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Abstract: microRNA (miRNA)–messenger RNA (mRNA or gene) interactions are pivotal in various
biological processes, including the regulation of gene expression, cellular differentiation, proliferation,
apoptosis, and development, as well as the maintenance of cellular homeostasis and pathogenesis of
numerous diseases, such as cancer, cardiovascular diseases, neurological disorders, and metabolic
conditions. Understanding the mechanisms of miRNA–mRNA interactions can provide insights into
disease mechanisms and potential therapeutic targets. However, extracting these interactions effi-
ciently from a huge collection of published articles in PubMed is challenging. In the current study, we
annotated a miRNA–mRNA Interaction Corpus (MMIC) and used it for evaluating the performance
of a variety of machine learning (ML) models, deep learning-based transformer (DLT) models, and
large language models (LLMs) in extracting the miRNA–mRNA interactions mentioned in PubMed.
We used the genomics approaches for validating the extracted miRNA–mRNA interactions. Among
the ML, DLT, and LLM models, PubMedBERT showed the highest precision, recall, and F-score, with
all equal to 0.783. Among the LLM models, the performance of Llama-2 is better when compared to
others. Llama 2 achieved 0.56 precision, 0.86 recall, and 0.68 F-score in a zero-shot experiment and
0.56 precision, 0.87 recall, and 0.68 F-score in a three-shot experiment. Our study shows that Llama
2 achieves better recall than ML and DLT models and leaves space for further improvement in terms
of precision and F-score.

Keywords: machine learning; deep learning; large language models; natural language processing;
genomics; miRNA–mRNA interactions

1. Introduction

MicroRNAs (miRNAs), a class of non-coding RNAs (ncRNAs), are single-stranded and
contain approximately 18–26 nucleotides. miRNAs exert the post-transcriptional regulation
of gene expression by binding to microRNA-responsive elements (mREs) on target mRNAs
(or the genes). The canonical biogenesis of miRNAs involves four sequential steps: (i) the
transcription of pri-miRNA by RNA polymerase II, forming a hairpin-like structure in the
nucleus; (ii) cleavage by the microprocessor complex, comprising Drosha, an RNase III enzyme,
and its cofactor DiGeorge Syndrome Critical Region 8 (DGCR8), generating pre-miRNA; (iii)
exporting pre-miRNA to the cytoplasm via Exportin 5 and Ran Guanosine Triphosphate (Ran-
GTP); and (iv) processing by the DICER complex to yield miRNA–miRNA* duplexes. The
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guide strand of mature miRNA, preferentially incorporated into the RNA-induced silencing
complex (RISC), mediates target mRNA recognition through base pairing with complementary
sequences in the 3′ untranslated region (UTR), leading to translational repression or mRNA
degradation [1–3]. The guide strand of miRNA is more stable and functionally active in
mediating miRNA-mediated gene regulation when compared to the passenger strand (miRNA*
or miRNA-3p). Non-canonical biogenesis pathways, such as Drosha-independent (e.g., mirtron)
and Dicer-independent (e.g., Argonaute-dependent) mechanisms, contribute to the production
of additional miRNAs. Notably, a single miRNA can regulate multiple mRNAs, and conversely,
a single mRNA can be targeted by multiple miRNAs [4]. miRNAs have been observed in
various cellular compartments, including the nucleus, cytoplasm, mitochondria, and exosomes,
each with distinct functional roles. These roles encompass transcriptional regulation, alternative
splicing, metabolism, development, apoptosis, and intercellular communication [5]. Moreover,
miRNAs are pivotal in regulating neuronal gene expression, brain morphogenesis, muscle
differentiation, and stem cell division. Therefore, several studies aim to reveal their involvement
in the development of various diseases, spanning cancer, cardiovascular disorders, inflammatory
conditions, neurodevelopmental anomalies, and autoimmune disorders, as well as liver, skeletal
muscle, and skin ailments [6]. The miRNA–mRNA Interaction Corpus (MMIC) and scripts
developed for the current study are available at https://github.com/balubhasuran/miRNA_
mRNA-Relation-Extraction (accessed on 2 July 2024).

Studies on miRNA and mRNA interactions have accumulated a huge volume of
published papers over the years. Extracting these interactions manually is impossible.
Alternatively, relation extraction, a popular task within natural language processing (NLP)
can be applied to extract the miRNA and mRNA interactions automatically. Relation
extraction is an established area within NLP and numerous works are available for extract-
ing the relations between two or more biomedical entities from the articles in PubMed.
While most of the approaches are specific to a pair of specific entities, i.e., protein–protein
interaction [7], only a few approaches are capable of extracting the relations between any
pair of biomedical entities existing in PubMed [8]. In addition, there are certain specific
case studies that use PubMed to explore the association between specific entities such as
T-2 Toxin, Cerebral Edema, and Aquaporin-4 [9].

Earlier approaches for relation extraction were rule-based systems [7]. Over the years,
NLP approaches including relation extraction have evolved to include machine learning
algorithms, deep learning algorithms [10,11], and transformer-based approaches [10,12,13].
Recently, large language models (LLMs) have gained huge interest among NLP researchers
exploring their application in various NLP tasks including relation extraction [14,15]. In
a recent study, we explored the performance of two LLM models, namely GPT-3.5-turbo
and GPT-4, in extracting gene–disease association information from two standard corpora,
namely EU-ADR [16,17] and the Gene Associations Database (GAD) [18], and chemical–
protein interaction from ChemProt, a corpus released by the BioCreative VI shared task [19].
Our attempts showed that the performance of GPT is slightly lower than the transformer
models such as BioBERT and PubMedBERT [20].

Several studies focused on extracting miRNA–mRNA interactions from PubMed. Li
et al. introduced miRTex, a relation extraction system for extracting miRNA-target, miRNA-
gene, and gene-miRNA regulations from 150 PubMed abstracts. miRTex achieved F-scores
ranging from 0.88 to 0.94 for extracting different types of regulations [21]. Naeem et al. [22]
developed miRSel, a NLP-based system for extracting miRNA–mRNA interactions. miRSel
achieved an F-score of 0.76 for extracting miRNA-gene relations related to humans from
1973 sentences from PubMed [22]. In addition to relation extraction, miRSel also integrates
microRNA, gene, and protein occurrences with existing databases by employing various
dictionaries. Lamurias et al. [23] developed IBRel, a distant supervision-based microRNA-
gene relation extraction system using a multi-instance learning approach. The system
reported an F-score 28.3% higher on the IBRel-miRNA dataset developed using 318 relations.
This is higher than the baseline evaluated on the same dataset. IBRel also demonstrated
robustness using 27 miRNA-gene relations from cystic fibrosis [23]. Lou et al. developed a
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microRNA-target interaction extraction system by combining PubMedBERT and SciBERT
with LSTM. The system was evaluated on miRTarBase data and reported to achieve F-
scores of 0.845 for Sentence-Level Encoding (SLE), 0.800 for Concatenation of Word-Level
Encoding (CWLE), and 0.801 for Average of Word-Level Encoding (AWLE) [24]. These
example studies highlight the advancements and varying approaches in miRNA–mRNA
relation extraction.

In recent times, LLMs have gained much attention among NLP researchers. LLMs are
huge deep learning models that are pre-trained on vast amounts of data. LLMs are artificial
intelligence (AI) systems capable of understanding and generating human language in
various formats such as text, voice, and image. LLMs have moved NLP research to much
more advanced research areas such as natural language understanding (NLU) and natural
language generation (NLG). The Generative Pre-trained Transformer (GPT) released by
Open AI opened the doors to exploring and developing many LLMs in various domains
including biomedicine. Open AI’s recent models, GPT-3.5-turbo and GPT-4, moved NLP
researchers to a new space for exploring all core tasks, including relation extraction. In
addition to GPT, other LLMs such as Llama [25], Mistral [26], and Mixtral [27] allow
researchers to generate models for various clinical and biomedical tasks. In the current
work, we explored OpenAI’s GPT-3.5-turbo and GPT-4, Meta’s LLaMA-2, and Anthropic’s
Claude-2 [28] models for extracting the interactions between miRNAs and mRNAs in
PubMed abstracts. While GPT-3.5-turbo, GPT-4, and Claude-2 are proprietary models,
Llama-2 is an open-sourced model. Currently, GPT-3.5-turbo, LLaMA-2, and Claude-2 are
freely accessible. GPT-4 is a subscription-based LLM.

In addition to extracting miRNA–mRNA interactions using NLP/LLMs, we applied
the standard genomics approaches to understand the pathways related to miRNA and
mRNA. Elucidating the pathways associated with miRNA and mRNA interactions provides
insights into the broader biological context in which the regulatory processes occur [29]. Un-
derstanding these pathways allows us to decipher how miRNAs influence gene expression
within specific biological pathways or networks. This knowledge aids in identifying key
regulatory genes, predicting potential miRNA targets, and uncovering the functional impli-
cations of miRNA-mediated gene regulation in various biological processes and diseases.
Several omics studies related to miRNA gene interactions are performed using similar
approaches [30]. In addition, pathway-informed text mining with LLMs facilitates hypoth-
esis generation by identifying novel associations or regulatory patterns between miRNAs,
mRNAs, and pathways. These insights can guide further experimental investigations and
contribute to the discovery of novel regulatory mechanisms or therapeutic targets.

In the current study, we use four LLMs, namely GPT-3.5, GPT-4, LLaMA-2, and
Claude-2, to extract the miRNA–mRNA interactions from PubMed abstracts. We apply
genomics approaches to summarize the role of miRNA in regulating gene expression. The
major contributions include the following:

1. The release of an annotated corpus called the miRNA–mRNA Interaction Corpus
(MMIC).

2. The extraction of the miRNA–mRNA interactions from PubMed abstracts using LLMs.
To our knowledge, this is the first study to use LLM for extracting miRNA–mRNA
interactions.

3. Applying genomics to identify the pathways associated with miRNA and mRNA
and to predict the novel associations between miRNAs and mRNA. Our approach
uncovered many previously undiscovered regulatory mechanisms.

Our pipeline is expected to provide meaningful insights into miRNA–mRNA interac-
tions from PubMed abstracts.

2. Materials and Methods
2.1. Overall Workflow

Our NLP/LLM pipeline includes the following: (i) retrieval and preprocessing of
related abstracts from PubMed using NLP, (ii) annotation of miRNA, mRNA, and their
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relations, and (iii) model generation using ML, DLT, and LLM. In addition, we included a
standard genomics-based analysis. Figure 1 shows the workflow.
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2.2. Retrieval and Preprocessing

We retrieved PubMed IDs (PMIDs) related to five chronic diseases namely chronic
obstructive pulmonary disease (COPD), Alzheimer’s disease (AD), stroke, type 2 diabetes
mellitus (T2DM), and chronic liver disease. We extracted the titles and abstracts related to
the retrieved PMIDs. We excluded those without abstracts. We segmented the titles and
abstracts into individual sentences and assigned the respective PMID. We used scispaCy,
(https://spacy.io/universe/project/scispacy, accessed on 2 July 2024), a named entity
recognition tool, and a curated list of miRNA [21] and mRNA [31] names to identify the
miRNA and mRNA entities mentioned in the sentences.

We obtained the list of genes (i.e., gene ID) mentioned in each PubMed abstract by
mapping the PubMed ID (PMID) to gene2pubmed (https://ftp.ncbi.nlm.nih.gov/gene/
DATA/gene2pubmed.gz, accessed on 2 July 2024), a standard resource from the National
Center for Biotechnology Information (NCBI). We filtered the genes related to humans by
referring to taxon (i.e., 9606 for humans) in gene2pubmed. We obtained the gene symbol,
aliases, and name by mapping the gene ID to Entrez Gene. We used the gene symbol,
aliases, and name to filter the sentences with mRNA mentions related to humans.

2.3. Entity Recognition

We used the scispaCy tool along with a curated keyword list of mRNA and miRNA names
to recognize the mRNA and miRNA mentions in the input sentences. scispaCy provides var-
ious machine learning NER models such as en_ner_craft_md, en_ner_bionlp13cg_md, and
en_ner_jnlpba_md.

https://spacy.io/universe/project/scispacy
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz
https://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz
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2.4. Annotation

Two annotators with domain expertise in genomics labeled 200 sentences for initial
annotation. The annotators achieved a high percentage agreement of 88.2%. This indicates
a substantial overlap in the labeling decisions made by the annotators across the dataset.
The inter-annotator reliability, measured using Cohen’s Kappa coefficient, was 0.802. The
value suggests almost perfect agreement beyond chance, which is statistically significant
(i.e., p-value = 0). This high level of agreement, underscored by both percentage and
Cohen’s Kappa, indicates that the annotations were consistent and reliable. Following the
initial annotation and evaluation, the annotators labeled 1000 randomly selected sentences
to obtain the MMIC corpus. The corpus includes two labels: positive, for sentences
conveying an interaction between an miRNA and mRNA pair, and negative, for sentences
not conveying an interaction between an miRNA and mRNA pair. Supplemental Data S1
provides the annotation guidelines used by the annotators for annotating the sentences
with miRNA and mRNA. The annotation pipeline is depicted in Figure 2.
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2.5. Model Generation

We generated three different classes of AI models using ML, DLT, and LLMs. For ML,
we generated seven models using support vector machines (SVMs), logistic regression,
K-nearest neighbors (KNNs), decision tree, random forest, extreme gradient boosting (XG-
Boost), and LightGBM. For DLT, we generated three models using ClinicalBERT, BioBERT,
and PubMedBERT. For LLM, we generated three models based on a zero-shot experiment
and three models based on three-shot experiments. These models were generated on top
of the existing GPT-3.5, Claude 2, and Llama 2. For model generation, we randomly split
the sentences from MMIC corpus into two portions: 700 sentences for training and 300 for
testing. We ensured an equitable distribution of positive and negative sentences in both
training and test datasets.

2.5.1. ML Models

We used seven ML algorithms, namely SVM, logistic regression, K-Nearest Neighbors
(KNNs), decision tree, random forest, Extreme Gradient Boosting (XGBoost) and LightGBM,
for generating ML models. SVMs are utilized for their robust classification capabilities,
particularly in high-dimensional spaces, in their finding of the optimal hyperplane that
separates different classes. Logistic regression, by contrast, uses the probabilities for
classification problems with two possible outcomes and is effective for its simplicity and
efficiency in cases of linear separability. KNN works on the principle that similar instances
lie in proximity within the feature space; thus, classification is performed by a majority
vote of an instance’s neighbors. Decision trees segregate the data into branches to make
predictions, providing intuitive decision rules and ease of interpretation. Random forest,
an ensemble of decision trees, offers improved accuracy through bagging and feature
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randomness, reducing the risk of overfitting inherent to individual decision trees. XGBoost
is an advanced implementation of gradient-boosted decision trees designed for speed and
performance, which has been successful in numerous ML competitions. LightGBM is
another gradient-boosting framework that uses tree-based learning algorithms, optimized
for distributed and efficient training, particularly on large datasets. Each of these models
brings unique strengths and can be chosen based on the specific nature of the dataset, the
complexity of the problem, and the computational efficiency required. All the models were
trained in their default setting from the scikit-learn (version 1.4.2) python package. Many
existing studies do use default settings for generating ML models using the algorithms
mentioned above [32–35].

2.5.2. DLT Models

DLT models have significantly advanced NLP tasks by introducing domain-specific
language models like ClinicalBERT, BioBERT, and PubMedBERT. These models are varia-
tions of the BERT (Bidirectional Encoder Representations from Transformers) architecture.
ClinicalBERT is tailored for clinical notes and electronic health records (EHRs). BioBERT
is trained on a massive dataset including PubMed abstracts and PMC full-text articles.
PubMedBERT is exclusively pre-trained from scratch on PubMed, ensuring its proficiency
in understanding and processing the sophisticated language used in biomedical litera-
ture. These models serve as powerful foundations for generating predictive models. We
used the model versions Dmis Lab biobert-base-cased-v1.2 for BioBERT, emilyalsentzer
Bio_ClinicalBERT as ClinicalBERT, and Microsoft BiomedNLP-PubMedBERT-base-uncased-
abstract-fulltext as PubMedBERT models. All models were downloaded from the Hugging
Face Repository (https://huggingface.co/dmis-lab/biobert-v1.1, accessed on 2 July 2024;
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT, accessed on 2 July 2024; https:
//huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract, accessed
on 2 July 2024. The models can be accessed with a free account on Hugging Face Repository.

We fine-tuned the DLT models using PyTorch Build (2.2.2) with Python 3.8 and
NVIDIA Compute Unified Device Architecture (CUDA) 11.8 version. For fine-tuning,
the ‘batch size’ was set to 16. The ‘AdamW optimizer’ was employed with a learning rate
of 8 × 10−7 to adjust the model weights gradually. The ‘epsilon’ parameter was set to
1 × 10−8 to enhance numerical stability during optimization. The training was conducted
over 30 ‘epochs’, allowing the model with sufficient iterations to learn from the dataset
while mitigating the risk of overfitting through exposure to the data. The ‘max_length’
parameter truncates or pads the input sequences to a fixed length of 128 tokens, ensuring
uniformity in input size and optimizing computational efficiency. The addition of special
tokens, attention masks, and the application of truncation are essential for the model to
correctly interpret the start and end of sentences and manage varying sentence lengths; the
padding strategy is set to the longest sequence in a batch, which standardizes input length
without unnecessary computation on padding tokens. These parameters are critical for the
models to effectively learn from the data and are chosen to optimize performance given the
computational constraints and the nature of the specific downstream task.

2.5.3. LLMs

We developed a detailed prompt (Figure 3) that serves as an input to the LLMs used
in the study. We used two distinct learning paradigms: zero-shot learning, where the
models are tasked to infer the relations without any prior specific examples, and three-shot
learning, where the models are provided with three illustrative instances—encompassing
both positive and negative relational sentences—to guide their performance. The approach
evaluates the models’ abilities to predict the relations between miRNA and mRNA in the
input sentence based on the limited information.

https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
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2.6. Data Visualization

We mapped the disease(s) related to each miRNA–mRNA pair annotated as positive
in the MMIC corpus. We used Gephi (version 0.10.0), an open-source network analysis and
visualization software, for generating the miRNA–mRNA–disease network. Our objective
was to visualize the miRNA–mRNA pair across five chronic diseases, namely COPD, AD,
stroke, T2DM, and chronic liver disease.

2.7. Pathway Enrichment Analysis

We performed a pathway enrichment analysis for mRNA and miRNA mentioned in
the MMIC corpus. For mRNA, we used ReactomePA package v 1.38.0 [36]. For miRNA,
we used miRPathDB v 2.0 [37]. ReactomePA utilizes a specific hypothesis test, such as a
hypergeometric test or Fisher’s exact test, to retrieve the pathways associated with mRNAs.
We used the hypergeometric test to determine if the number of given genes (differentially
expressed genes (DEGs)) in a pathway was greater than what would be expected by chance.
The p-value was calculated using the hypergeometric distribution (Equation (1)):

P(X = x) =

(
M
x

)(
N − M
K − x

)
(

N
K

) (1)

Here, N represents the total number of genes in the background set, M represents
the total number of genes in the pathway, K represents the total number of DEGs, and x
represents the number of DEGs in the pathway.

The calculated p-value represents the probability of observing x or more DEGs in the
pathway by chance. Since multiple pathways were tested simultaneously, the p-values
were adjusted to control the false discovery rate (FDR). This adjustment was carried out
using standard methods such as the Benjamini–Hochberg procedure. The pathways with
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significant q-values (i.e., adjusted p-values < 0.05) associated with mRNA in ReactomePA
were retrieved. The pathways associated with miRNA and its target mRNA were retrieved
from miRPathDB [36]. To create an interactive heatmap, miRPathDB utilizes all significantly
enriched pathways for miRNA targets, constructs a matrix of −log10-transformed p-values,
and clusters similar miRNAs and pathways using hierarchical clustering.

3. Results
3.1. MMIC Corpus

The MMIC corpus from 390 PubMed abstracts (342 PubMed abstracts in the training
set and 215 PubMed abstracts in the test set) include the annotations for miRNA–mRNA
interactions for five chronic diseases, namely COPD, AD, stroke, T2DM, and chronic liver
disease. The corpus includes 1000 annotated sentences, and it is meticulously balanced
between positive and negative sentences. The training dataset includes 700 sentences,
with 354 positives and 346 negatives, reflecting a nearly equal distribution. The test
subset consists of 300 sentences, with 146 positives and 154 negatives (Table 1). The
training dataset contains a total of 182 unique miRNA entities and 339 unique mRNA
entities. In comparison, the test dataset includes 130 unique miRNA entities and 201 unique
mRNA entities. This distinction highlights the diversity and quantity of miRNA and
mRNA entities present in each dataset and provides a comprehensive overview of the
molecular components analyzed within the datasets. We kept this symmetrical allocation
for the development of robust ML models as it prevents the bias that could result from
the overrepresentation of any category. Additionally, the equitable distribution across
the training and test datasets allows the robust evaluation of model accuracy in varied
real-world situations where the prevalence of outcomes may not be inherently skewed. The
average sentence length is provided as a density plot in Figure 4.

Table 1. Statistics of MMIC corpus.

Positives Negatives Total

Train 354 346 700
Test 146 154 300

MMIC corpus 500 500 1000
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3.2. Performance of ML, DLT, and LLM Models

Table 2 shows the performance of the ML, DLT, and LLM models using MMIC corpus.
Among the ML models, XGBoost shows the best performance of 0.67 precision, 0.67 recall,
and 0.66 F-score. Among the DLT models, PubMedBERT shows the best performance of
0.783 precision, 0.783 recall, and 0.783 F-score. Among the LLMs, Llama 2, in a zero-shot
experiment, shows the best performance of 0.681 F-score. Interestingly, Claude 2 achieved
the highest precision of 0.587 and Llama 2, in the three-shot experiement, achieved the
highest recall of 0.87 among the LLMs. Among all the models, PubMedBERT achieved the
best performance. The F1-score of the DLT models on test data for 30 epochs is given in
Figure 5a–c. Details of the training and validation loss for PubMedBERT, BioBERT, and
ClinicalBERT for 30 epochs are provided in Figures S2–S4. Overall, the ML models generally
exhibited a consistent and balanced performance (Supplemental Data S1). The DLT models,
especially those fine-tuned on biomedical texts like BioBERT and PubMedBERT, showed
the highest performance among all three types of models. The LLMs demonstrated varying
performances, with notable strengths in specific areas like recall for Llama-2.

Table 2. Performance of ML, DLT, and LLM models on MMIC corpus.

Type Model Experiment Precision Recall F-Score

ML SVM - 0.620 0.620 0.620
Logical

regression - 0.650 0.650 0.650

KNN - 0.550 0.540 0.530
Decision tree - 0.650 0.650 0.650

Random
forest - 0.656 0.656 0.650

XGBoost - 0.670 0.670 0.660
LightGBM - 0.650 0.640 0.640

DLT ClinicalBERT - 0.674 0.673 0.672
BioBERT - 0.754 0.750 0.748

PubMedBERT - 0.783 0.783 0.783
LLM GPT-3.5 Zero-shot 0.536 0.664 0.593

Three-shot 0.523 0.384 0.443
GPT-4 Zero-shot 0.484 0.103 0.170

Three-shot 0.476 0.137 0.213
Claude 2 Zero-shot 0.587 0.507 0.544

Three-shot 0.584 0.452 0.510
Llama 2 Zero-shot 0.563 0.863 0.681

Three-shot 0.555 0.870 0.677
Underline: Best performance with each type; Bold: Best performance among all models.

3.3. miRNA–mRNA–Disease Network

Apart from the five chronic diseases considered for retrieving the PubMed abstracts,
the miRNA–mRNA relations are linked with other chronic diseases such as breast cancer,
prostate cancer, colorectal cancer, and gastric cancer. miRNA–mRNA–disease network is
provided in Figure S5.

3.4. Enrichment Analysis

An elucidation of the biological pathways associated with mRNA-miRNA relations
was conducted through pathway enrichment analysis using the ReactomePA package on a
curated list of mRNA. This package utilizes the p-value to find the significantly enriched
pathways. The pathways with adjusted p-values (often referred to as q-values) below a
certain threshold (i.e., 0.05) were considered to be significantly enriched. The pathways
with a q-value < 0.05 were considered to be significantly enriched with DEGs, suggesting
that they may be biologically relevant to the condition under study. The pathways with
a q-value ≥ 0.05 were not considered to be significantly enriched. These pathways imply
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that any observed enrichment could be due to random chance. ReactomePA identifies
the pathways based on q-value. The selected pathways were likely to be involved in the
biological processes related to the diseases under study. This is based on the enrichment of
DEGs.
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We determined several pathways that are significantly associated with our mRNA
list. These pathways provide insights into the underlying disease mechanisms. We filtered
the significantly enriched pathways with a q-value threshold of < 0.05. The pathways
related to cancer, apoptosis, and cellular stress responses were prominent among the
significant findings (Figure 6). Our analysis shows that several identified pathways (e.g.,
PI3K-Akt signaling pathway, Interleukin signaling pathway) are directly implicated in
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cancer development and progression. The PI3K-Akt signaling pathway plays a crucial role
in cell survival and growth, and the Interleukin signaling pathway is associated with cell
proliferation and differentiation.
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To further explore the functional implications of miRNAs and their target mRNAs,
we utilized miRPathDB for pathway analysis. This approach allowed us to identify the
pathways specifically associated with miRNA regulation and their potential impact on
gene expression. The results from miRPathDB were visualized as a heatmap, facilitating
a comprehensive view of the miRNA-regulated pathways and their target mRNAs. The
heatmap revealed several key pathways regulated by miRNAs, including those involved
in cancer, apoptosis, and signaling pathways, as illustrated in Figure 7.

The pathway enrichment analyses using ReactomePA and miRPathDB collectively
highlighted the multifaceted roles of mRNA-miRNA interactions in disease mechanisms.
The identification of significant pathways related to cancer, apoptosis, immune regulation,
and metabolic processes underscores the complexity and importance of miRNA-mediated
gene regulation. These findings provide a foundation for further experimental validation
and offer potential therapeutic targets for disease intervention.
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4. Discussion

Comparing our NLP/LLM pipeline with the existing approaches on extracting miRNA–
mRNA interactions from PubMed abstracts is impossible for various reasons. Among the
four existing approaches, miRTex [30] and miRSel [31] have been released as web-based
tools. The dataset used for evaluating miRTex has been released as a structured text that
includes PMID, miRNA, mRNA, direction, and relation type. However, the exact sentence
with miRNA and mRNA from the PubMed abstract is not available. For a fair compari-
son with our pipeline, we need the exact dataset with annotation used by miRTex. The
dataset used for evaluating miRSel is not available. Thus, evaluating our approach on
the dataset used for miRSel is impossible. The dataset used for evaluating IBRel [32] and
the approach developed by Lou et al. [33] are available as free-text without entity-level
annotation for miRNA and mRNA. It is impossible to evaluate our approach on this dataset
without entity-level annotation. We also explored the possibility of evaluating the existing
approaches on our MMIC corpus. The web interface of both miRTex and miRSel are not
functioning. Though the source code is available for IBRel and the approach developed by
Lou et al., it is impossible to validate their performance on an MMIC corpus that includes
annotations for miRNA and mRNA in the input sentences.

Although LLMs are known to excel in tasks such as summarization and reasoning,
there are reports indicating that LLMs underperform in information extraction (IE) tasks,
particularly in biomedical domains such as relation extraction [29]. Our recent work on
extracting relations using three standard corpora validates the underperformance of GPT-
3.5.turbo and GPT-4 [29]. Interestingly, the current study on extracting miRNA–mRNA
interactions from PubMed abstracts also shows the underperformance of LLMs when
compared to PubMedBERT.

ML models like SVM and Logistic regression show moderate effectiveness, with
performance peaking around 0.65. These traditional models remain relevant, particularly
in scenarios where computational efficiency is critical. In contrast, KNN underperforms
within this group, likely due to its sensitivity to the choice of ‘k’ and the distance metric
used in higher-dimensional spaces. Decision trees and their ensemble version, Random
Forest, demonstrate better performance, with Random Forest slightly outperforming due
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to its ability to reduce overfitting by averaging multiple decision trees. Boosted ML
models such as XGBoost and LightGBM exhibit improvements over traditional algorithms,
highlighting the effectiveness of boosting techniques in managing bias–variance trade-offs.
XGBoost leads in this category, showcasing the strength of gradient-boosting frameworks
in achieving higher accuracy by sequentially correcting the errors of weak learners.

DLT models, including ClinicalBERT, BioBERT, and PubMedBERT, significantly out-
perform other categories. PubMedBERT achieved the highest scores across all metrics.
This superior performance underscores the benefits of domain-specific pre-training, which
enhances model understanding and contextual interpretation, for the relation extraction
task, particularly in complex fields like biomedicine. These models are highly valuable for
relation extraction tasks requiring precise and reliable interpretations due to their nuanced
understanding of language.

The reason for PubMedBERT’s superior performance may be domain-specific pre-
training using contextual embeddings. Compared to clinicalBERT, PubMedBERT is specif-
ically pre-trained on the biomedical literature. This gives an inherent advantage to Pub-
MedBERT in understanding and processing biomedical texts. SciBERT, on the other hand,
is trained on a broader range of scientific texts from various disciplines, which might
dilute its effectiveness in the biomedical domain, potentially leading to less accurate rep-
resentations of biomedical-specific terms like mRNA and miRNA in the vocabulary. This
domain-specific pre-training allows PubMedBERT to capture the nuances and specialized
terminology frequently used in the biomedical literature, which other models might miss.
Traditional ML models like SVM and LR rely heavily on manually engineered features.
In the complex domain of biomedical texts, capturing the necessary features to identify
relations accurately is challenging and often insufficient compared to deep learning models
that learn the features automatically. These models typically use bag-of-words or simple
n-gram approaches, which do not capture the context of words as effectively as transformer-
based models. This limitation hinders their ability to understand and extract relations
that depend on the broader context within sentences. The performance of these models
tends to peak around 0.65 because they reach the limits of what can be achieved with linear
separability and the engineered features. Without the ability to capture complex patterns
and dependencies in the text, their effectiveness is constrained.

LLMs such as variants of GPT and Claude show mixed results, with some config-
urations of GPT models scoring lower, possibly reflecting challenges in domain-specific
applications without extensive fine-tuning. These results are, in turn, aligned with the other
reported results for relation extraction tasks in biomedical informatics. However, Llama
models demonstrate exceptional recall, suggesting their potential utility in the relation
extraction applications. Llama seems to capture as many relevant instances as possible.
This feature could be particularly beneficial in preliminary data exploration phases or broad
information retrieval tasks. The further fine-tuning of open-sourced LLaMA models could
have great potential applications in relation extraction tasks.

Overall, the observed variances in model performances suggest that the choice of
model in biomedical relation extraction must be informed by the specific requirements.
These include considerations of computational resources, the need for precision or recall,
and the complexity of the data. While transformer-based models show great promise, their
computational demands and extensive data requirements might limit their feasibility for
certain other IE applications. The ongoing advancements in LLMs indicate a promising
future where the models might soon close the performance gap through more refined train-
ing techniques such as fine-tuning, retrieval-augmented generation (RAG), and improved
architectures. Continued research and development are crucial in leveraging these insights,
potentially leading to the development of more robust, efficient, and accurate models across
various domains.

Limitations and Future Enhancement: One of the major limitations of the study is
model generalizability and transferability. The relation extraction models trained on specific
datasets may struggle to perform well on unseen data, particularly if the training data do
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not sufficiently cover the variability found in real-world applications. The specificity of
miRNA–mRNA interactions related to five diseases may limit the ability of the models to
generalize across different sub-domains of biomedicine. Since the study focuses specifically
on selected diseases, other gold-standard miRNA-gene relation extraction datasets were
not evaluated.

As a future enhancement of the study to address generalizability and transferability,
we will diversify the training datasets. This can be achieved by incorporating miRNA–
mRNA interaction data across a broader range of diseases and experimental setups beyond
the five diseases under study. To further address the issue of limited generalizability,
implementing rigorous cross-dataset validation techniques would be beneficial. To further
improve the performance of the best performing LLM, Llama 2, we will fine tune the
model weights using RAG methods and other new techniques such as QLoRA (Quantized
Low-Rank Adaptation) methods.

5. Conclusions

We developed an NLP/LLM pipeline to extract miRNA–mRNA interactions from
PubMed abstracts and genomic analysis to understand the critical role of miRNA–mRNA in-
teractions in various biological processes and disease mechanisms. To evaluate the pipeline,
we annotated the MMIC corpus and released it as open source. We further conducted a
network study to understand all the diseases linked to miRNA–mRNA in the MMIC corpus.
We also performed a pathway enrichment analysis to understand the significant pathways
related to miRNA–mRNA interactions. The findings from pathway analysis contribute
to a deeper understanding of the molecular mechanisms of diseases and offer a roadmap
for future research and therapeutic development. Overall, the study demonstrates the
effectiveness of integrating NLP/LLM with genomic analysis to explore the complex roles
of miRNAs in disease pathogenesis, paving the way for future experimental validation and
therapeutic advancements.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/biomedicines12071535/s1: Figure S1: Confusion matrix on prediction on test
set for the baseline machine learning models; Figure S2: F-score on test dataset, validation loss, and
training loss for PubMedBERT; Figure S3: F1-score on test dataset, validation loss, and training loss for
BioBERT; and Figure S4: F1-score on test data, validation loss and training loss for ClinicalBERT. Figure S5:
miRNA–mRNA–disease network from all the positive annotated relations.

Author Contributions: Conceptualization, B.B., S.M., O.R.I., G.M., A.P. and K.R.; methodology: B.B.,
S.M., O.R.I., G.M., A.P. and K.R.; validation, B.B., S.M., O.R.I., G.M., A.P. and K.R.; formal analysis,
B.B., S.M., O.R.I., G.M., A.P. and K.R.; investigation, B.B., A.P. and K.R.; data curation, S.M. and
O.R.I.; writing (original draft preparation), B.B., S.M., O.R.I., G.M., A.P. and K.R.; writing (review
and editing), B.B., S.M., O.R.I., G.M., A.P. and K.R.; visualization, B.B. and A.P.; supervision, K.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The newly created miRNA–mRNA Interaction Corpus (MMIC) and
codes are available at https://github.com/balubhasuran/miRNA_mRNA-Relation-Extraction (ac-
cessed on 2 July 2024).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Valinezhad, O.A.; Safaralizadeh, R.; Kazemzadeh-Bavili, M. Mechanisms of miRNA-Mediated Gene Regulation from Common

Downregulation to mRNA-Specific Upregulation. Int. J. Genom. Proteom. 2014, 2014, 970607. [CrossRef] [PubMed]
2. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front.

Endocrinol. 2018, 9, 402. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/biomedicines12071535/s1
https://www.mdpi.com/article/10.3390/biomedicines12071535/s1
https://github.com/balubhasuran/miRNA_mRNA-Relation-Extraction
https://doi.org/10.1155/2014/970607
https://www.ncbi.nlm.nih.gov/pubmed/25180174
https://doi.org/10.3389/fendo.2018.00402
https://www.ncbi.nlm.nih.gov/pubmed/30123182


Biomedicines 2024, 12, 1535 15 of 16

3. Leitão, A.L.; Enguita, F.J. A Structural View of miRNA Biogenesis and Function. Non-Coding RNA 2022, 8, 10. [CrossRef]
[PubMed]

4. Ni, W.-J.; Leng, X.-M. Dynamic miRNA–mRNA paradigms: New faces of miRNAs. Biochem. Biophy. Rep. 2015, 4, 337–341.
[CrossRef] [PubMed]

5. Pillai, R.S. MicroRNA function: Multiple mechanisms for a tiny RNA? RNA 2005, 11, 1753–1761. [CrossRef] [PubMed]
6. Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [PubMed]
7. Raja, K.; Subramani, S.; Natarajan, J. PPInterFinder—A mining tool for extracting causal relations on human proteins from

literature. Database J. Biol. Databases Curation 2013, 2013, bas052. [CrossRef]
8. Millikin, R.J.; Raja, K.; Steill, J.; Lock, C.; Tu, X.; Ross, I.; Tsoi, L.C.; Kuusisto, F.; Ni, Z.; Livny, M.; et al. Serial KinderMiner (SKiM)

discovers and annotates biomedical knowledge using co-occurrence and transformer models. BMC Bioinform. 2023, 24, 412.
[CrossRef] [PubMed]

9. Maroli, N.; Kalagatur, N.K.; Bhasuran, B.; Jayakrishnan, A.; Manoharan, R.R.; Kolandaivel, P.; Natarajan, J.; Kadirvelu, K.
Molecular Mechanism of T-2 Toxin-Induced Cerebral Edema by Aquaporin-4 Blocking and Permeation. J. Chem. Infor. Mod. 2019,
59, 4942–4958. [CrossRef]

10. Wu, H.; Zhou, G.; Xia, Y.; Liu, H.; Zhang, T. Self-distillation framework for document-level relation extraction in low-resource
environments. PeerJ Comput. Sci. 2024, 10, e1930. [CrossRef]

11. Zhao, Y.; Yuan, X.; Yuan, Y.; Deng, S.; Quan, J. Relation extraction: Advancements through deep learning and entity-related
features. Soc. Net. Analy Min. 2023, 13, 92. [CrossRef] [PubMed]

12. Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [CrossRef] [PubMed]

13. Yu, G.; Robert, T.; Hao, C.; Michael, L.; Naoto, U.; Xiaodong, L.; Tristan, N.; Jianfeng, G.; Hoifung, P. Domain-Specific Language
Model Pretraining for Biomedical Natural Language Processing. ACM Trans. Comput. Healthc. (HEALTH) 2021, 3, 2. [CrossRef]

14. Peng, C.; Yang, X.; Smith, K.E.; Yu, Z.; Chen, A.; Bian, J.; Wu, Y. Model tuning or prompt Tuning? a study of large language
models for clinical concept and relation extraction. J. Biomed. Inform. 2024, 153, 104630. [CrossRef] [PubMed]

15. Wadhwa, S.; Amir, S.; Wallace, B.C. Revisiting Relation Extraction in the era of Large Language Models. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, 9–14 July 2023; pp. 15566–15589.
[CrossRef]

16. Trifiro, G.; Fourrier-Reglat, A.; Sturkenboom, M.C.J.M.; Díaz Acedo, C.; Van Der Lei, J.; EU-ADR Group. The EU-ADR project:
Preliminary results and perspective. In Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2009;
Volume 148, pp. 43–49.

17. Mulligen, E.M.; Fourrier-Reglat, A.; Gurwitz, D.; Molokhia, M.; Nieto, A.; Trifiro, G.; Kors, J.A.; Furlong, L.I. The EU-ADR corpus:
Annotated drugs, diseases, targets, and their relationships. J. Biomed. Inform. 2012, 45, 879–884. [CrossRef] [PubMed]

18. Becker, K.G.; Barnes, K.C.; Bright, T.J.; Wang, S.A. The Genetic Association Database. Nat. Gen. 2004, 36, 431–432. [CrossRef]
[PubMed]

19. Krallinger, M.; Rabal, O.; Akhondi, S.A.; Pérez, M.P.; Santamaría, J.; Rodríguez, G.P.; Tsatsaronis, G.; Intxaurrondo, A.; López,
J.A.; Nandal, U.K.; et al. Overview of the BioCreative VI chemical-Protein Interaction Track. 2017. Available online: https:
//biocreative.bioinformatics.udel.edu/media/store/files/2017/chemprot_overview_v03.pdf (accessed on 17 May 2024).

20. Zhang, J.; Wibert, M.; Zhou, H.; Peng, X.; Chen, Q.; Keloth, V.K.; Hu, Y.; Zhang, R.; Xu, H.; Raja, K. A Study of Biomedical Relation
Extraction Using GPT Models. AMIA Jt. Summits Transl. Sci. Proc. 2024, 2024, 391–400. [PubMed]

21. Li, G.; Ross, K.E.; Arighi, C.N.; Peng, Y.; Wu, C.H.; Vijay-Shanker, K. miRTex: A Text Mining System for miRNA-Gene Relation
Extraction. PLoS Comput. Biol. 2015, 11, e1004391. [CrossRef] [PubMed]

22. Naeem, H.; Küffner, R.; Csaba, G.; Zimmer, R. miRSel: Automated extraction of associations between microRNAs and genes from
the biomedical literature. BMC Bioinform. 2010, 11, 135. [CrossRef]

23. Lamurias, A.; Clarke, L.A.; Couto, F.M. Extracting microRNA-gene relations from biomedical literature using distant supervision.
PLoS ONE 2017, 12, e0171929. [CrossRef]

24. Luo, M.; Li, S.; Pang, Y.; Yao, L.; Ma, R.; Huang, H.-Y.; Huang, H.-D.; Lee, T.-Y. Extraction of microRNA-target interaction
sentences from biomedical literature by deep learning approach. Brief. Bioinformatics 2023, 24, bbac497. [CrossRef]

25. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.
LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971.

26. Gupta, M. LangChain in Your Pocket: Beginner’s Guide to Building Generative AI Applications Using LLMs. 2024. Available
online: https://play.google.com/store/books/details?id=DAgFEQAAQBAJ (accessed on 2 July 2024).

27. Bai, J.; Kamatchinathan, S.; Kundu, D.J.; Bandla, C.; Vizcaíno, J.A.; Perez-Riverol, Y. Open-source large language models in action:
A bioinformatics chatbot for PRIDE database. Proteomics 2024, e2400005. [CrossRef] [PubMed]

28. Agarwal, M.; Goswami, A.; Sharma, P. Evaluating ChatGPT-3.5 and Claude-2 in Answering and Explaining Conceptual Medical
Physiology Multiple-Choice Questions. Cureus 2023, 15, e46222. [CrossRef] [PubMed]

29. Wigton, E.J.; Mikami, Y.; McMonigle, R.J.; Castellanos, C.A.; Wade-Vallance, A.K.; Zhou, S.K.; Kageyama, R.; Litterman, A.; Roy,
S.; Kitamura, D.; et al. MicroRNA-directed pathway discovery elucidates an miR-221/222-mediated regulatory circuit in class
switch recombination. J. Exp. Med. 2021, 218, e20201422. [CrossRef] [PubMed]

https://doi.org/10.3390/ncrna8010010
https://www.ncbi.nlm.nih.gov/pubmed/35202084
https://doi.org/10.1016/j.bbrep.2015.10.011
https://www.ncbi.nlm.nih.gov/pubmed/29124222
https://doi.org/10.1261/rna.2248605
https://www.ncbi.nlm.nih.gov/pubmed/16314451
https://www.ncbi.nlm.nih.gov/pubmed/23407304
https://doi.org/10.1093/database/bas052
https://doi.org/10.1186/s12859-023-05539-y
https://www.ncbi.nlm.nih.gov/pubmed/37915001
https://doi.org/10.1021/acs.jcim.9b00711
https://doi.org/10.7717/peerj-cs.1930
https://doi.org/10.1007/s13278-023-01095-8
https://www.ncbi.nlm.nih.gov/pubmed/37325108
https://doi.org/10.1093/bioinformatics/btz682
https://www.ncbi.nlm.nih.gov/pubmed/31501885
https://doi.org/10.1145/3458754
https://doi.org/10.1016/j.jbi.2024.104630
https://www.ncbi.nlm.nih.gov/pubmed/38548007
https://doi.org/10.18653/v1/2023.acl-long.868
https://doi.org/10.1016/j.jbi.2012.04.004
https://www.ncbi.nlm.nih.gov/pubmed/22554700
https://doi.org/10.1038/ng0504-431
https://www.ncbi.nlm.nih.gov/pubmed/15118671
https://biocreative.bioinformatics.udel.edu/media/store/files/2017/chemprot_overview_v03.pdf
https://biocreative.bioinformatics.udel.edu/media/store/files/2017/chemprot_overview_v03.pdf
https://www.ncbi.nlm.nih.gov/pubmed/38827097
https://doi.org/10.1371/journal.pcbi.1004391
https://www.ncbi.nlm.nih.gov/pubmed/26407127
https://doi.org/10.1186/1471-2105-11-135
https://doi.org/10.1371/journal.pone.0171929
https://doi.org/10.1093/bib/bbac497
https://play.google.com/store/books/details?id=DAgFEQAAQBAJ
https://doi.org/10.1002/pmic.202400005
https://www.ncbi.nlm.nih.gov/pubmed/38556628
https://doi.org/10.7759/cureus.46222
https://www.ncbi.nlm.nih.gov/pubmed/37908959
https://doi.org/10.1084/jem.20201422
https://www.ncbi.nlm.nih.gov/pubmed/34586363


Biomedicines 2024, 12, 1535 16 of 16

30. Prabahar, A.; Raja, K. Integrated Approaches to Identify miRNA Biomarkers Associated with Cognitive Dysfunction in Multiple
Sclerosis Using Text Mining, Gene Expression, Pathways, and GWAS. Diagnostics 2022, 12, 1914. [CrossRef] [PubMed]

31. Bhasuran, B.; Murugesan, G.; Abdulkadhar, S.; Natarajan, J. Stacked ensemble combined with fuzzy matching for biomedical
named entity recognition of diseases. J. Biomed. Inform. 2016, 64, 1–9. [CrossRef] [PubMed]

32. Zhang, Y.; Yang, Y.; Ren, L.; Ning, L.; Zou, Q.; Luo, N.; Zhang, Y.; Liu, R. RDscan: Extracting RNA-disease relationship from the
literature based on pre-training model. Methods 2024, 228, 48–54. [CrossRef] [PubMed]

33. Wei, Q.; Ji, Z.; Li, Z.; Du, J.; Wang, J.; Xu, J.; Xiang, Y.; Tiryaki, F.; Wu, S.; Zhang, Y.; et al. A study of deep learning approaches for
medication and adverse drug event extraction from clinical text. J. Am. Med. Inform. Assoc. 2020, 27, 13–21. [CrossRef]

34. Alimova, I.; Tutubalina, E. Multiple features for clinical relation extraction: A machine learning approach. J. Biomed. Inform. 2020,
103, 103382. [CrossRef]

35. Levy, J.J.; O’Malley, A.J. Don’t dismiss logistic regression: The case for sensible extraction of interactions in the era of machine
learning. BMC Med. Res. Methodol. 2020, 20, 171. [CrossRef] [PubMed]

36. Yu, G.; He, Q.-Y. ReactomePA: An R/Bioconductor package for reactome pathway analysis and visualization. Mol. BioSyst. 2016,
12, 477–479. [CrossRef] [PubMed]

37. Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stöckel, D.; Meese, E.; Lenhof, H.-P.; Keller, A. miRPathDB 2.0: A novel release of the
miRNA Pathway Dictionary Database. Nuc. Acids Res. 2020, 48, D142–D147. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/diagnostics12081914
https://www.ncbi.nlm.nih.gov/pubmed/36010264
https://doi.org/10.1016/j.jbi.2016.09.009
https://www.ncbi.nlm.nih.gov/pubmed/27634494
https://doi.org/10.1016/j.ymeth.2024.05.012
https://www.ncbi.nlm.nih.gov/pubmed/38789016
https://doi.org/10.1093/jamia/ocz063
https://doi.org/10.1016/j.jbi.2020.103382
https://doi.org/10.1186/s12874-020-01046-3
https://www.ncbi.nlm.nih.gov/pubmed/32600277
https://doi.org/10.1039/C5MB00663E
https://www.ncbi.nlm.nih.gov/pubmed/26661513
https://doi.org/10.1093/nar/gkz1022
https://www.ncbi.nlm.nih.gov/pubmed/31691816

	Introduction 
	Materials and Methods 
	Overall Workflow 
	Retrieval and Preprocessing 
	Entity Recognition 
	Annotation 
	Model Generation 
	ML Models 
	DLT Models 
	LLMs 

	Data Visualization 
	Pathway Enrichment Analysis 

	Results 
	MMIC Corpus 
	Performance of ML, DLT, and LLM Models 
	miRNA–mRNA–Disease Network 
	Enrichment Analysis 

	Discussion 
	Conclusions 
	References

