59], the neuroinflammation and spatial learning
model [60], age-related renal injury in rats [61], anti-nociceptive and anti-inflammatory
effects on a sciatic endometriosis rat model [62], and chronic renal allograft dysfunction [63].

Table 1. Anti-inflammatory effect of sulforaphane via the modulation of leucocyte function.

Cellular Model and Treatment Concentration Key Findings Reference

Neutrophils and PBMCs from
healthy volunteers

140 or 280 µM (note
the high dose used)

Treatment reduces ROS production,
the release of myeloperoxidase from
azurophilic granules, and
inflammatory cytokines (TNF-α and
IL-6) and suppresses phagocytosis.

Wakasugi-Onogi et al. [64]

Alveolar macrophages from
patients with COPD 10 µM

Activation of Nrf2 restored bacteria
recognition and phagocytosis of
clinical isolates of nontypeable
Haemophilus influenza and
Pseudomonas aeruginosa;
Nrf2-dependent effect confirmed by
siRNA.

Harvey et al. [65,66]
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Table 1. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

Alveolar macrophages from
patients with COPD 5 µM

Glutathione-dependent effect
activates Nrf2 to HDAC2 and restores
dexamethasone sensitivity.

Malhotra et al. [67]

Alveolar macrophages from
alcohol-fed rats 5 µM

Treatment reverses the decrease in
cellular RAGE expression and
phagocytosis power—effect similar
with a glutathione supplement.

Staitieh et al. [68]

Alveolar macrophages from HIV-1
transgenic rats; rat macrophage cell
line (NR8383 cells) treated with the
HIV-related proteins gp120 or Tat;
human monocyte (from peripheral
blood)-derived macrophages
infected with HIV-1

5 µM

Treatment reverses the decrease in
protein expression of Nrf2, NQO1,
and GCLC and improves their
phagocytic function (confirmed by
siRNA to Nrf2).

Staitieh et al. [69]

Porcine pulmonary alveolar
macrophages stimulated by LPS 5 µM

Treatment suppresses TRAM, TRIF,
RIPK1, TRAF3, TNF-α, IL-1β and
IFN-β, and DNMT3a expression.
Effect mediated via the suppression
of CD14 activation.

Yang et al. [70]

LPS-stimulated peritoneal
macrophage from Nrf2 (+/+) and
Nrf2 (−/−) mice

5, 10, or 20 µM

Treatment suppresses induced mRNA
expression, protein expression, and
production of TNF-α, IL-1β, COX-2,
and iNOS and HO-1 expression in
Nrf2 (+/+) but not in Nrf2
(−/−) macrophages.

Lin et al. [71]

LPS-simulated murine bone
marrow-derived macrophages 5 or 10 µM

Treatment diminishes M1 marker
expression (IL-1β, IL-6, TNF-α, iNOS,
NO, and ROS).

Bahiraii et al. [72]

LPS plus IFN-γ-stimulated bone
marrow-derived macrophage
from mice

10 µM

Treatment decreases the levels of
IL-1β, TNF-α, and IL-6, induces
M1-to-M2 phenotype polarisation
(cell marker analysis), and promotes
STAT3 activation and the production
of IL-10.

Sun et al. [73]

Bone marrow-derived dendritic
cells co-cultured with CD4+ T-cells
isolated from the spleen and lymph
nodes of mice activated by
anti-CD3ε and anti-CD28 Abs
stimulated by LPS

0.1 µM

Treatment inhibits TLR4-induced
IL-12 and IL-23 production,
suppresses Th1 and Th17
development of T-cells, increases
HO-1 expression, and inhibits NF-κB
p65 activity.

Geisel et al. [74]

LPS-stimulated PBMC and adipose
tissue macrophages 40 µM Treatment reduces TNF-α, IL-1β, and

inflammasome gene expression. Williams et al. [75]

Human monocyte-derived
dendritic cells 10 µM

Treatment reduces the expression of
cell-surface markers (CD80, CD83,
CD86, HLA-DR, and PD-L1) and Th2
proliferative response, with a
decrease in the IL-9 and IL-13 levels,
and increases IL-10 levels.

Fernandez-Prades et al.
[76]
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Table 1. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

LPS-stimulated human PBMC- or
THP-1-derived macrophages 25 µM

Treatment reduces the expression
levels of M1 marker genes,
upregulates the M2 marker gene
MRC1, decreases the intracellular S.
aureus load while increasing the
intracellular survival of E. coli in
THP-1 but not in PBMC, and
suppresses IL-1β, IL-6, and TNF-α
gene expression.

Ali et al. [77]

Human peripheral blood
mononuclear cells stimulated by
acrolein

1, 5, or 10 µM
Treatment suppresses ROS generation
by upregulating Nrf-2 expression and
suppresses COX-2 and PGE2 levels.

Qin et al. [78]

Human peripheral blood
mononuclear cells stimulated with
an anti-CD3 monoclonal antibody

1, 5, or 10 µM Treatment inhibits the production of
IL-6, TNF-α, and IL-17. Moon et al. [79]

PBMC stimulated by LPS and viral
(imiquimod) TLRs 10 or 50 µM

Treatment reduces the
pro-inflammatory cytokines (IL-6,
IL-1β, and MCP-1) irrespective of
TLR stimulations and reduces the
proportion of NK cells and monocytes
while increasing the proportion of
DCs, T-cells, and B-cells.

Mazarakis et al. [80]

Monocytes and CD4+ T-cells
infection by HIV (monocyte
(THP89GFP and U1) as well as
T-cell lines (J89GFP and ACH-2))

10 µM

Treatment suppresses the reactivation
of HIV-1 and antagonises the
reactivating agents (TNF-α and
PMA)—an effect dependent on Nrf2
activation and the downregulation of
NF-κB.

Jamal et al. [81]

PBMCs and monocytes from the
blood of children with autism
spectrum disorder

5 µM

Treatment reverses the deficiency in
Nrf2 release, reduces SOD1, GPx1,
and GR, and suppresses NF-κB
signalling, pro-inflammatory (IL-1β,
iNOS, and IL-6) proteins, and mRNA
expression stimulated by LPS.

Nadeem et al. [82]

Monocyte-derived macrophages
from patients with COPD—LPS- or
Pam3CysSerLys4
(Pam3CSK4)-induced inflammation

20 µM

These cells have high levels of TLR2,
TLR4, and downstream MyD88
expression, as well as IL-6 and TNF-α
levels, compared to normal cells.
Their activation further increases
these levels, which was supressed
by sulforaphane.

Zeng et al. [83,84]

THP-1 or PBMC differentiated by
PMA and treated with LPS
and IFNγ

10 µM

Treatment shifts macrophage
polarisation to a direction specific to
the M2 phenotype (CD36 high and
CD197 extremely low); this effect was
associated with the inhibition of
COX-2 expression via the stimulation
of MEK-1/2 and JNK1/2 (partial
inhibition) to reduce COX-2
expression, but not in p38.

Pal et al. [85]
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Table 1. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

Human monocytic THP-1 treated
with mycoplasma-derived
membrane lipoprotein or its
analogue, MALP-2

0.5, 1, or 5 µM

Treatment upregulates Nrf2 and
HO-1 expression and inhibits TNF-α,
IL-1β, and IL-8 secretion and NF-κB
activation; a selective inhibitor (SnPP)
of HO-1 reversed the inhibitory
actions, while a carbon
monoxide-releasing molecule
(CORM-2) caused a significant
decrease in MALP-2-induced
cytokine secretion.

Luo et al. [86]

LPS-stimulated J774.1 or
RAW264.7 macrophage 5 µM

Treatment activates Nrf2, leading
ferroportin 1 (iron exporter)
expression and iron release, which
reverses the effect of LPS on iron
sequestration via the downregulation
of ferroportin 1 expression.

Harada et al. [87]

RAW264.7 cells exposed to hypoxia
(<1% O2) or cobalt chloride (CoCl2) 10 or 20 µM

Treatment suppresses the induced
upregulation of the TLR4 mRNA and
protein by inhibiting PI3K/Akt
activation and the subsequent nuclear
accumulation and transcriptional
activation of HIF-1α (confirmed by
selective inhibitor and siRNA
knockdown studies).

Kim et al. [88]

LPS-stimulated RAW 264.7 cells 2.5 or 5 µM
Treatment suppresses iNOS and
COX-2 expression and inhibits
TNF-α, IL-1β, and IL-6 production.

Ranaweera et al. [89]

LPS/IFN-γ-stimulated
RAW264.7 cells 10 or 20 µM

Treatment suppresses iNOS gene
expression and the production of NO,
IL-6, TNF-α, and IL-1β via activating
the gene expression (mRNA
expression) of Nrf2 and HO-1.

Ruhee et al. [90]

LPS/IFN-γ-stimulated
RAW264.7 cells 10 or 20 µM

Treatment inhibits the induction of
iNOS, TNF-α, and IL-6 and
attenuates miR-146a and
miR-155 levels.

Saleh et al. [91]

LPS-stimulated RAW264.7 cells 5, 10, or 20 µM

Treatment suppresses TNF-α, IL-6,
and iNOS (mRNA and protein) levels,
suppresses miR-146a and miR-155
levels, and attenuates the further
increase in these inflammation
markers by doxorubicin.

Sato et al. [92]

LPS-stimulated RAW264.7 cells 5, 10, or 20 µM

Treatment suppresses NO, iNOS,
COX-2, and IL-1β production,
inhibits ROS level while enhancing
CAT, GPx, Nrf2, NQO1, and HO-1,
and, in combination with
acetaminophen, increases activity.

Vuong et al. [93]

LPS-activated RAW264.7 cells 15 µM

Treatment suppresses COX-2 protein
and mRNA expression, inhibits
NF-κB activation but not IκB
degradation, inhibits C/EBP- and
CREB-binding activity, and inhibits
JNK phosphorylation.

Woo et al. [94]
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Table 1. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

LPS-stimulated RAW 264.7 cells
and human monocytes isolated
from blood

2-20 µM

Treatment suppresses the expression
and release of pro-inflammatory
mediators (IL-1β, IL-6, TNF-α, and
MMP-9), inhibits
antibody-independent phagocytic
and chemotactic migratory abilities,
suppresses NF-κB and MAPK (p38
and JNK) signalling, and interacts
with the cysteines in IKKβ—IκBα.

Reddy et al. [95]

LPS-activated RAW264.7 cells 0.3 or 0.6 µM

Treatment decreases iNOS and COX-2
protein expression levels, induces
HO-1 protein expression, and
suppresses 0IL-1 and TNF-α mRNA
levels, a synergistic effect
with nobiletin.

Guo et al. [96]

LPS-stimulated RAW264.7
macrophages 1 µM

Treatment inhibits NO production,
reduces the expression levels of
pro-inflammatory proteins involving
the NF-κB pathway, as well as STAT3
activation, suppresses inflammatory
proteins such as iNOS, COX-2, IL-6,
and IL-1β, reduces the ROS level in
cells, and increases the expression of
Nrf2 and HO-1, a synergistic effect
with luteolin.

Rakariyatham et al. [97]

RAW264.7 and mouse bone
marrow-derived macrophages
activated with anthrax lethal toxin

50 µM

Treatment inhibits pyroptosis, IL-1β
maturation for the NLRP1b, NLRP3,
NAIP5/NLRC4, and AIM2
inflammasomes, without affecting
caspase-1 enzymatic activity—an
effect not altered by ROS scavengers
(NAC)—and the NLRP3
inflammasome in an
Nrf2-independent manner (Nrf2
(−/−) studies).

Greaney et al. [98]

Human THP-1-derived
macrophages and primary human
PBMC-derived macrophage with a
Staphylococcus aureus infection

10 µM

Treatment suppresses S.
aureus-induced transcriptional
expression of genes coding for the
pro-inflammatory cytokines IL-1β,
IL-6, and TNF-α, as well as for the M1
markers C-CR7, IL-23, and iNOS, and
inhibits p38 and JNK
phosphorylation.

Deramaudt et al. [99]

THP-1 macrophages treated
with Aβ1-42 5 µM

Treatment inhibits the induced
intracellular Ca2+ level, rescues the
decrease in MerTK expression by
blocking NF-κB nuclear translocation,
and decreases IL-1β and TNF-α
production upon Aβ1-42 stimulation.
This effect is abolished by the
siRNA-mediated knockdown
of MerTK.

Jhang et al. [100]
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Table 1. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

Primary human T-cells from
healthy donors or patients with
rheumatoid arthritis

5 or 10 µM

Treatment inhibits the activation of
untransformed human T-cells and
downregulates the expression of the
transcription factor RORγt and
TH17-related cytokines (IL-17A,
IL-17F, and IL-22); this effect is
reversed by exogenously supplied
GSH and by treatment with NAC.

Liang et al. [101]

PMA- and a23187
(PMACI)-stimulated human mast
cells (HMC-1 cells)

0.1, 1, or 10 µM

Treatment inhibits the levels of
inflammatory mediators including
TSLP, TNF-α, IL-1β, IL-6, and IL-8,
suppresses the translocation of
NF-κBp65 into the nucleus and the
phosphorylation of IκBα in the
cytosol, and downregulates the
phosphorylation of MAPK.

Jeon et al. [102]

Abbreviations: see Table 5.

Table 2. Anti-inflammatory effect of sulforaphane via the modulation of astrocytes and glial cells.

Cellular Model and Treatment Concentration Key Findings Reference

LPS-stimulated mouse microglial
BV2 cells 5 µM

Treatment improves mitochondrial
impairment and neuroinflammation (levels
of IL-1β, TNF-α, and NF-κB activity)—an
effect dependent on HO-1 induction
(confirmed by the inhibitor and the sRNA
of Nrf2 studies).

Brasil et al. [103]

EOC-20 microglial cells treated with
Aβ oligomers 5 µM

Treatment reverses the decrease in
phagocytic (fluorescent latex
beads) activity.

Chilakala et al. [104]

LPS-activated N9 murine
microglial cells 5µM

Treatment induces the translocation of Nrf2
to the nucleus and activates the ERK1/2
pathway. The siRNA-mediated knockdown
of Nrf2 partly abolishes the reduction in
ROS, NO, and pro-inflammatory cytokines
(TNF-α, IL-1β, and IL-6), induces the Mox
phenotype, inhibits microglia-mediated
neurotoxicity (SH-SY5Y cells), suppresses
the induced expression of miRNA and
miR-155 expression, and inhibits the NF-κB,
c-Fos, and c-Jun subunits of AP-1 activities.

Eren et al. [105]

Primary astroglial cultures of rat or
mouse cerebral cortices 10 µM

Treatment suppresses ROS and NO
production after glutathione depletion and
increases HO-1 gene expression.

Iizumi et al. [106]

Primary cultures of cortical
astrocytes from the newborn pig
brain treated with TNF-α and an
excitotoxic glutamate

1 µM Treatment inhibits Nox4 activity, reduces
ROS production, and suppresses apoptosis. Liu et al. [107]

Senescent astrocytes isolated from
Wistar newborn rats 1 µM Treatment decreases IL-1α secretion while

increasing IL-10. Maciel-Barón et al. [108]
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Table 2. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

LPS-stimulated primary glial
cell cultures

ITH12674—
melatonin-
sulforaphane
hybrid—10µM

Treatment reduces inflammatory markers,
NO release, and iNOS expression,
suppresses IL-1β and TNFα release, and
increases the Nrf2-dependent enzymes
(GCLM and HO-1). The effect is
Nrf2-dependent, as evidenced by Nrf2
knockout (NRF2−/−), but not totally
abolished. It also prevents NF-κB
translocation and reduces the
overexpression of P-p38 and the binding of
LPS to the TLR4/MD2 dimer.

Michalska et al. [109]

BV2 microglial cells treated with
MGO-derived AGEs 5 or 10 µM

Treatment inhibits the formation of
MGO-AGEs, suppresses the production of
ROS, iNOS, and COX-2 and NLRP3 protein
expression, lowers the expression levels of
the AGE receptor (RAGE), inhibits GSK3β
activation and p38 phosphorylation (but
not ERK and JNK phosphorylation), and
inhibits NF-κB activation/translocation
and cytokine (TNF-α and IL-6) production.

Subedi et al. [110]

LPS-activated primary co-cultures
of rat microglial and astroglial cells 1–15 µM

Treatment suppresses the release of TNF-α,
IL-1β, IL-6, and NO, increases the mRNA
level and the activity of NQO-1, and
increases the cellular glutathione content.

Wierinck et al. [111]

LPS-stimulated primary
cultured microglia 30 µM

Treatment reduces the mRNA levels of
TNF-α and IL-1β while increasing
IL-10—an effect abolished by Akt
inhibition and also conformed in vivo.

Wu et al. [112]

BV-2 microglia stimulated by LPS 5–15 µM
Treatment suppresses TNF-α, IL-1β, IL-6,
and iNOS and blocks MAPKs (p38, JNK)
and NF-κB p65.

Qin et al. [113]

Müller cells (glial cells found in the
human retina) exposed to
25 mM glucose

2.5 µM

Treatment reduces the generation of
pro-inflammatory cytokines (TNF-α, IL-6,
and IL-1β), enhances the activity of
antioxidant enzymes (GSH, SOD, and CAT)
and the nuclear accumulation of Nrf2, and
increases the expression of HO-1
and NQO1.

Li et al. [51]

Primary rat microglia and the
murine microglia cell line BV2
stimulated by LPS

1 µM

Treatment decreases NO production and
inhibits the induced ERK1/2 and JNK
phosphorylation and NF-κB and
AP-1 activation.

Brandenburg, et al. [114]

LPS-activated BV2 microglia cells 5 or 10 µM

Treatment inhibits NO production and
iNOS and COX-2 expression, the
phosphorylation of JNK, ERK, and p38,
NF-κB and AP-1, and the production of
pro-inflammatory cytokines (IL-6, TNF-α,
IL-1β) and PGE2 and increases Nrf2 and
HO-1.

Subedi et al. [115]
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Table 2. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

C6 astrocyte cell line stimulated
with LPS 5 µM

Treatment increases the mRNA levels of
HO1, suppresses NADPH oxidase activity
while enhancing SOD activity and the
glutathione metabolism, suppresses the
mRNA expression of TNF-α, IL-1β, p65
NF-κB, COX-2, and iNOS, increases the
IL-10 level, suppresses TLR (mRNA)
expression and NOX activity, reduces the
ROS levels while increasing the activities of
SOD, CAT, and GPx, GCL activity, GCL
mRNA expression, and the GSH levels—an
effect dependent on HO-1
(inhibitor studies).

Bobermin et al. [116]

HUVECs treated with serum from
patients with severe COVID-19 1 µM

Treatment abolishes increased ROS
generation via enhancing Nrf2 activity and
partially restores the reduced NO level.

Rodrigues et al. [117]

Angiotensin II-mediated
HUVEC injury 2 µM

Treatment inhibits oxidative stress and
mitochondria-related apoptosis—effects
mediated via Nrf2.

Zhang et al. [118]

AGE-stimulated HUVECs and
-i rat aorta 1.6 µM

Treatment suppresses induced MCP-1,
ICAM-1, and VCAM-1 gene expression and
inhibits THP-1 cell adhesion to activated
HUVECs, oxidative stress generation, and
NADPH oxidase activation.

Matsui et al. [119]

LPS-stimulated HUVECs 1, 10, or 20 µM

Treatment prevents induced ICAM-1 and
VCAM-1 expression, inhibits the induced
phosphorylation of STAT3—an effect
similar can be obtained with the STAT3
inhibitor (Stattic) or the STAT3 small
interfering RNA— and suppresses THP-1
monocyte adhesion to activated HUVECs.

Cho et al. [120]

TNF-α-stimulated HUVECs 0.5–8 µM

Treatment suppresses MCP-1, IL-8, soluble
VCAM-1, and soluble E-selectin production
and inhibits NF-κB transcriptional activity,
IκBα degradation, NF-κB p65 nuclear
translocation, and monocyte adhesion to
activated HUVECs.

Nallasamy et al. [121,122]

PMA-, TNF-α-, IL-1β-, and caecal
ligation-stimulated HUVECs 5–30 µM

Treatment inhibits the induced endothelial
cell protein C receptor (EPCR) shedding
and the expression and activity of
PMA-induced TACE and reduces the
induced phosphorylation of p38, ERK 1/2,
and JNK.

Ku et al. [123]

Abbreviations: see Table 5.

Table 3. Anti-inflammatory effect of sulforaphane via the modulation of endothelial cells.

Cellular Model and Treatment Concentration Key Findings Reference

ECV304 endothelial cells stimulated
with TNF-α 2.5–10 µM

Treatment inhibits the expression of
ICAM-1, the production of IL-1β, IL-6, and
IL-8, the phosphorylation of IκB kinase
(IKK) and IκBα, Rho A, ROCK, ERK1/2,
and the plasminogen activator
inhibitor-1 levels.

Ku and Bae [124]
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Table 3. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

HUVEC treated with TNF-α 10–50 µM

Treatment inhibits the production of
thrombin and FXa, thrombin-catalysed
fibrin polymerisation, and platelet
aggregation and suppresses the activity of
thrombin and FXa.

Ku and Bae [124]

LPS-stimulated ECV304 10 µM

Treatment inhibits the translocation of
NF-κB into the nucleus, decreases the
phosphorylation of ERK, JNK, and p38
MAPK—a main effect via p38 MAPK and
JNK (confirmed by gene blockade
studies)—and downregulates the LPS
receptor (TLR-4).

Shan et al. [125]

TNF-α-stimulated HUVECs and
human aortic endothelial cells 10 µM

Treatment inhibits the induced expression
of endothelial lipase expression (mRNA
and protein), the induced phosphorylation
of IκB kinase (IKK) 1/2 and IκB-α, and the
binding of NF-κB to binding sites in the
LIPG gene.

Kivelä et al. [126]

Human saphenous vein endothelial
cell hypoxia-reoxygenation model 5 µM

Treatment increases Nrf2 protein
expression, SOD activity, and the mRNA
levels of SOD1/2 and NQO-1 and
suppresses p65 and p-p65 expression and
the level of TNF-α, IL-1β, IL-6, and MCP-1
mRNA; this effect is dependent on Nrf2
(knockout studies).

Fukunaga et al. [127]

Human brain endothelial cell line
(HBMEC-3) 10 µM

Treatment suppresses E-selectin and
VCAM-1 expression, activates Nrf2 and its
nuclear translocation, and suppresses
ROS production.

Holloway et al. [128]

Human aortic endothelial cells 1–4 µM

Treatment suppresses TNF-α-induced
MCP-1 and VCAM-1 mRNA and protein
levels but not ICAM-1 expression, and it
inhibits the induced activation of p38
MAPK, but not JNK; this effect is not
mediated via Nrf2 expression.

Chen et al. [129]

Abbreviations: see Table 5.

Table 4. Anti-inflammatory effect of sulforaphane via the modulation of epithelial cells.

Cellular Model and Treatment Concentration Key Findings Reference

LPS-stimulated primary goat
mammary epithelial cells 1.25–5 µM

Treatment suppresses TNF-α, IL-1β, and
IL-6 mRNA levels and the protein levels of
COX-2 and iNOS, downregulates the
phosphorylation levels of the IκBα and
NF-κB p65 proteins, suppresses the ROS
level while increasing the levels of the
expression of phase II detoxifying enzymes
including HO-1, NQO1, GCLC, and GCLM,
induces autophagy, and promotes
autophagosome formation.

Shao et al. [130]

Bronchial epithelial IB3-1 cells
exposed to the SARS-CoV-2 spike
protein (S-protein)

5 or 10µM

Treatment inhibits mRNA and protein-level
expression of IL-6 and IL-8; other cytokines
and chemokines inhibited in terms of their
protein level are PDGF, IL-9, G-CSF,
GM-CSF, IFN-γ, MCP-1, and MIP-1β.

Gasparello et al. [131]
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Table 4. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

Human bronchial epithelial cells
exposed to particulate matter PM2.5 1–5 µM

Treatment suppresses ROS production and
MDA level, improves cell viability,
suppresses inflammatory mediator (IL-6
and IL-8) production, and increases the
nuclear levels of Nrf2 and the cytoplasmic
levels of HO-1.

Qin et al. [132]

Human retinal pigment epithelial
(ARPE-19) cells exposed to PM2.5

1 µM

Treatment improves cell viability, and
reduces the ROS level, enhances SOD and
CAT activities, and increases cell survival
factor serum- and glucocorticoid-inducible
kinase 1 (SGK1).

Sim et al. [133]

Human retinal pigment epithelial
(ARPE-19) cells exposed to
blue light

5 µM

Treatment improves cell viability; reduces
oxidative stress, activates Nrf-2, HO-1, and
thioredoxin-1, enhances the GSH
levels—an effect abolished by the Nrf2
inhibitor (ML385)—inhibits ICAM-1
expression also induced by TNF-α,blocks
NF-κB p65 nuclear translocation, and
increases the protein expression of SIRT1
and PGC-1α gene expression.

Yang et al. [134]

LPS-treated Caco-2 cells 0.5, 1 or 5 µM

Treatment increases cell viability and
abolishes apoptosis, reduces the ROS level,
increases antioxidants (SOD, GPx, CAT,
and total antioxidant capacity), suppresses
the level of inflammatory cytokines (IL-1β,
IL-6, IL-8, and TNF-α), and upregulates
phosphorylated AMPK, SIRT1, and
PGC-1α.

Zhang and Wu [135]

Human lung epithelial cells
(BEAS-2B) exposed to cigarette
smoke extract and
particulate matter

10 µM

Treatment suppresses ROS and cytokines
and chemokines production such as IL-6,
IL-8, IL-1β, MCP-1, TNF-α, and CXCL-1; it
also enhances the nuclear transcriptional
activity of Nrf2 as well as the mRNA levels
of downstream genes (NQO1, HO-1, TXN,
and TXNRD and suppresses the
phosphorylation levels of ERK and JNK.

Son et al. [136]

Human bronchial epithelial
(BEAS-2B) cells exposed to diesel
exhaust particles

10µM

Treatment activates (mRNA and genes) the
Nrf2, NQO1, and HO-1 and increases
autophagy marker p62 and LC3B through
an Nrf2-mediated response
(siRNA studies).

Frias et al. [137]

Human sinonasal epithelial cell
derived from patients stimulated by
house dust mite

10 µM
Treatment reverses epithelial cell junction
protein ZO-1 and a decrease in
transepithelial electrical resistance.

London et al. [138]

Primary mouse and tracheal and
human bronchial epithelial cells
sensitised by allergens (house dust
mite (HDM) or Alternaria
alternata (ALT))

10–30 µM

Treatment suppresses IL-33, IL-17E, and
IL-1α levels (also in vivo) and inhibits the
activation of DUOX1, ROS formation, and
EGFR activation.

Danyal et al. [139]
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Table 4. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

Human mammary epithelial
(MCF-10A) cells stimulated by TPA

2.5, 12.5, or
25 µM

Treatment inhibits the expression of COX-2
(protein and mRNA), which was
NF-κB-dependent, inhibits NF-κB (by
modulating the phosphorylation and the
subsequent degradation of IκBα) and IκB
kinase (IKK) activation—effects confirmed
by transfection and specific siRNA studies.
The TPA effect is mediated by ERK1/2
signalling, which is inhibited.

Kim et al. [140]

Retinal pigment epithelial (RPE) 19
cell exposed to H2O2

10µM

Treatment enhances cell viability and gene
(microarray mRNA) expression of NQO1,
sulphiredoxin 1 homolog (SRXN1), GCLM,
the thioredoxin-interacting protein
(TXNIP), CCL2, bradykinin receptor B1,
TXN 1, and transcription factor Nrf2,
upregulates antioxidant enzymes (NQO1;
SRXN1, GCLM, Trx1, and SRXN1), and
enhances the nuclear translocation of Nrf2.

Ye et al. [141]

Human nasal epithelial (HEK293T)
cell exposed to influenza A virus 1 µM

Treatment decreases viral entry and
replication and increases antiviral
mediators/responses—RIG-I, IFN-β, and
MxA—at the baseline, in the absence of
infection. There is an inverse relationship
between Nrf2 expression and viral
entry/replication.

Kesic et al. [142]

BEAS-2B cells exposed to cigarette
smoke extract 5 µM

Treatment enhances the translocation of
Nrf2, increases the Nrf2-dependent gene
expression of NQO1, GCLM, and HO-1,
and inhibits IL-8 and MCP-1 production.

Starrett et al., 2011 [143]

Human airway epithelial
(NCI-H292) cells 10–30 µM

Treatment downregulates MUC5AC
synthesis by inhibiting ROS generation and
augmenting leukocyte proteinase inhibitor
production—an Nrf2-dependent effect
(confirmed via an siRNA study).

Qi et al. [144]

Airway epithelial (BEAS-2B) cells
stimulated by diesel particles 0.3–6.25 µM

Treatment increases phase II enzyme genes
GSTM1 and NQO1, increases GST activity,
and suppresses IL-1β, IL-8, and GM-CSF.

Ritz et al. [145]

LPS-stimulated HepG2 cells 2 µM Treatment suppressed IL-6 and
hepcidin production. Al-Bakheit et al. [146]

Abbreviations: see Table 5.

Table 5. Anti-inflammatory effect of sulforaphane via the modulation of other cell types.

Cellular Model and Treatment Concentration Key Findings Reference

Mouse C2C12 embryonic myoblasts
treated by LPS 1–10 µM

Treatment reduces IL-1β secretion, ROS
production, and the levels of TLR4, NLRP3,
apoptosis-associated speck-like protein,
and Caspase-1.

Wang et al. [147]

C2C12 myotubes in palmitic
acid-induced oxidative stress and
inflammation

5–10 µM

Treatment suppresses IL-6 and TNF-α,
enhances Nrf2)/haem oxygenase-1(HO-1)
pathway protein, and suppresses CX3CL1
and CX3CR1 expression.

Faridvand et al. [148]
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Table 5. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

VSMCs stimulated by TNF-α 5 µM

Treatment inhibits IκBα degradation and
NF-κB p65, ICAM-1 mRNA, andVCAM-1,
p65 (and translocation), and GATA6
expression, and reduces the binding of
GATA6 to the VCAM-1 promoter.

Kwon et al. [149]

Cultured mouse vascular smooth
muscle cell lines stimulated
by TNF-α

8.5–42.6 µM

Treatment inhibits ROS production and the
activation of p38, ERK, and JNK, inhibits
NK-κB, AP-1, IκB kinase activation, the
degradation of IκBα, and the nuclear
translocation of p65 NF-κB, decreases the
c-Jun and c-Fos protein levels, and inhibits
VCAM-1 expression.

Kim et al. [150]

Oxyhaemoglobin-induced
inflammation in rat VSMCs 5 µM

Treatment enhances the activity of the
Nrf2-ARE pathway and suppresses
cytokine (IL-1β, IL-6, and TNF-α) release.

Zhao et al. [151]

Chondrocytes from patients with
knee osteoarthritis stimulated with
IL-1β or TNF-α

5 µM

Treatment inhibits mPGES, COX-2, and
iNOS at the mRNA and protein levels and
proteoglycan and type II collagen
degradation products’ release in explant
cultures and inhibits the production of
PGE2 and NO.

Kim et al. [152]

Primary human articular
chondrocytes, in fibroblast-like
synovial cells and the SW-1353 cell
line stimulated with IL-1

10 µM

Treatment attenuates NF-κB signalling at
least through the inhibition of DNA
binding—cytokine-induced destruction of
bovine nasal cartilage at both the
proteoglycan and collagen breakdown
levels. Nrf2 knockdown reduces HMOX1
expression but not MMP1 expression,
induces the phosphorylation of JNK and
p38 MAPK, and inhibits the transcription
of NF-κB.

Davidson et al. [153]

LPS-treated retinal pigment
epithelial (ARPE-19) cells 5–30 µM Treatment downregulates PWRN2 and

inhibits NF-κB activation. Song et al. [154]

Synoviocytes treated with TNF-α 2.5 µM

Treatment inhibits NF-κB activity and
IL-1β and IL-6 secretion, activates Nrf2,
and induces apoptosis in
TNF-α-activated synoviocytes.

Fragoulis et al. [155]

Human embryonic kidney 293T
(HEK293T) cells transfected
with NOD2

5 or 10 µM

Treatment suppresses ligand-induced
NF-κB activity. Note: NOD2 functions as
an intracellular PRR for
muramyl dipeptide.

Folkard et al. [156]

IL-1β-induced proliferation of
rheumatoid arthritis
synovial fibroblasts

20 µM and
higher

Treatment inhibits cell proliferation and the
induced expression of MMP-1, MMP-3,
and COX-2 mRNA and proteins and
suppresses PGE2 production, the
phosphorylation of ERK-1/2, p-38, and
JNK, and the activation of NF-κB.

Choi et al. [157]

Mouse pancreatic acinar cells 10µM

Treatment increases Nrf2 expression and
Nrf2-regulated redox genes (NQO1, HO-1,
SOD1, and GPx1), suppresses the
cerulein-induced activation of the NLRP3
inflammasome and suppresses NF-κB
activation and modulated
NF-κB-responsive cytokine (TNF-α, IL-1β,
and IL-6) expression (mRNA).

Dong et al. [158]
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Table 5. Cont.

Cellular Model and Treatment Concentration Key Findings Reference

Ex vivo human full-thickness skin
combined with in vitro HaCaT
keratinocytes—UV exposure

5 or 10 µM

Treatment increases Nrf2 activity and
Nrf2-dependent gene expression (GCLM,
HO-1, NQO1) and reverses the reduced
level of CAT, cell death, and
structural damage.

Ernst et al. [159]

HaCaT, human keratinocyte cells
activated by IFN-γ and TNF-α 10 or 20 µM

Treatment inhibits induced NF-κB and
STAT1 activation and suppresses induced
TARC/CCL17 and MDC/CCL22
production through the induction of HO-1
(effect completely abolished by
HO-1 siRNA).

Jeong et al. [160]

Hydrogen peroxide-stimulated
human neuroblastoma
SH-SY5Y cells

5 µM

Treatment reduces the secretion of IL-1β
and TNF-α, as well as the levels of COX-2,
and decreases the activity of NF-κB and the
p65 NF-κB subunit in the cell nucleus—an
effect abolished by the HO-1 inhibitor and
the silencing (siRNA) Nrf2.

de Oliveira et al. [161]

N2a/APPswe cells—cellular model
of AD 1.25 or 2.5 µM

Treatment decreases the levels of Aβ1-40
and Aβ1-42, reduces the level of ROS, IL-1β,
and IL-6, increases SOD, reduces
phosphorylated NF-κBp65 COX-2 (and the
iNOS protein), upregulates the expression
of Nrf2 and its nuclear translocation, and
decreases the DNA demethylation levels of
the Nrf2 promoter.

Zhao et al. [162]

Abbreviations for Tables 1–5: Aβ, amyloid beta; Akt, protein kinase B; AIM2, absent in melanoma 2; AGEs, ad-
vanced glycation end products; AMAP, AMP-activated protein kinase; AP-1, activator protein 1; ARE, antioxidant-
responsive element; CAT, catalase; C/EBP, CCAAT/enhancer-binding proteins; COX-2, cyclooxygenase-2; CCL2,
chemokine (C-C motif) ligand 2; CCR7, C-C motif chemokine receptor7; COPD, chronic obstructive pulmonary
disease; CREB, cyclic AMP (cAMP) response element-binding protein; CXCL-1, chemokine (C-X-C motif) ligand
1; CX3CR1, CX3C motif chemokine receptor 1; DCs, dendritic cells; GCLC, glutamate–cysteine ligase, catalytic
subunit; DNMT3a, DNA (cytosine-5)-methyltransferase 3A; EGFR, epidermal growth factor; ERK, extracellular-
regulated kinases; GATA6, GATA-binding factor 6; GCLM, glutamate–cysteine ligase modifier subunit; GPx,
glutathione peroxidase; GR, glutathione reductase; GM-CSF, GSH, glutathione (reduced form); HDAC2, his-
tone deacetylase 2; GSK3β, glycogen synthase kinase-3β; GST, glutathione transferase; GSTM1, glutathione
S-transferase Mu 1; HIF-1α, hypoxia-inducible factor; HLA-DR, human leukocyte antigen DR AChain; HMOX1,
haeme oxygenase 1 gene; HO-1, haeme oxygenase-1; ICAM-1, intercellular adhesion molecule-1; IκB, inhibitor
of nuclear factor κB; IFN-β/γ, interferon-β/γ; IKK, inhibitor of nuclear factor-κB kinase; IL, iNOS, inducible
nitric oxide synthase; JNK, c-Jun N-terminal kinases; LPS, MALP-2, macrophage-activating lipopeptide-2; MAPK,
mitogen-activated protein kinase; MRK, MAPK kinase; MRC1, mannose receptor C-Type 1; MCP-1, monocyte
chemoattractant protein-1; MEK-1/2; MerTK, Mer tyrosine kinase; miR, microRNA; MIP-1β, macrophage inflamma-
tory protein-1β; MDA, malondialdehyde; MDC/CCL22, macrophage-derived chemokine; MGO, methylglyoxal;
MMP, matrix metalloproteinases; mPGES, microsomal prostaglandin E synthase; MUC5AC, Mucin 5AC; MyD88,
myeloid differentiation factor 88; NAC, N-Acetyl cysteine; NADPH, nicotinamide adenine dinucleotide phos-
phate; NAIP5, NLR family, apoptosis-inhibitory protein 5; NF-κB, nuclear factor-κB; NK cells, natural killer
cells; NLRC4, NLR family caspase recruitment domain-containing protein 4; NLRP3, nucleotide-binding domain
leucine-rich repeat-containing family, pyrin domain-containing 3; Nox4, NADPH oxidase 4; NO, nitric oxide;
NOD2, nucleotide-binding oligomerisation domain-containing protein 2; NQO1, NADPH-quinone oxidoreduc-
tase 1; Nrf2, nuclear factor erythroid 2-related factor 2; PBMCs, PD-L1, programmed death-ligand 1; PDGF,
platelet-derived growth factor; PGC-1α, peroxisome proliferator-activated receptor-gamma coactivator-1α; PGE2,
prostaglandin E2; PI3K, phosphoinositide 3-kinases; PM2.5; particulate matter 2.5 µM; PMA, phorbol-12-myristate-
13-acetate; PRR, pattern recognition receptor; RAGE, receptor for advanced glycation end products; PWRN2,
Prader–Willi region nonprotein-coding RNA 2; RORγt, retinoic acid-related orphan receptor gamma-t; ROS,
reactive oxygen species; siRNA, small interfering RNA; SOD, superoxide dismutase; STAT1/3, signal transducer and
activator of transcription 1/3; TACE, tumour necrosis factor-α-converting enzyme; TARC/CCL17, thymus- and
activation-regulated chemokine; TLR, toll-like receptor; TNF-α, tumour necrosis factor-α; TRAF3, tumour necrosis
factor receptor-associated factor 3; TRAM, TRIF-related adaptor molecule; TRIF, TIR domain-containing adaptor
molecule; TSLP, thymic stromal lymphopoietin; TXN, thioredoxin; TXNRD, thioredoxin reductase; VCAM-1,
vascular cell adhesion molecular-1; VSMCs, vascular smooth muscle cells; and ZO-1, zonula occludens-1.
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Most research papers on the anti-inflammatory effect of sulforaphane in vivo are based
on studies using mice experimental models. These include the classic anti-inflammatory
in vivo model using carrageenan-induced oedema neuropathic pain [163], acrylamide-
induced neuropathy [164], collagen-induced arthritis [79,165], osteoarthritis [166], adjuvant-
induced chronic pain [167,168], chronic constriction injury-induced neuropathic pain [169],
and acute gout [98] models. Other experimental models of inflammation employing mice
are the demonstration of the anti-inflammatory potential of sulforaphane in lung diseases
using cigarette smoke-induced alveolar damage [66], cigarette smoke-exposed asthmatic
mice [170], bleomycin-induced pulmonary fibrosis [171], ovalbumin (OVA)-sensitised
and cigarette smoke-induced airway inflammation [172], chlorine-induced airway hyper-
responsiveness [173], haemorrhagic shock-induced lung injury [174], OVA-induced chronic
allergic airways [175], lipopolysaccharide (LPS)-induced acute lung injury [176], respiratory
syncytial virus (RSV)-induced bronchopulmonary inflammation [177], and the pulmonary
arterial hypertension model [178].

Mice models of gut inflammation have been effectively used to show the anti-inflammatory
effect of sulforaphane, such as those using dextran sodium sulphate (DSS)-induced gut in-
flammation [73,179], DSS-induced ulcerative colitis [118,180,181], high-fat high-cholesterol
diet-induced gut inflammation [182], 5-fluorouracil-induced intestinal injury [183], necro-
tizing enterocolitis [184], gut inflammation associated with bladder cancer [185], the
genetic model of intestinal polyps [186], and the genetic model of gastrointestinal dys-
function [187]. Anti-inflammatory effects in the liver of mice have been shown for sul-
foraphane using experimental models including the following: carbon tetrachloride-
induced acute liver injury [188]; high-fat diet-induced non-alcoholic fatty hepatic steatosis
and liver disease [189–191]; high-fat diet-induced [192,193]; LPS-induced acute liver in-
jury [128,194–196]; hepatic ischaemia/reperfusion injury [197]; sickle cell disease model [198];
and cadmium-induced hepatotoxicity [199]. Inflammation associated with diabetes in mice
has been effectively ameliorated by sulforaphane, as shown in high-fat diet- or STZ-induced
diabetes and cardiomyopathy [200,201], db/db diabetic mice cardiomyopathy [202], diabetic
cardiomyopathy in both type 1 and type 2 diabetes [203,204], high-fat diet-induced dia-
betes [205,206], ob/ob diabetic mice [90], obesity- and type 2 diabetes-associated pain [207],
STZ-induced diabetes [208,209], STZ-induced diabetic nephropathy [210], type 1 diabetic
OVE26 mice [211], and diabetes-induced vascular inflammation and pathogenesis [212].
Using a high-fat diet model, the anti-inflammatory effects of sulforaphane in mice have been
further shown in [213,214] as well as in American diet-induced inflammation [215], TNF-α-
induced vascular inflammation [121,122], and high-fat diet-induced obesity [196] models.

Infection models in mice have been used to show the anti-inflammatory effect of
sulforaphane as demonstrated using helicobacter pylori infection [216], SARS-CoV-2 in-
fection [217], LP-BM5 leukaemia retrovirus infection [218], and microcystin-LR (MC-LR)-
induced inflammation [219]. These effects have been further validated using experimen-
tal autoimmune encephalomyelitis [220], autoimmune encephalomyelitis [74,221], LPS-
induced acute inflammation [222], necrotizing enterocolitis [223], respiratory syncytial virus
(RSV)-induced bronchopulmonary inflammation, epithelial injury [177], and LPS-induced
endotoxemia [224] models.

Other anti-inflammatory effects of sulforaphane in mice have been based on ultravio-
let B (UVB)-induced skin inflammation [225,226], the genetic model of muscular dystro-
phy [227,228], ischemia/reperfusion-induced muscular injury [229], ischaemia/reperfusion
injury and cardiac allograft vasculopathy [127], vascular remodelling in hypoxic pulmonary
hypertension [230], aged mice [231], angiotensin II-induced renal inflammation and in-
jury [232], ischaemia/reperfusion injury [233], hypoxia-induced cardiomyopathy [234], the
genetic model of kidney disease [235], retinitis Pigmentosa [236], atopic dermatitis [237],
UV radiation-induced inflammation [238], acute exhaustive exercise-induced organ damage
and inflammation [239], radiation-induced skin damage [240], oxazolone-induced chronic
itch model [241], and acute pancreatitis in mouse [158] experimental models.
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In the CNS domain, experimental models in mice for the anti-inflammatory effect of
sulforaphane have included spinal cord injury [242,243], depression-like behaviour [244],
LPS-induced depression-like behaviours [245–247], LPS-induced spatial learning and
memory dysfunction [248], the transgenic model of Alzheimer’s disease [249], the ge-
netic model of autism [250], contusion spinal cord injury [251], MG132-mediated spatial
memory loss [252], LPS-induced depressive disorder [253], and the platelet aggregation
and thrombus-associated cerebral microcirculation [254]. Some experimental models em-
ploying rabbits have also been used to demonstrate the anti-inflammatory effect of sul-
foraphane [255–258].

3. Anti-inflammatory Studies In Vitro

The effects of sulforaphane as an anti-inflammatory agent in vitro have been shown
in cellular models using leucocytes (Table 1), astrocytes and glial (Table 2), endothelial
(Table 3), epithelial (Table 4), and many other (Table 5) cell types. These effects are attributed
to the suppression of the expression or activity of the various inflammatory mediators
described below.

3.1. Anti-inflammatory Effect of Sulforaphane through the Suppression of Pro-Inflammatory
Cytokines and Chemokine Production

Pro-inflammatory cytokines such as IL-1β, TNF-α, IL-6, and IL-8 play a pivotal role
in the pathogenesis of various chronic inflammatory diseases. Numerous therapeutic ap-
proaches using antibodies target these cytokines or their receptors. Good examples of these
agents are marketed drugs for chronic inflammatory diseases, including the following:
adalimumab, infliximab, and certolizumab against TNF-α; rilonacept, anakinra (receptor an-
tagonist), and canakinumab against IL-1; and tocilizumab and siltuximab against IL-6. On
the other hand, small-molecular-weight inhibitors target the signalling pathways of these
cytokines’ production, such as those induced by LPS, pro-inflammatory cytokines, ROS, or
other inducers. The expression of such cytokines by a variety of agents has been shown to
be suppressed by sulforaphane in alveolar macrophages [70], peritoneal macrophages [72],
adipose tissue macrophages [75], bone marrow-derived macrophages [73], THP-1 or pe-
ripheral blood mononuclear cell (PBMC)-derived macrophages [75,77,80–82,86,99,100],
murine RAW264.7 cells [89–91,93,95,97], dendritic cells [74,76], and T-cells [101]. Similarly,
sulforaphane has been shown to suppress the expression of pro-inflammatory cytokines
in microglial BV2 cells [103,110,113,115], N9 murine microglial cells [105], senescent as-
trocytes [108], primary co-cultures of rat microglial and astroglial cells [111], and Müller
cells of the retina [51]. Other inflammation models in vitro where cytokine production has
been suppressed by sulforaphane include mast cells [102], endothelial cells such as human
umbilical vein endothelial cells (HUVECs) [121,122], saphenous vein endothelial cell [127],
and transformed endothelial cells such as ECV304 [124]. Similarly, the upregulation of
cytokines’ production in epithelial cells has been shown to be suppressed by sulforaphane,
including in Caco-2 [135], human lung epithelial cells (BEAS-2B) [136,143,145], and pri-
mary mouse tracheal and human bronchial epithelial cells [139]. Several other cell types
under inflammatory conditions have also responded to sulforaphane to downregulate
the expression of pro-inflammatory cytokines [147,148,151,155]. On the other hand, the
expression of anti-inflammatory cytokines such as IL-10 is promoted by sulforaphane, as
shown in senescent astrocytes [108], the LPS-activated C6 astrocyte cell line [116], and
human monocyte-derived dendritic cells [76].

Moreover, in macrophages, the pro-inflammatory M1 marker’s morphology and genes
(associated with pro-inflammatory cytokine production) are suppressed by sulforaphane,
while it promotes the M2 marker genes associated with the anti-inflammatory mecha-
nism [73,77,85,99]. In addition to IL-8, other chemokines’ expression, especially in the
lung inflammation model, has been shown to be suppressed by sulforaphane. For ex-
ample, the induced expression of MCP-1 [131,143] and MCP-1 and chemokine (C-X-C
motif) ligand 1 (CXCL-1) [136] in airway epithelial cells is inhibited. Also, the expression of
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MCP-1 in HUVECs has been shown to be reduced by sulforaphane [119,121,122]. Hence,
while multiple mechanisms may be implicated (see the following sections), the major anti-
inflammatory mechanism of sulforaphane is attributed to the inhibition of the expression
of pro-inflammatory cytokines and chemokines.

3.2. Anti-Inflammatory Effect of Sulforaphane through the Inhibition of the Expression of
Adhesion Molecules

The major impact of pro-inflammatory cytokines such as IL-1 and TNF-α lies in their
ability not only to induce the expression of other inflammatory cytokines or mediators
but also the expression of key cell-surface adhesion molecules, primarily on endothelial
and leucocyte cell surfaces. Over the last four decades, numerous research studies have
shown that the expression levels of intracellular adhesion molecule 1 (ICAM-1), vascular
cell adhesion molecule 1 (VCAM-1), and E-selectin on endothelial cell surfaces provide a
good indication of the anti-inflammatory potential of therapeutic agents. In this connection,
the endothelial cell surface expression of adhesion molecules such as ICAM-1 [124], VCAM-
1 [121,122,129], ICAM-1 and VCAM-1 [119,120], and E-selectin and VCAM-1 [128] has been
shown to be inhibited by sulforaphane. This is also evident in other cell types, including
retinal pigment epithelial cells, where the suppression of the expression of ICAM-1 [134]
and, in vascular smooth muscle cells (VSMCs), ICAM and VCAM [149] or VCAM-1 [150]
has been observed. Similarly, the induced expression of ICAM-1 in epithelial cells by
a variety of inflammatory mediators has been shown to be ameliorated [120–122,134].
Consequently, monocyte adhesion to activated endothelial cells has also been shown to
be inhibited by sulforaphane [120–122]. Hence, the numerous in vivo anti-inflammatory
effects of sulforaphane described in Section 2 are an attribute of both the suppression of the
level of expression of pro-inflammatory cytokines as well as their effect on inflammatory
cascades resulting from the reduction in adhesion molecules’ expression.

3.3. Anti-inflammatory Effect of Sulforaphane through the Suppression of COX-2 Expression

Classical anti-inflammatory compounds such as aspirin, indomethacin, ibuprofen, and
diclofenac as well as the newer generation of selective COX-2 inhibitors (e.g., celecoxib)
target the enzymatic activity of COX-2, while others, including steroidal anti-inflammatory
agents, suppress the induced expression of COX-2. In the latter case, the expression
of COX-2 has been shown to be suppressed by sulforaphane in activated peritoneal
macrophages [72], PBMC [78], THP1 or PBMC [85], RAW264.7 cells [89,93,94,96,97], BV2
microglial cells [110,115], and mammary epithelial cells [130,140]. Other cells in which the
expression of COX-2 has been shown to be suppressed by sulforaphane under inflamma-
tory conditions include vascular smooth muscle cell lines [150], neuroblastoma SH-SY5Y
cells [161], and rheumatoid arthritis synovial fibroblasts [157]. Hence, some of the anti-
inflammatory effect of sulforaphane can be attributed to a reduction in expression of the
key enzyme COX-2, thereby inhibiting the production of pro-inflammatory prostaglandins.
Unlike COX-1, which is constitutively expressed and involved in normal physiological func-
tions such as gastrointestinal tract (GIT) protection, targeting the inflammation-mediated
or -induced expression of COX-2 by therapeutic agents avoids the general side effect of
non-selective COX inhibitors.

3.4. Anti-inflammatory Effect of Sulforaphane through the Inhibition of iNOS Expression

Like COX-2, inducible nitric oxide synthase (iNOS) is an enzyme isoform associated
with the inflammation-induced expression of inflammatory mediators, leading to nitric ox-
ide (NO) overproduction. Inhibitors of iNOS have, thus, been sought after to treat inflamma-
tory diseases [259,260]. The pro-inflammatory mediator (e.g., LPS and cytokines)-induced
expression of iNOS has been shown to be suppressed by sulforaphane, such as in peri-
toneal macrophages [71], bone marrow-derived macrophages [72], stimulated RAW264.7
cells [89–93,96,97], PMBC-derived macrophages [78,99], BV2 microglial cells [110], astro-
cytes [116], mammary epithelial cells [130], neuroblastoma SH-SY5Y cells [161], C2C12
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myoblasts [147], and vascular smooth muscle cells (VSMCs) [150]. With Macrophages
being known to be factories of the NO which contributes to both oxidative stress and
inflammation, some of the observed effects of sulforaphane are likely to be attributed to the
inhibition of inflammation-associated iNOS expression.

3.5. Anti-Inflammatory Effect of Sulforaphane through the Inhibition of Inflammation-Associated
Oxidative Stress

It is also worth noting that sulforaphane is widely known for its antioxidant effect
primarily via the activation of the transcription factor Nrf2 (Tables 1–5). Induced ROS
production in various cellular models has been shown to be suppressed by sulforaphane,
including in neutrophiles [64], murine bone marrow-derived macrophages [72], PBMC [78],
RAW264.7 cells [88,93], human lung epithelial cells (BEAS-2B) [136], N9 murine microglial
cells [105], primary astroglial rat cultures or mouse cerebral cortices [106], primary cul-
tures of cortical astrocytes from newborn pig brains [107], BV2 microglial cells [110], HU-
VECs [117], human brain endothelial cell [128], primary cultures of cerebral microvascular
endothelial cells [107], mammary epithelial cells [130], airway epithelial [132,144], retinal
pigment epithelial (ARPE-19) cells [133], Caco-2 cells [135], human lung epithelial cells
(BEAS-2B) [136], primary mouse and tracheal and human bronchial epithelial cells [139],
and human airway epithelial (NCI-H292) cells [144]. Readers should bear in mind that
these are selective examples of sulforaphane’s effect on the amelioration of ROS production,
specifically associated with inflammation experimental models. As described in Section 4,
this antioxidant activity associated with inflammation is coupled with the induction of
antioxidant defences through the Nrf2 signalling pathway (Tables 1–5).

4. Mechanistic Overview of the Anti-Inflammatory Effect of Sulforaphane

Mirroring the in vivo investigations, mechanistic studies on sulforaphane have been
largely performed in vitro using various inflammatory models. The Nrf2-dependent and
Nrf2-independent pathways of the key mechanisms are discussed below.

4.1. Induction of Nrf2

Encoded by the Nfe2l2 gene, Nrf2 is a master regulator of multiple antioxidant enzymes
such as HO-1, NQO1, CAT, SOD, glutathione peroxidase (GPx), GST, therodoxins, and
glutamate–cysteine ligase (GCL). In the latter case, GCL is a heterodimer of the GCL
catalytic subunit (GCLC) and the GCL modifier subunit (GCLM). The target genes regulated
by the Nrf2 pathway are far more than antioxidant enzymes and include detoxification
enzymes, DNA repair enzymes, and molecular chaperone proteins. The activation or
upregulation of the Nrf2 level leads to cytoprotection under stress conditions through
various mechanisms, including the removal of ROS and oxidative stress, as well as anti-
inflammatory and anti-apoptosis mechanisms. On this basis, Nrf2 is considered to be
an evolutionarily conserved defence mechanism for a wide range of living organism
to defend themselves against oxidative damage and xenobiotics [261]. Under normal
physiological conditions, the Nrf2 in the cytoplasm binds to its negative regulator, the
Kelch-like epichlorohydrin-associated protein (KEAP1), to form complexes. KEAP1 is
the recognition site for redox-dependent CULLIN 3 (Cul3)-based (or CUL3–ring-box 1
(Rbx1)-containing) E3 ubiquitin ligase, which degrades Nrf2 (Figure 3)—i.e., KEAP1 acts
as an adaptor protein for ubiquitin ligase, which is responsible for the ubiquitylation and
subsequent degradation of Nrf2 through the proteasome (26s) system [262,263]. This system
is collectively called the CULLIN-RING ubiquitin ligases complex, where CUL3 serves as
a scaffold protein which forms a complex of E3 ligase with Rbx1 to recruit a cognate E2
enzyme. As one would expect, high levels of Nrf2 or Nrf2-target genes are observed in
KEAP1 knockout mice and give these animals resistance to xenobiotics’ toxicity [264]. On
the other hand, Nrf2-deficient mice have been shown to be susceptible to cigarette smoke-
induced emphysema [265], hyperoxic lung injury [266], and pulmonary fibrosis [267]. One
common activation pathway of Nrf2 is oxidative stress, ROS, or electrophiles, which directly
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interreacts with KEAP1 by oxidising or alkylating its cysteine residues, which are required
for Nrf2 binding (Figure 3). This inactivates KEAP1 and removes the negative regulator
of Nrf2 (removal of ubiquitination), leading to Nrf2 stabilisation and translocation into
the nucleus to regulate target genes’ expression [268,269]. Upon entering the nucleus,
Nrf2 heterodimerises with the small musculoaponeurotic fibrosarcoma (sMaf) protein
family, which allows its binding to the antioxidant response element (ARE) sequence in
the promoter regions of various target genes [270]. In addition to KEAP1, various protein
kinases, such as mitogen-activated protein kinases (MAPKs) [271,272], protein kinase C
(PKC) [271,273,274], AMP-activated protein kinase (AMPK) [275–277], PI3K [278,279], and
glycogen synthase kinase-3 β (GSK3β) [280], induce the phosphorylation of Nrf2 and
participate in Nrf2 transcription. The main regulatory mechanism of Nrf2 stability is,
however, maintained through binding with KEAP1 (Figure 3).
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Figure 3. Overview of the Nrf2 activation pathway. Nrf2 is inactivated under normal physiological
condition through binding to KEAP1, leading to its proteasomal degradation. Reactive oxygen
species, oxidative stress, or electrophiles such as sulforaphane can inactivate KEAP1 via interaction
with redox-sensitive cysteine (Cys) residues. This allows the newly formed Nrf2 to be free to
translocate to the nucleus and associate with sMAF to bind with the ARE domain of the DNA, leading
to activation of target genes such as HO-1, NQO-1, CAT, GST, SOD, and GCLC. Abbreviations:
sMAF, small musculoaponeurotic fibrosarcoma; ARE, antioxidant response element; CUL3, cullin-3;
GCLC, glutamate–cysteine ligase catalytic; NQO1, NADPH quinone oxidoreductase enzyme; SOD,
superoxide dismutase; HO-1, haeme oxygenase-1; CAT, catalase; and GST, glutathione S-transferase.
This figure has been generated using Biorender.

The functional adaptation of Nrf2 is based on its seven structural domains, Neh1–7,
which attributes its stability and transcriptional activity to target genes (Figure 4). Notably,
the N-terminal domain (Neh2) is responsible for binding with KEAP1 and, hence, gov-
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erns the stability and ubiquitination of Nrf2. Studies have shown that high-affinity ETGE
(Kd ~ 5 nM)- and low-affinity DLG (Kd ~ 1 µM)-binding motifs exist and coordinate
Nrf2-KEAP1 binding [281–284]. The Neh2 domain contains seven lysine residues, which
are critical substrates in the above-mentioned ubiquitination (binding with ubiquitin)
and KEAP1-dependent Nrf2 degradation [269]. The mechanism of attachment and de-
tachment of the Nrf2-KEAP1 in a model called Hinge and Latch mechanism has been
described [285–287]. The next two domains, Neh4 and Neh5, are involved in interactions
with nuclear co-factors and facilitate transcriptional activation. The synergistic coopera-
tion of Neh4 and Neh5 to recruit a coactivator molecule called CBP (cAMP Responsive
Element-Binding protein (CREB)-binding protein) has been suggested [288]. The activity
of Nrf2 is enhanced by acetylation by CBP [289]. This is followed by the Neh7 domain,
which is involved in repressing Nrf2 transcriptional activity via interaction with retinoic
X receptor α [290]. Readers should note that Nrf2 was originally discovered in 1994 as a
cap’n’collar (CNC) basic-region leucine zipper (bZIP) transcription factor [291]. Through a
basic leucine zipper motif, the Neh1 domain is the site for binding Nrf2 to the ARE sequence
and is involved in the interaction with the E2 ubiquitin-conjugating enzyme to govern
Nrf2 stability and translocation [292]. Hence, the heterodimerisation of Nrf2 with Maf and
DNA binding are functions of the Neh1 domain. KEAP1-independent Nrf2 degradation
(e.g., by glycogen synthase kinase-3β (GSK-3β) is regulated by the Neh6 domain [293].
At the C-terminal, the Neh3 domain is involved in the interaction with a transcription
coactivator called CHD6 (a chromo-ATPase/helicase DNA-binding protein) in the nucleus.
Hence, three domains—Neh3, Neh4, and Neh5—are involved in the interaction with the
coactivators for transactivation by Nrf2. The structural overview of both Nrf2 and KEAP1
is presented in Figure 4, and their relevance to sulforaphane bioactivity is discussed below.

The cysteine sulfhydryl groups of KEAP1 are the redox sensors regulating Nrf2’s
transcriptional activity [294–296]. Under non-stressful or normal physiological conditions,
the level of Nrf2 is kept low through constant degradation in the cytoplasm. The alteration
in the sulfhydryl group of KEAP1 cysteines and the subsequent loss of E3 ligase activity
are what that allows the newly synthesised and available Nrf2 to translocate to the nucleus
(Figure 3). KEAP1 itself possesses several structural and functional domains (Figure 4),
which are not detailed herein. Of note are the domains for the homodimerisation of the
KEAP1 broad complex/tramtrack/bric-a-brac (BTB) domain, which binds CUL3 and is
involved in KEAP1 homodimerisation [297]. The interaction of KEAP1 with the Neh2
domain of Nrf2 is a function of the so-called Kelch/DGR (double glycine repeat) domain,
while the central intervening region (IVR) of KEAP1, which is rich in cysteine residues,
controls KEAP1 activity. The DGR and carboxyl-terminal region (CTR) are also called the
DC domain. From a functional point of view, forked-stem dimer structures with two large
spheres enclosing the intervening double glycine repeat and C-terminal domains have been
described by Ogura et al. [298].

The therapeutic implication of Nrf2 in the treatment of inflammatory diseases has
been clinically proven. For example, dimethyl fumarate (DMF) has been effectively used in
the treatment of relapsing-remitting multiple sclerosis [299–301]. The clinical application
of DMF in the treatment of psoriasis has also been described [302]. Another potential
drug at the development stage is bardoxolone (CDDO-Me), an oleanane-type triterpene
acting as an Nrf2 inducer, which has shown promise in the treatment of diabetic nephropa-
thy [303]. Overall, the activation of Nrf2 has been shown to reduce the pathological score
of many diseases such as chronic obstructive pulmonary disease (COPD) [304] and sickle
cell disease [305], among others. In this context, different therapeutic agents target the
various cysteine residues located in KEAP1. Of these, sulforaphane is among the most
extensively studied compounds acting as Nrf2 activators both in vitro and in vivo. It
targets Cys151 (Figure 3) at the BTB domain of KEAP1 and blocks the KEAP1-CUL3 in-
teraction, thereby reducing Nrf2 ubiquitination [306]. Diethyl maleate (DEM), DMF, and
tert-butylhydroquinone are other examples of drugs acting in the same way as sulforaphane
by preferentially targeting Cys151 [307]. The cyanoenone class of Nrf2 activators has also
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been shown to be targeting Cys151 in KEAP1, irrespective of their molecular size [308].
Andrographolide has also been shown to partially inhibit the interaction of KEAP1 with
CUL3 by targeting Cys151 in KEAP1 [309], while 15-deoxy-∆12,14-prostaglandin J2 (15d-
PGJ2) is one exemplary drug preferentially targeting Cys288, and, in fact, the mutation of
Cys151 does not affect Nrf2 induction by this compound [310]. Other agents such as 9-nitro-
cotadec-9-enoic (OA-NO2) and 4-hydroxynonenal (4-HNE) target Cys151 but also, crucially,
Cys273 and Cys288 [311]. In this regard, out of the twenty-seven cysteine residues known
to occur in the human KEAP1 protein, the three that are most conserved across many living
organisms and that are important targets for drugs are known to be Cys151, Cys273, and
Cys288 [310]. A further group of compounds either targeting Cys288 or Cys226, Cys613,
Cys622, and Cys624 is also known. Hence, drugs targeting cystine sensors of KEAP1
can be classified into several categories based on the cysteine residues they preferentially
target. The readers should also note that not all therapeutic agents of Nrf2 induce work
through the KEAP1 pathway. For example, curcumin has been shown to enhance the Nrf2
pathway by activating p38 MAPK to increase the Nrf2 level and the level of Nrf2-ARE
interaction [312]. A further note on this subject is also that the upregulation of HO-1 activity
and anti-inflammatory effects can be achieved by therapeutic agents independent of the
Nrf2 pathway, as shown for some flavonoids [313].
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Figure 4. Structural domains of Nrf2 and KEAP1. The protein structure of Nrf2 contains seven
domains starting from the amino terminal, Neh2, through Neh4, Neh5, Neh7, Neh6, Neh1, and Neh3,
at the carboxyl terminal’s end. The Neh2 domain contains DLG and ETGE as binding motifs for
KEAP1. The Neh4 and Neh5 domains are known to be involved in NRF2 transactivation. The Neh1
domain has the DNA-binding motif through heterodimerisation with a small musculoaponeurotic
fibrosarcoma (sMAF) protein. KEAP1 has three domains and a region on amino (NTR) and carboxyl
(CTR) terminals. The Bric-à-Brac (BTB) domain is responsible for the homodimerisation of KEAP1
and binds to CUL3, and the intervening region (IVR) is involved in the control of KEAP1 activity,
while the Kelch domain (KELCH) of DGR binds to the ETGE or DLG motif of the Neh2 domain of
NRF2—i.e., one monomer of KEAP1 takes ETGE, while the other binds with DLG. This figure has
been generated using Biorender.
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Overall, numerous studies demonstrating the anti-inflammatory effect of sulforaphane
have been shown to be associated with the induction of Nrf2 (Tables 1–5). In alveolar
macrophages from patients with COPD, the use of siRNA to silence Nrf2 induction com-
pletely abolished the effect of sulforaphane upon recognition and the phagocytosis of clini-
cal isolates of nontypeable Haemophilus influenza (NTHI) and Pseudomonas aeruginosa [65,66].
The induction of TNF-α, IL-1β, and IFN-β production in alveolar macrophages stimulated
by LPS could also be suppressed by sulforaphane in the Nrf2-dependent pathway, as
revealed by studies using Nrf2 (−/−) mice [71]. Along the same line of evidence, the
deletion of KEAP1 in the lungs attenuates acute cigarette smoke-induced oxidative stress
and inflammation [314]. The relevance of the induction of Nrf2 for the anti-inflammatory
effect of sulforaphane in the various experimental models is clearly shown in Tables 1–5.

4.2. Inhibition of NF-κB

NF-κB is a generic name for a family of dimeric proteins as transcription factors
induced by a variety of agents, including pro-inflammatory mediators. These proteins
have subunits, five in mammals RelA (p65), RelB, p50 (from p105 precursor), p52 (p100
precursor), and c-Rel, which make dimers, but the most studied so far and the most
widely expressed in cells is the p50/RelA dimer, NF-κB. All these subunits are known to
have the Rel homology domain (RHD), which is critical for dimerisation, DNA binding,
and the interaction with lκB inhibitors. In addition, RelA (also RelB) have transcription
activation domains (TADs), which were all well characterised in the 1990s in [315] and the
references therein. In unstimulated cells or under normal physiological conditions, the
NF-κB dimers are bound to inhibitory molecules of the IκB family of proteins (inhibitors
of NF-κB), and the activation of NF-κB requires cleavage from IκB by IκB kinase (IKK).
The IKK is an enzyme complex that consists of two kinase subunits, IKKα (IKK1) and
IKKβ (IKK2), and a regulatory subunit IKKγ (NEMO). The key to NF-κB activation is
the phosphorylation of IκB proteins, inhibitory proteins, on specific serines in the N-
terminal, leading to ubiquitination and the subsequent proteasomal degradation (Figure 5).
Removing the inhibitory proteins from the complex releases NF-κB dimers to translocate to
the nucleus and activate target inflammatory genes.

Readers who need to explore the detailed mechanism of the NF-κB activation pathways
may refer to review articles on the subject [316,317]. Herein, a brief overview of NF-
κB activation that is critically relevant to the discussion on the mechanism of action of
sulforaphane is described. NF-κB has a diverse function in the cellular metabolism but
is primarily involved in regulating the immune response following pathogenic or stress
signals, leading to inflammation. In the innate immune response, immune cells such as
macrophages and dendritic cells have receptors for pathogen-associated molecular patterns
(PAMPs) that recognise bacteria and viruses. The toll-like receptor (TLR) family, out of
which TLR4 is the best-known member, is among these receptors for bacterial products
(LPS) that orchestrate the induction of NF-κB. These receptors are collectively called pattern
recognition receptors (PRRs). Cell-mediated immunity consists of T lymphocytes-based
antigen clearance (through the T-cell receptor (TCR)) and B lymphocyte (through the
B-cell receptor) humoral immune responses, which also require NF-κB activation. In
this classic example of immune cells’ activation by bacteria or their products, NF-κB is
activated to initiate the inflammatory response, which includes the expression of pro-
inflammatory cytokines (TNF-α, IL-1, and IL-6), chemokines, adhesion molecules, etc.
This is what is called the “canonical” pathway of inflammation and can also be induced
by pro-inflammatory cytokines such as TNF-α and IL-1, with the NF-κB involved being
RelA- or cRel-containing complexes (Figure 5). Hence, the activation of TNF receptors,
TLRs, T-cell receptors, and interleukin receptors typically leads to the activation of the
canonical pathway of inflammation. Various inflammatory diseases, including rheumatoid
arthritis, inflammatory bowel disease, asthma, and chronic obstructive pulmonary disease,
are products of the exaggerated inflammatory response via the canonical NF-κB pathway.
An “alternative” or “non-canonical” NF-κB activation pathway leading to the activation of
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RelB/p52 complexes can also occur by induction via lymphotoxin β, the B-cell-activating
factor, and the receptor activator of the NF-κB ligand, among others. As indicated above,
IKKα and IKKβ (catalytic units) and IKKγ (regulatory subunit) constitute the classical
canonical NF-κB activation mechanism. IKKβ regulates the activation of the canonical
pathway through the phosphorylation of IκBs and requires the IKKγ subunit, while IKKα

is required for the activation of the alternative pathway (Figure 5). IKK itself is activated in
the canonical pathway via receptor activation through phosphorylation by kinases and,
most notably, the TGFβ-activated kinase 1 (TAK1; also known as MAP3K7), but there are
many others, including RIP1 (receptor-interacting kinase 1) and TBK1 (TANK-binding
kinase) [318]. The phosphorylation of IKKβ is also known to be involved in the processing
of p105 to yield p50 [319]. Hence, the canonical activation of NF-κB is regulated through
phosphorylation by IKKβ for the proteasomal degradation of IκBα, leading to RelA-p50
complexes’ translocation to the nucleus. On the other hand, the non-canonical pathway of
NF-κB activation is the process of releasing RelB-p52 dimers through the phosphorylation
of IκB, and, for this, IKK phosphorylation is a function of the NF-κB-inducing kinase (NIK;
also known as MAP3K14). The link between NIK phosphorylation and the activation
of TNF superfamily receptors (TNFSFRs) such as TNFSFR12A (Fn14, Tweak receptor),
the lymphotoxin β receptor (LTβR), the B-cell-activating factor receptor (BAFF-R), the
receptor activator of NF-κB (RANK), CD40, and CD27 has been established [320,321].
Further details are available from review articles on the subject [316,317]. The regulatory
mechanism of NF-κB in the B-cell survival and maturation, dendritic cell activation, bone
metabolism, and lymphoid organogenesis is known to involve the alternative or non-
canonical pathway [322,323]. In terms of therapeutic intervention, the NF-κB pathway has
been extensively studied in the last few decades as a potential target for anti-inflammatory
compounds. By far, the most known specific target of this for natural products is IKK,
predominantly targeting IKKβ. The diverse function of IKK, however, remains a challenge
for the therapeutic application of these agents and, specifically, for targeting inflammatory
diseases. Research on this field is extensively diverse, and the inhibitory compounds belong
to diverse structural groups, including natural products such as terpenoids, flavonoids, or
polyphenols, among others. Thiol-reactive compounds such as sulforaphane are included
in this group [324].

On the above basis, sulforaphane has been shown to downregulate NF-κB activity in
the following cell types under a variety of inflammatory conditions: bone marrow-derived
dendritic cells [74]; T-cell lines [81]; PBMCs [82]; THP-1 [86,100]; RAW264.7 cells [94,95,97];
human mast cells [102]; mouse microglial BV2 cells [103,113,114]; N9 murine microglial
cells [105]; primary rat microglia [114]; the C6 astrocyte cell line [116]; neuroblastoma
SH-SY5Y cells [161]; N2a/APPswe cells [162]; HUVECs [121,122,126]; ECV304 [124,125];
human saphenous vein endothelial cells [127]; primary goat mammary epithelial cells [130];
human retinal pigment epithelial [134]; human mammary epithelial [140]; VSMCs [149,150];
primary human articular chondrocytes [153]; retinal pigment epithelial [154]; synovio-
cytes [155]; human embryonic kidney 293T (HEK293T) cells [156]; and mouse pancreatic
acinar cells [158].

Mechanistically, sulforaphane, by virtue of forming dithiocarbamate through a reac-
tion with thiol groups, can directly interact with DNA binding and the transactivation of
NF-κB [325]. It has also been shown to suppress TNF-α-induced IκBα phosphorylation and
IκBα degradation [326]. In TNF-α-stimulated HUVECs and human aortic endothelial cells,
sulforaphane has inhibited the induced phosphorylation of IκB kinase (IKK) and IκB-α, as
well as the binding of NF-κB to binding sites in the LIPG gene [126]. Through direct inter-
action with cysteines, sulforaphane also inhibits the IκBβ subunit and IκBα [95] and the
phosphorylation of IκBα [102,126,130]. It is also reported to inhibit transcriptional activity
as well as IκBα phosphorylation and degradation [121,122,124,140,150]. Evidence of the
inhibition of the DNA-binding activity of NF-κB [153] as well as C/EBP and CREB bind-
ing [94] or the binding of NF-κB to binding sites in the LIPG gene, has also been shown [126].
Collectively, there is overwhelming evidence to suggest that the anti-inflammatory effect
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of sulforaphane is mediated through the downregulation of NF-κB at the various stages
of its signalling cascade. The crosstalk between NF-κB activation and signalling through
tyrosine kinases is discussed below (Section 4.4).
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Figure 5. The NF-κB activation pathways. The activation of cellular receptors to pro-inflammatory
cytokines or bacterial and viral products leads to the activation of the NF-κB pathways through
two principal routes: the canonical and non-canonical pathways. In the canonical NF-κB pathway,
receptor activation (e.g., TNF-α, IL-1β, and LPS receptors) triggers the activation of the transforming
growth factor beta-activated kinase 1 (TAK1), which activates the inhibitor of kappa B kinase (IKK)
via phosphorylation at the IKKβ site. In turn, IKKβ then phosphorylates p105 bound to RelA to
initiate proteasomal degradation or processing into p50. IKKβ also phosphorylates IκBα to initiate
its proteasomal degradation. The free p50-RelA dimer then translocate to the nucleus to promote
target gene activation. In the non-canonical pathway of NF-κB activation, receptor activation such
as that of the lymphotoxin β receptor (LTβR), the B-cell-activating factor receptor (BAFF-R), Fn14,
the Tweak receptor, and the receptor activator of NF-κB (RANK) leads to NF-κB-inducing kinase
(NIK) activation, which phosphorylates the inhibitory kappa B kinase alpha (IKKα). IKKα, in turn,
phosphorylates p100 for proteasomal processing into p52. The RelB/p52 dimer, as NF-κB, is then
translocated to the nucleus. This figure has been generated using Biorender.

4.3. Nrf2-NF-κB Crosstalk

In the regulation of redox status and inflammation, there is a great deal of coordination
between the Nrf2 and NF-κB pathways. Numerous reports have shown that stress condi-
tions that activate the NF-κB pathway, such as that of TNF-α or pathologies such as cancer,
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also stimulate Nrf2’s protective mechanisms [327,328]. Generally, the activation of NF-κB
can lead to the upregulation of Nrf2 or its target gene products, such as HO-1. In many
respects, however, the inflammatory response mediated through the NF-κB pathway is
counteracted by Nrf2 activation [329,330] (Figure 6). For example, the degradation of IKKβ

by KEAP1, leading to decreased phosphorylation and the negative regulation of the NF-κB
pathway, has been described [331]. The competition between Nrf2 and the NF-κB-p65
subunit to bind the transcriptional coactivator CBP has also been demonstrated [332]. The
Nrf2 pathway has also been shown to suppress the transcription of several inflammatory
cytokine genes [333]. In this regard, many anti-inflammatory agents that suppress NF-κB
signalling have been shown to activate the Nrf2 pathway. These include α-tocopheryl [334].
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Figure 6. Anti-inflammatory effect of sulforaphane via crosstalk of the Nrf2 and NF-κB pathways.
Inhibition of the NF-κB pro-inflammatory pathway is mostly associated with the induction of the
Nrf2 pathway as an antioxidant and anti-inflammatory mechanism. Both effects are simultaneously
seen for sulforaphane in various experimental models, although the magnitude of modulation and
interdependence of the two pathways may differ. This figure has been generated using Biorender.

In peritoneal macrophages, sulforaphane has been shown to inhibit the mRNA ex-
pression of TNF-α, IL-1β, COX-2, and iNOS induced by LPS, but this effect is evident in
(+/+) but not in Nrf2 (−/−) peritoneal macrophages [71]. In almost all cases where both
Nrf2 and NF-κB activation were studied, the effect of sulforaphane was associated with
enhancing Nrf2 while, at the same time, downregulating NF-κB (Tables 1–5). Unequivocal
evidence of crosstalk comes from knockdown studies where the effect of sulforaphane has
been reported to be dependent on Nrf2 activation: for example, the inhibition of the NLRP3
inflammasome in an Nrf2-independent manner [98]. This could be a partial effect, not a
complete one, as the knockdown of Nrf2 has been shown to partly (not completely) abolish
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the reduction in ROS, nitric oxide, and pro-inflammatory cytokines (TNF-α, IL-1β, and
IL-6) [105]. Hence, multiple mechanisms of action, often paradoxical, may be at play in the
anti-inflammatory effect of sulforaphane.

4.4. Signalling Paradox

In macrophages, the inhibitory effect of sulforaphane on cytokine expression and M1
markers’ C-C motif chemokine receptor 7, IL-23, and iNOS has been shown to be associated
with the inhibition of mitogen-activated protein kinases (MAPK), p38, c-Jun N-terminal
kinase (JNK), and phosphorylation [99]. Downregulating the phosphorylation of MAPK
in PMA-activated human mast cells using sulforaphane has also been associated with
the inhibition of NF-κB and cytokine expression [102]. PMA-activated endothelial cells
(HUVECs) have also been shown to respond to sulforaphane treatment by reducing the
level of pro-inflammatory cytokine (IL-1β and TNF-α) expression via the downregulation
of the phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and JNK [123].
Another example of PMA-activated NF-κB activation can be found in the human mam-
mary epithelial cells, where sulforaphane inhibits both IKK activation and ERK1/2—i.e.,
ERK1/2-IKKα-NF-κB signalling [140]. In ECV304 endothelial cells, the suppressive effect
of sulforaphane on NF-κB translocation has been shown to be mediated via the inhibition
of the phosphorylation of mainly p38 MAPK and JNK MAPK [125]. The expression of
adhesion molecules on endothelial cell surfaces induced by TNF-α has also been shown to
be inhibited by sulforaphane via the inhibition of the activation of p38 MAPK (not JNK),
and, interestingly, this effect is not mediated via Nrf2 expression [129]. The phosphory-
lation levels of ERK and JNK MAPKs associated with cigarette smoke extract (CSE)- and
particulate matter-induced inflammatory and chemokine gene (IL-1β, IL-6, IL-8, TNF-α,
MCP-1, and CXCL-1) expression in human lung epithelial cells are further decreased by
sulforaphane [136]. In BV2 microglial cells treated with advanced glycation end products,
the expression of neuroinflammatory mediators and ROS is inhibited by sulforaphane in
association with reduced levels of GSK3β activation and p38 phosphorylation (but not
ERK and JNK phosphorylation) and the inhibition of NF-κB. All these data suggest that the
anti-inflammatory effect of sulforaphane via suppressing the NF-κB activation pathway is
associated with the suppression of the MAPK pathway and is not necessarily associated
with Nrf2 activation. On the other hand, the induction of Nrf2 in microglial cells has been
shown to be dependent on the phosphorylation of p38 and ERK1/2, and sulforaphane
augments this activity [105]. It is also known that cigarette smoke generally activates MAPK
signalling cascades in lung epithelial cells both in vitro and in vivo [335]. In this regard, the
inhibition of p38 MAPK is proven to ameliorate allergen-induced pulmonary eosinophilia,
mucus hypersecretion, and airway hyper-responsiveness or diseases such as asthma and
COPD. While Nrf2 is experimentally proven to have a protective role in numerous airway
diseases [336], the signalling pathway in collaboration or contradiction with NF-κB is still
not clear. In a study using human lung epithelial cells, where inflammatory cytokines were
inhibited by sulforaphane, MAPKs were inhibited while Nrf2 was activated [136]. Overall,
sulforaphane seems to block the phosphorylation of MAPKs (p38, JNK, and ERK1/2), along
with NF-κB p65 [113].

Studies have shown that the upregulation of phosphoinositide 3-kinase (PI3K) and Akt
by therapeutic agents (e.g., ginkgolides and bilobalide) can activate Nrf2 [337]—i.e., Akt,
as a downstream signal molecule of PI3K, can phosphorylate KEAP1 as well as have other
effects, leading to Nrf2 activation. In this context the hypoxia- or cobalt chloride-induced
upregulation of TLR4 mRNA and protein have been shown to be mediated by inhibiting
PI3K/Akt activation, and sulforaphane reverses this effect to induce protection against ox-
idative stress in macrophages [88]. PI3K activation inhibits macrophage programming into
M1, while Akt activation is a critical condition for M2 polarisation. Thus, sulforaphane sup-
presses the cobalt chloride-induced upregulation of TLR4 by inhibiting PI3K/Akt activation
and the subsequent nuclear accumulation and transcriptional activation of HIF-1α [88].
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4.5. Anti-Inflammatory Effect of Sulforaphane by Targeting Sirtuin 1 (SIRT1) Signalling

Sirtuin 1 (SIRT1) belongs to a family of proteins (SIRT1-7; silent information regula-
tors or sirtuins) or deacetylase enzymes that function in collaboration with their essential
co-factor, nicotinamide adenine dinucleotide (NAD+). They remove acetyl groups from the
lysine residues of many proteins or histone substrates and function in the post-translational
modification of proteins by mono-ADP ribosylation. As shown in the section below, SIRT1
also catalyses a range of substrates such as NF-κB, forkhead box class O family mem-
ber proteins (FOXOs), peroxisome proliferator-activated receptor γ (PPARγ), peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α), and P53 [338–340]. In terms of
inflammation, NF-κB and SIRT1 display antagonistic crosstalk, where NF-κB is acting in
a pro-inflammatory manner while SIRT1 promotes anti-inflammatory responses. While
SIRT1 overexpression reverses the inflammatory pathology, its underexpression promotes
inflammation, as shown in experimental animals exposed to cigarette smoke or chronic
obstructive pulmonary disease [341,342]. In macrophages, the knockdown of SIRT1 has
been shown to increase the activation levels of NF-κB and pro-inflammatory cytokines [343].
These experiments have revealed that SIRT1 overexpression decreases the acetylation of
RelA/p65 and NF-κB-dependent inflammation and/or NF-κB activity by inducing sup-
pressor mechanisms. Hence, the upregulation of SIRT1 reduces COX-2 levels by inhibiting
the activation of AP-1 and NF-κB [344]. Overall, SIRT1 activation could exert benefits in the
treatment of inflammatory disorders, and its level/activity is suppressed by NF-κB through
the modulation of downstream signalling. For example, through NF-κB induction, TNF-α
inhibits the expression of peroxisome proliferator-activated receptor gamma coactivator-1α
(PGC-1α), which plays critical role in SIRT1 signalling. Accordingly, SIRT1 activation
suppresses the expression of TNF-α in macrophages [345]. Another important signalling
molecule related to SIRT1 is the AMP-activated protein kinase (AMPK), which acts as an
initial sensor to increase the level of NAD+ [346].

The inhibition of NF-κB p65 nuclear translocation by sulforaphane in human retinal
pigment epithelial (ARPE-19) cells exposed to blue light is coupled with the Nrf2 pathway,
which, in turn, is associated with increased protein expression of SIRT1 and PGC-1α gene
expression [134]. Sulforaphane also upregulates the phosphorylated level of AMPK (p-
AMPK), SIRT1, and PGC-1α to ameliorate LPS-induced changes in intestinal permeability,
oxidative stress, inflammation, and apoptosis [135]. The upregulation of p-AMPK, SIRT1,
and PGC-1α has also been observed in LPS-stimulated Caco-2 cells after treatment with sul-
foraphane, which is also coupled with the upregulation of antioxidant enzymes (e.g., SOD,
GPx, and CAT) and the downregulation of inflammatory cytokines (IL-1β, IL-6, IL-8, and
TNF-α) [135]. Oligomeric amyloid-β1-42 can trigger injury in the retinal pigment epithelium
by repressing SIRT1, but treatment with sulforaphane can maintain cell viability and SIRT1
expression [347]. Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation
injury in vitro by elevating the expression of SIRT1 in cardiomyocytes [348]. It also exerts
an anti-apoptotic effect on chondrocytes and ameliorates the OA in vivo by activating
SIRT1 [166]. In support of this mechanism, many natural products, including resveratrol as
an allosteric activator of SIRT1 [349] and curcumin [350], have been shown to induce cardio-
protective effects by activating SIRT1. Hence, SIRT1 activation is an emerging mechanism
of action for the anti-inflammatory effect of sulforaphane, as depicted in Figure 7.
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ELAM, iNOS, COX-2, etc.) expression requires the acetylation process. By deacetylating NF-κB, SIRT1
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transcriptional activity, and stability as well as interaction with protein modifiers. Boosting the
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well as other effects associated with the deacetylation activity of SIRT1 and several other inflammatory
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4.6. Anti-inflammatory Effect of Sulforaphane by Targeting STATs

The roles of the silent information regulator sirtuin 1 (STAT1) and STAT3, often as
contradictory as pro- and anti-inflammatory mediators in macrophages, have been widely
reported [351]. Thus, LPS and IL-6 can activate the M1 phenotype, and IL-10 acts as an
anti-inflammatory cytokine through the modulation of STAT1 and STAT3 signalling [352].
STAT3 activation is generally considered to promote the anti-inflammatory M2 pheno-
type, in contrast to NF-κB activation, which promotes the M1 phenotype associated with
the expression of pro-inflammatory cytokines. Thus, therapeutic agents that reduce the
activation of STAT1 and/or suppress STAT3 may induce an anti-inflammatory effect by
promoting the polarisation of M1 to the M2 phenotype [353]. For example, Sun et al. [73]
have reported that sulforaphane enhances IL-10 production in macrophages while pro-
moting STAT3 activation. On the other hand, the suppressive effect of sulforaphane on
LPS-mediated increase in ICAM-1 and VCAM-1 expression on the endothelial (HUVEC)
cell surface has been unequivocally proven (siMRA study) to be associated with the inhibi-
tion of STAT3 [120]. This finding agrees with that reported by Rakariyatham et al. [97] on
macrophages stimulated by LPS, where the level of STAT3 phosphorylation was inhibited
by sulforaphane. Furthermore, Jeong et al. [160] have shown that TNF-α-induced NF-κB
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as well as STAT1 activation in human keratinocytes is inhibited by sulforaphane. Hence,
further research is needed to establish the cell- and/or inflammatory model-dependent role
of STAT1/3 as a target for sulforaphane.

4.7. The Emerging Role of Activator Protein-1 (AP-1) as an Anti-Inflammatory Target
for Sulforaphane

Just like NF-κB, activator protein-1 (AP-1) represent a family of transcription factors
functioning as dimers to regulate immune function and oncogenic processes. Of note, it is
linked to MAPK signalling and is involved in T-cell activation. AP-1 proteins play important
roles in the development and maintenance of cancers, which are not described herein. Their
role as a therapeutic target for inflammatory diseases has also been established [354]
and includes chronic inflammatory diseases such as rheumatoid arthritis [355]. This is
attributed to AP-1 being pro-inflammatory, as NF-κB, and able to regulate the expression
of cytokines such as TNF-α and IL-1 through direct interaction with their promoter AP-1-
binding motifs. As it has been shown for sulforaphane, the crosstalk between redox and
inflammatory regulation for AP-1 follows the same line of evidence as NF-κB. Hence, the
suppressive effect of sulforaphane on LPS-induced COX-2 expression has been shown
to be associated with the inhibition of NF-κB, C/EBP, and CREB, as well as AP-1 [94].
By reducing the level of JNK phosphorylation, sulforaphane has been demonstrated to
suppress NF-κB and AP-1 signalling in LPS-activated microglia [115]. The photoprotective
effects of sulforaphane in human keratinocyte cells and BALB/c mice subjected to repetitive
ultraviolet A (UVA) irradiation have been shown to be associated with the inhibition of
MAPK/AP-1 signalling [356]. In a similar study, using UVB-induced AP-1 activation,
sulforaphane directly inhibited the DNA-binding activity of AP-1 [357]. Further studies
have shown that the inhibition of AP-1 by sulforaphane involves interaction with cysteine
in the cFos DNA-binding domain [358]. Evidence is also rich on the anticancer effect of
sulforaphane by targeting AP-1. In prostate cancer cells, for example, AP-1 activation is
attenuated by the combinations of sulforaphane and epigallocatechin gallate [359]. Other
known anti-inflammatory compounds of natural origin that have shown an effect through
the AP-1-dependent pathway include quercetin [360], omega-3 docosahexaenoic fatty
acid [361], ganglioside GM3 [362], and curcumol [363].

As with NF-κB, paradoxical evidence of AP-1’s role as a target for sulforaphane has
been noted. For example, the treatment of breast cancer cells with sulforaphane inhibits
the TPA-stimulated NF-κB-binding activity but not the AP-1-binding activity [364]. Hence,
more research is needed, although, overall, AP-1 inhibition, just like NF-κB, appears to be a
common mechanism for sulforaphane as an anti-inflammatory compound.

4.8. MicroRNAs as Potential Therapeutic Targets for Sulforaphane

MicroRNAs (miRNAs) are small-molecular-weight non-coding RNAs that suppress
gene expression both by inhibiting protein translation and promoting mRNA cleavage.
In principle, they can either enhance or inhibit inflammation, depending on the targeted
mRNAs. As reviewed by Tahamtan et al. [365], several miRNAs are known to act as
anti-inflammatory agents, and they include miR-10a, miR-21, miR-24, miR-106b, miR-
124, miR-143, miR-145, miR-146, miR-155, and miR-375. They can act on several target
transcription factors such as NF-κB and STATs, receptors such as TLR, TNF receptors, or
even kinase enzymes. In the LPS-stimulated RAW264.7 cells, sulforaphane has been shown
to suppress the miR-146a and miR-155 levels associated with inflammation [90,91]. The
enhanced miR-423-5p levels associated with hepatic stellate cell activation in liver fibrosis
have also been shown to be downregulated by sulforaphane [366]. In contradiction to such
an effect, the level of miR-423-5p has been shown to be low in septic mice with a liver
injury, and its overexpression alleviates acute liver injury and inflammatory responses [367].
Hence, more research in the miRNA field is needed to establish the contribution of miRNAs
as targets for sulforaphane as an anti-inflammatory agent.
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5. General Summary and Conclusions

The present analysis of sulforaphane as an anti-inflammatory agent clearly shows
the crosstalk between inflammation and oxidative stress, specifically via NF-κB and Nrf2
signalling. Sulforaphane appears to suppress both inflammation and oxidative stress
mostly by inhibiting NF-κB and enhancing Nrf2 signalling. The long list of publications
based on sulforaphane suppressing inflammation in vivo and in vitro has been described
in the previous sections through the effects attributed to the modulation of NF-κB and
Nrf2. However, there have been paradoxical results against this conclusion, and more
research is needed to clarify the degree of interdependence between the two pathways
in mediating the anti-inflammatory effect of sulforaphane. The readers should also note
that there are also some studies suggesting that sulforaphane could have pro- and anti-
inflammatory effects, as revealed for placental cytokine production under some conditions
of bacterial infections [368]. Furthermore, there are also studies that show that sulforaphane
improves the oxidative status under ischaemia/reperfusion injury in rats without attenuat-
ing the inflammatory response [369]. Indeed, in some studies, the pro-oxidant nature of
sulforaphane is well known and, with it, one of the mechanisms for its anticancer effect. As
a pro-oxidant compound, sulforaphane synergises with anticancer agents such as cisplatin
to induce apoptosis through ROS accumulation [370]. This paradoxical effect could be
dose-dependent, as most of the anti-inflammatory effects in vitro are carried out at 5 or
10 µM, while higher doses are known to increase ROS and even inhibit ROS-scavenging en-
zymes such as GR and GPx activity in cancer cells [371]. By interfering with the glutathione
recycling processes, sulforaphane can also induce oxidative stress and death through the
p53-independent mechanism [371]. In the cancer domain, sulforaphane also augments
the immune response instead of having an immunosuppressive effect, as shown in the
WEHI-3-induced leukaemia mouse model, where it enhances phagocytosis by macrophages
and natural killer cells [372]. Along the same line, Nrf2 activation by sulforaphane restores
the age-related decrease in TH1 immunity by acting on dendritic cells, implying that it acts
as an immunostimulant [373]. While it induces a cytoprotective effect via the Nrf2 mecha-
nism in naïve cells, it actually promotes apoptosis in TNF-α-stimulated synoviocytes [155].
Hence, the effects of sulforaphane as an anti-inflammatory and cytoprotective agent de-
pend on a variety of factors, including the health and disease states. Under hepatitis B
virus (HBV) infection in vitro and in vivo, sulforaphane promotes macrophages to the pro-
inflammatory M1 phenotype [374], while, under inflammatory conditions both in vitro and
in vivo, it induces macrophages to change to the anti-inflammatory M2 phenotype [375], as
explained in the various sections of this article.

As readers can see from the extensive literature cited in this article in the context of
inflammation as a disease target, sulforaphane is among the most widely studied natural
products both in vitro and in vivo. Mechanistically, its paradoxical effects depending on
health and pathophysiological states need further research. Most of the studies show that
its effect via interactions with biological molecules such as the cysteine residue of proteins
account to its diverse pharmacology. From small molecules such as glutathione to enzymes
and transcriptional activities, sulforaphane has been shown to covalently interact with the
-SH functional group to induce its diverse functions (Figure 8).

Overall, this article has shown the multiple targets for sulforaphane as an anti-
inflammatory compound, which can be summarised as shown in Figure 9. On the basis
of the available data, further research on leading optimisation and clinical studies on
sulforaphane as an anti-inflammatory agent is well merited.



Biomedicines 2024, 12, 1169 33 of 49Biomedicines 2024, 12, x FOR PEER REVIEW 34 of 49 
 

O

H
N OH

OSH

N
HNH2

HO

O O

Glutathione

NCS S
O

Sulforaphane

O

H
N O

H

OS

N
HNH2

HO

O O

H
NS

O

S

SH

Proteins such as KEAP1

NCS S
O

Sulforaphane

S

Modified proteins

H
NS

O

S

 
Figure 8. Overview of covalent interaction of sulforaphane with the sulfhydryl group of biomole-
cules. 

Overall, this article has shown the multiple targets for sulforaphane as an anti-in-
flammatory compound, which can be summarised as shown in Figure 9. On the basis of 
the available data, further research on leading optimisation and clinical studies on sul-
foraphane as an anti-inflammatory agent is well merited. 

 
Figure 9. Overview of the anti-inflammatory mechanisms of sulforaphane. Boosting the level and 
functional activity of Nrf2-dependent genes/proteins while inhibiting the pro-inflammatory mech-
anisms induced by the transcription factors NF-κB and AP-1 are its main anti-inflammatory mech-
anisms. Direct interaction of sulforaphane with biological molecules as a pro-oxidant or antioxidant 
compound may attribute to its biological actions. Evidence also suggests modulatory effects on 

Figure 8. Overview of covalent interaction of sulforaphane with the sulfhydryl group of biomolecules.

Biomedicines 2024, 12, x FOR PEER REVIEW 34 of 49 
 

O

H
N OH

OSH

N
HNH2

HO

O O

Glutathione

NCS S
O

Sulforaphane

O

H
N O

H

OS

N
HNH2

HO

O O

H
NS

O

S

SH

Proteins such as KEAP1

NCS S
O

Sulforaphane

S

Modified proteins

H
NS

O

S

 
Figure 8. Overview of covalent interaction of sulforaphane with the sulfhydryl group of biomole-
cules. 

Overall, this article has shown the multiple targets for sulforaphane as an anti-in-
flammatory compound, which can be summarised as shown in Figure 9. On the basis of 
the available data, further research on leading optimisation and clinical studies on sul-
foraphane as an anti-inflammatory agent is well merited. 

 
Figure 9. Overview of the anti-inflammatory mechanisms of sulforaphane. Boosting the level and 
functional activity of Nrf2-dependent genes/proteins while inhibiting the pro-inflammatory mech-
anisms induced by the transcription factors NF-κB and AP-1 are its main anti-inflammatory mech-
anisms. Direct interaction of sulforaphane with biological molecules as a pro-oxidant or antioxidant 
compound may attribute to its biological actions. Evidence also suggests modulatory effects on 

Figure 9. Overview of the anti-inflammatory mechanisms of sulforaphane. Boosting the level
and functional activity of Nrf2-dependent genes/proteins while inhibiting the pro-inflammatory
mechanisms induced by the transcription factors NF-κB and AP-1 are its main anti-inflammatory
mechanisms. Direct interaction of sulforaphane with biological molecules as a pro-oxidant or antioxi-
dant compound may attribute to its biological actions. Evidence also suggests modulatory effects on
STAT1 or STAT3 as well as some miRNAs, although further research is needed to clarify the detailed
mechanisms of these effects. This figure has been generated using Biorender.
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361. Zgórzyńska, E.; Stulczewski, D.; Dziedzic, B.; Su, K.P.; Walczewska, A. Docosahexaenoic fatty acid reduces the pro-inflammatory
response induced by IL-1β in astrocytes through inhibition of NF-κB and AP-1 transcription factor activation. BMC Neurosci.
2021, 22, 4. [CrossRef] [PubMed]

362. Park, J.; Kwak, C.H.; Ha, S.H.; Kwon, K.M.; Abekura, F.; Cho, S.H.; Chang, Y.C.; Lee, Y.C.; Ha, K.T.; Chung, T.W.; et al. Ganglioside
GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-κB, AP-1, and
MAPKs signaling. J. Cell Biochem. 2018, 119, 1173–1182. [CrossRef] [PubMed]

363. Chen, X.; Zong, C.; Gao, Y.; Cai, R.; Fang, L.; Lu, J.; Liu, F.; Qi, Y. Curcumol exhibits anti-inflammatory properties by interfering
with the JNK-mediated AP-1 pathway in lipopolysaccharide-activated RAW264.7 cells. Eur. J. Pharmacol. 2014, 723, 339–345.
[CrossRef] [PubMed]

364. Lee, Y.R.; Noh, E.M.; Han, J.H.; Kim, J.M.; Hwang, B.M.; Kim, B.S.; Lee, S.H.; Jung, S.H.; Youn, H.J.; Chung, E.Y.; et al. Sulforaphane
controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells. BMB
Rep. 2013, 46, 201–206. [CrossRef] [PubMed]

365. Tahamtan, A.; Teymoori-Rad, M.; Nakstad, B.; Salimi, V. Anti-inflammatory microRNAs and their potential for inflammatory
diseases treatment. Front. Immunol. 2018, 9, 1377. [CrossRef] [PubMed]

366. Feng, M.H.; Li, J.W.; Sun, H.T.; He, S.Q.; Pang, J. Sulforaphane inhibits the activation of hepatic stellate cell by miRNA-423-5p
targeting suppressor of fused. Hum. Cell 2019, 32, 403–410. [CrossRef] [PubMed]

367. Yang, J.; Xing, N.; Dong, L. Effect of MiR-423-5p expression on the severity of lipopolysaccharide-induced acute liver injury,
inflammatory response and immune function in mice. Trop. J. Pharm. Res. 2022, 21, 761–767. [CrossRef]

368. Arita, Y.; Park, H.J.; Cantillon, A.; Verma, K.; Menon, R.; Getahun, D.; Peltier, M.R. Pro- and anti-inflammatory effects of
sulforaphane on placental cytokine production. J. Reprod. Immunol. 2019, 131, 44–49. [CrossRef] [PubMed]

369. Bonetto, J.H.; Fernandes, R.O.; Seolin, B.G.; Müller, D.D.; Teixeira, R.B.; Araujo, A.S.; Vassallo, D.; Schenkel, P.C.; Belló-Klein,
A. Sulforaphane improves oxidative status without attenuating the inflammatory response or cardiac impairment induced by
ischemia-reperfusion in rats. Can. J. Physiol. Pharmacol. 2016, 94, 508–516. [CrossRef]

370. Lee, Y.J.; Lee, S.H. Pro-oxidant activity of sulforaphane and cisplatin potentiates apoptosis and simultaneously promotes
autophagy in malignant mesothelioma cells. Mol. Med. Rep. 2017, 16, 2133–2141. [CrossRef]

371. Ferreira de Oliveira, J.M.; Costa, M.; Pedrosa, T.; Pinto, P.; Remédios, C.; Oliveira, H.; Pimentel, F.; Almeida, L.; Santos, C.
Sulforaphane induces oxidative stress and death by p53-independent mechanism: Implication of impaired glutathione recycling.
PLoS ONE 2014, 9, e92980. [CrossRef] [PubMed]

372. Shih, Y.L.; Wu, L.Y.; Lee, C.H.; Chen, Y.L.; Hsueh, S.C.; Lu, H.F.; Liao, N.C.; Chung, J.G. Sulforaphane promotes immune responses
in a WEHI-3-induced leukemia mouse model through enhanced phagocytosis of macrophages and natural killer cell activities
in vivo. Mol. Med. Rep. 2016, 13, 4023–4029. [CrossRef] [PubMed]

373. Kim, H.-J.; Barajas, B.; Wang, M.; Nel, A.E. Nrf2 activation by sulforaphane restores the age-related decrease of TH1 immunity:
Role of dendritic cells. J. Allergy Clin. Immunol. 2008, 121, 1255–1261. [CrossRef] [PubMed]

374. Xu, R.; Wu, Y.; Xiang, X.; Lv, X.; He, M.; Xu, C.; Lai, G.; Xiang, T. Sulforaphane effectively inhibits HBV by altering Treg/Th17
immune balance and the MIF-macrophages polarizing axis in vitro and in vivo. Virus Res. 2024, 341, 199316. [CrossRef]

375. Zhang, Z.; Chen, H.; Pan, C.; Li, R.; Zhao, W.; Song, T. Sulforaphane reduces adipose tissue fibrosis via promoting M2 macrophages
polarization in HFD fed-mice. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119626. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.intimp.2017.05.006
https://www.ncbi.nlm.nih.gov/pubmed/28505494
https://doi.org/10.1136/ard.2010.140533
https://www.ncbi.nlm.nih.gov/pubmed/21339212
https://doi.org/10.4161/cc.8.10.8411
https://www.ncbi.nlm.nih.gov/pubmed/19395871
https://doi.org/10.1124/jpet.116.238048
https://www.ncbi.nlm.nih.gov/pubmed/28011874
https://doi.org/10.1002/mc.20052
https://www.ncbi.nlm.nih.gov/pubmed/15390080
https://doi.org/10.1158/0008-5472.CAN-09-0770
https://www.ncbi.nlm.nih.gov/pubmed/19671797
https://doi.org/10.1038/aps.2010.147
https://doi.org/10.1097/MD.0000000000022241
https://doi.org/10.1186/s12868-021-00611-w
https://www.ncbi.nlm.nih.gov/pubmed/33499800
https://doi.org/10.1002/jcb.26287
https://www.ncbi.nlm.nih.gov/pubmed/28708322
https://doi.org/10.1016/j.ejphar.2013.11.007
https://www.ncbi.nlm.nih.gov/pubmed/24269960
https://doi.org/10.5483/BMBRep.2013.46.4.160
https://www.ncbi.nlm.nih.gov/pubmed/23615261
https://doi.org/10.3389/fimmu.2018.01377
https://www.ncbi.nlm.nih.gov/pubmed/29988529
https://doi.org/10.1007/s13577-019-00264-2
https://www.ncbi.nlm.nih.gov/pubmed/31278688
https://doi.org/10.4314/tjpr.v21i4.12
https://doi.org/10.1016/j.jri.2018.12.003
https://www.ncbi.nlm.nih.gov/pubmed/30641297
https://doi.org/10.1139/cjpp-2015-0282
https://doi.org/10.3892/mmr.2017.6789
https://doi.org/10.1371/journal.pone.0092980
https://www.ncbi.nlm.nih.gov/pubmed/24667842
https://doi.org/10.3892/mmr.2016.5028
https://www.ncbi.nlm.nih.gov/pubmed/27035756
https://doi.org/10.1016/j.jaci.2008.01.016
https://www.ncbi.nlm.nih.gov/pubmed/18325578
https://doi.org/10.1016/j.virusres.2024.199316
https://doi.org/10.1016/j.bbamcr.2023.119626

	Overview of Chemistry and Biological Relevance 
	Anti-Inflammatory Effects In Vivo 
	Anti-inflammatory Studies In Vitro 
	Anti-inflammatory Effect of Sulforaphane through the Suppression of Pro-Inflammatory Cytokines and Chemokine Production 
	Anti-Inflammatory Effect of Sulforaphane through the Inhibition of the Expression of Adhesion Molecules 
	Anti-inflammatory Effect of Sulforaphane through the Suppression of COX-2 Expression 
	Anti-inflammatory Effect of Sulforaphane through the Inhibition of iNOS Expression 
	Anti-Inflammatory Effect of Sulforaphane through the Inhibition of Inflammation-Associated Oxidative Stress 

	Mechanistic Overview of the Anti-Inflammatory Effect of Sulforaphane 
	Induction of Nrf2 
	Inhibition of NF-B 
	Nrf2-NF-B Crosstalk 
	Signalling Paradox 
	Anti-Inflammatory Effect of Sulforaphane by Targeting Sirtuin 1 (SIRT1) Signalling 
	Anti-inflammatory Effect of Sulforaphane by Targeting STATs 
	The Emerging Role of Activator Protein-1 (AP-1) as an Anti-Inflammatory Target for Sulforaphane 
	MicroRNAs as Potential Therapeutic Targets for Sulforaphane 

	General Summary and Conclusions 
	References

