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Abstract: Prion diseases are neurodegenerative disorders caused by misfolded prion proteins. Al-
though rare, the said diseases are always fatal; they commonly cause death within months of
developing clinical symptoms, and their diagnosis is exceptionally difficult pre-mortem. There are no
known cures or treatments other than symptomatic care. Given the aggressiveness of prion diseases
on onset, therapies after disease onset could be challenging. Prevention to reduce the incidence or to
delay the disease onset has been suggested to be a more feasible approach. In this perspective article,
we summarize our current understandings of the origin, risk factors, and clinical manifestations
of prion diseases. We propose a PCR testing of the blood to identify PRNP gene polymorphisms
at codons 129 and 127 in individuals with familial PRNP mutations to assess the risk. We further
present the CRISPR/Cas9 gene editing strategy as a perspective preventative approach for these
high-risk individuals to induce a polymorphic change at codon 127 of the PRNP gene, granting im-
munity to prion diseases in selected high-risk individuals, in particular, in individuals with familial
PRNP mutations.
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1. Introduction

Misfolded prions are unique infectious agents composed entirely of protein [1]. Unlike
other pathogens, prions lack nucleic acids and consist solely of misfolded protein forms. The
term “prion” is derived from “proteinaceous infectious particles” [2]. Normal mammalian
tissues ubiquitously express the non-pathogenic form of the prion protein (PrPC), with
particularly high expression in the central nervous system (CNS) [3]. PrPC is expressed
on the cell surface and is implicated in key cellular processes including cell signaling
and adhesion, neurogenesis, and neuronal homeostasis [4–8]. Prion diseases, also known
as transmissible spongiform encephalopathies (TSEs), are subacute and fatal disorders
that result in the neurodegeneration of the central nervous system (CNS) [5]. Common
TSEs include Creutzfeldt–Jakob disease (CJD) and kuru in humans, scrapie in sheep, and
bovine spongiform encephalopathy (BSE) in cows [9]. Here, we provide a concise review
of our current understanding of the molecular genesis of TSEs and propose a perspective
preventative approach to eliminate or reduce the prevalence of prion diseases in high-
risk individuals.

TSEs are caused by a misfolded isoform of PrPC known as the scrapie prion pro-
tein (PrPSc), although the exact mechanisms behind prion misfolding are not entirely
understood and are an active subject of ongoing research [10]. PrPSc is highly prone to
aggregation and can induce the misfolding of additional PrPC molecules, leading to the
formation of neurotoxic amyloid plaques and fibrils in the brain [11,12]. This pathogenic
feature of PrPSc gave these disorders the name “Prion Diseases”. Structural comparisons
demonstrated that the normal prion protein PrPC has a pronounced α-helical structure,
while the pathogenic prion protein PrPSc has an exceedingly high abundance of, nearly
all, β-sheets [13–15] (Figure 1). The conformational changes in PrPSc make it resistant to
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proteolytic degradation, further promoting plaque and fibril formation [16]. In addition
to their protease-resistant properties, TSEs are characterized by their inability to elicit a
detectable immune response [17,18]. Unlike most diseases, the infectious agent PrPSc is a
protein peptide that has an identical amino acid sequence to the normal cellular protein
isoform PrPC [19]. This feature prevents the immune system from eliciting active immune
responses against the misfolded PrPSc particles [4,5,20–22]. Therapeutic approaches, such
as targeting PrPSc-encoding nucleic acids or monoclonal antibodies targeting PrPSc are
challenged by its identical peptide sequence to PrPC and the critical role of PrPC in normal
cellular physiology [23]. Moreover, the lack of effective treatments and early diagnostic
markers often results in a non-definitive diagnosis at an advanced stage of the disease,
further complicating efforts to manage or cure TSEs [24]. With the lessons from the kuru epi-
demic and our understanding of the human PRNP gene polymorphisms at codon positions
127 and 129 [25], we propose a perspective preventive approach utilizing CRISPR/Cas9
technology to induce PRNP gene polymorphism at codon positions 127 and 129 to provide
resistance to prion diseases in high-risk individuals. Given the infancy stage of the CRISPR
technology, we also discuss the current challenges of utilizing this technology in humans.

Figure 1. Images of the tertiary structure of human prion proteins. (a) is the pathogenic protease-resistant
misfolded scrapie prion isoform (PrPSc) with a high abundance of β-pleated sheets. (b) is the normal
cellular prion protein (PrPC) with an α-helical structure. (a,b) are adapted from Huang et al. [26].
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2. Current Understandings of Human TSEs

Prion diseases can be sporadic, genetic, or acquired [5]. Sporadic TSEs make up
approximately 85% of prion diseases in humans, identified by the spontaneous conversion
of PrPC into PrPSc with unknown cellular drivers [5,25]. Genetic TSEs are suspected to
occur when the autosomal dominant mutation in the PRNP gene is inherited by children of
whom at least one parent is a carrier [27,28]. Genetic TSEs contribute to 9–15% of human
cases [29]. Acquired prion diseases have foodborne transmission and can be spread either
zoonotically or between humans [30]. Other sources of acquired TSEs are the iatrogenic
inoculation from prion-contaminated medical devices, such as surgical instruments and
electrodes, and blood transfusions [31].

Human TSEs can present as kuru, Creutzfeldt–Jakob disease (CJD), Gerstmann–
Sträussler–Scheinker syndrome (GSS), and fatal insomnia (FI), with the majority being
CJD [32,33]. The most notable forms of CJD are sporadic CJD (sCJD) and variant CJD
(vCJD), though they can also be transmitted genetically as familial CJD (fCJD) or iatrogeni-
cally (iCJD) [32–34]. sCJD contributes to approximately 85% of human prion diseases [5].
The precise drivers or risk factors for sCJD are not clear. However, methionine homozygos-
ity at codon 129 (Met129/Met129) in the PRNP gene is one of the recognized high-risk factors
for sCJD [35]. Data from three series studies in nine countries revealed that a mutation of
Met129 contributes to at least 70% of the sCJD cases [35–37]. Age is also a risk factor for
the Met129 mutation, with advanced ages being more susceptible [38]. vCJD is a zoonotic
form that is contracted through the consumption of cattle affected by bovine spongiform
encephalopathy (BSE), a prion disease that affects cows commonly referred to as “Mad Cow
Disease” [39,40].

sCJD primarily exhibits clinical symptoms later in life, appearing in individuals
between 55 and 75 years old [41,42]. Although the subclinical phase can be years to
decades, the disease rapidly progresses on onset and is always fatal, with approximately
90% of patients dying within a year after the non-specific onset of symptoms [41,42]. While
symptoms are highly variable, patients may initially exhibit vertigo, fatigue, insomnia, and
headache [43]. These symptoms can be accompanied by memory loss, behavioral changes
(depression, irritability, apathy, mood swings), and sensory changes (incoordination, visual
impairment) [43]. The late stages of the disease have the potential to cause cerebellar ataxia,
myoclonus, and more pronounced dementia and disorientation [43]. Extrapyramidal
symptoms include bradykinesia, dystonia, rigidity, and possibly blindness [43]. As the
disease continually develops, patients can gradually lose speech and mobility leading
up to their death [43]. Secondary infections, such as pneumonia, are potential causes of
death in TSEs [43]. vCJD, unlike sCJD, usually occurs in younger individuals, with the
median age of death being 28 years old [43]. vCJD also has a longer subclinical phase
than sCJD of 13–14 months [44]. The initial symptoms are similar to those of sCJD, but
the most prominent early signs are painful sensory symptoms including dysesthesia and
paresthesia [44–46].

PrPSc, due to its tertiary and/or quaternary structure, is characterized by its distinctive
properties, especially the ability to maintain its integrity under conditions that would
denature most other proteins [16]. This stability allows prions to accumulate in cells. The
scrapie isoform is protease resistant and is highly heat resistant. Cooking meat infected
with PrPSc may reduce, but will not completely eliminate, its pathogenicity [16,47]. It
was shown experimentally that heating PrPSc at 600 ◦C and 1000 ◦C can achieve lower
infectivity and destroy prion infectivity, respectively [48]. In laboratory practices, heating
to 115 ◦C or autoclaving was shown to be effective in reducing the infectivity of prions
causing BSEs [47]. Certain proteases can degrade PrPSc, but the optimum conditions for
degradation are a high pH of 10–12 and a temperature of 50–60 ◦C [48,49]. This provides
a solution for destroying prions in the environment but is not feasible in vivo or during
food processing. Based on a series of experiments conducted by the CDC, autoclaving
PrPSc-contaminated instruments in sodium hydroxide is sufficient to eliminate the risk to
the operator [50]. The CDC has developed a guideline that is incorporated in “Chemical
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and Autoclave Sterilization Methods Outlined in Annex III of the WHO Infection Control
Guidelines for TSEs”.

The mechanisms by which PrPSc infects and degrades the CNS are not well understood.
Notwithstanding, enough information is present to draw plausible inferences about ac-
quired PrPSc. It is believed that orally acquired PrPSc exploits the gut-associated lymphoid
tissue (GALT) in the small intestine as a means to spread to the CNS [51]. The GALT typi-
cally functions with the mesenteric lymph nodes (MLNs) to prevent infections by triggering
the production of immune cells [51]. Intestinal M cells, a type of intestinal epithelial cell
(IEC) located in the same region as GALT lymphoid follicles, usually function to translocate
antigens to the GALT to elicit an immune response [52]. In the case of PrPSc infections,
the M cells uptake the PrPSc protein into the GALT and spread into follicular dendritic
cells (FDCs), specialized antigen-presenting cells in the lymphoid follicles [53]. PrPC is a
cell-surface glycoprotein attached to the plasma membrane by a glycosylphosphatidylinos-
itol (GPI) anchor found in high levels in lymphoid cells in addition to the CNS in which
it is prominent. Thus, the protein is also largely expressed in the plasma membrane of
FDCs [54–58]. As FDCs capture and retain PrPSc, the high concentrations of PrPC enable the
replication and accumulation of PrPSc by inducing the misfolding of PrPC [53,56]. When
the concentration is sufficient for neuroinvasion, PrPSc spreads, possibly via the peripheral
nervous system, to infect the CNS [53]. The hematogenous spread of prions to the CNS may
also be possible [53]. Whether non-acquired CJD utilizes the same neuroinvasion pathways
or directly occurs in the CNS is not clear. Once PrPSc occurs in the CNS, it is suspected
to spread between cells by means including direct cell contact by tunneling nanotubes
(TNTs), exosome-mediated transfer, cell-to-cell contact, or from membrane budding and
transport in vesicles [5]. After dissemination, PrPSc induces abnormal conformational
changes in the already-formed PrPC of surrounding cells, resulting in an exponential rate of
PrPSc replication and aggregation [5]. PrPSc accumulation causes spongiform degeneration,
neuroinflammation, neuronal apoptosis, and synaptic changes [59] (Figure 2). How prion
protein aggregates cause neurodegeneration is not well understood [59].

Prion diseases are exceedingly difficult to diagnose, as they have incubation periods
of years to decades and exhibit clinical symptoms that are indistinguishably similar to
other neurological disorders [24]. Furthermore, all definite diagnosis methods require
a sample of brain tissue that can only be extracted postmortem [24]. Testing methods
include the processing of tissue using immunohistochemistry or Western blotting for
PrPSc detection [24]. Antemortem testing using EEGs, MRIs, and examining cerebrospinal
fluid for elevated 14-3-3 protein levels can be conducted but is limited to a non-definitive
diagnosis [60–62]. Real-time quaking-induced conversion (RT-QuIC) assays have made
a considerable impact on clinical diagnosis and have become the standard tool for sCJD
diagnosis [63–66]. By exploiting the ability of PrPSc found in cerebrospinal fluid (CSF) to
induce the conversion of PrPC to PrPSc and the consequent aggregation, the RT-QuIC assay
can detect the formation of the aggregated PrPC in real time using fluorescent dyes [63–66].
The method can reach a specificity of 99–100% and sensitivities of up to 97%, depending on
the alleles being detected of MM, MV, or VV and specific study sites [63].
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Figure 2. Images of uninfected and prion-infected brain tissues. (A,B) are MRI scans of uninfected (A) and
prion-infected (B) brains. Arrows and circles in (B) indicate the gross images of spongiform degener-
ation in two regions of the brain. (C,D) are H&E stains of uninfected (C) and prion-infected (D) brain
sections. Arrows in (D) indicate spongiform degeneration at the cellular level. (A,B) are adapted
from Zeidler et al. [67]. (C) is from Practical Surgical Neuropathology: A Diagnostic Approach
(Second Edition by Daniel J. Brat), Chapter 2, Normal Brain Histopathology [68]. (D) is adapted from
Britannica, T. Editors of Encyclopaedia [69].

Certain individuals have a higher risk of developing sCJD, and the relative risk factors
can be determined by examining the polymorphisms at codon 129 in the PRNP gene with
PCR [70]. The common alleles at this codon are methionine 129 (Met129) and valine 129
(Val129) [70]. Individuals with homozygotes of the allele Met129 (Met129/Met129) have a
higher risk of developing sCJD than those with the heterozygous allele (Met129/Val129) [70].
Whether individuals with homozygous valine 129 (Val129/Val129) have a significantly
higher risk than those with the heterozygous allele (Met129/Val129) is not clear, as studies
from different historical periods and different geographic locations reported inconsistent
outcomes [38,71]. The exact mechanism behind prion protein misfolding in sCJD is still not
well understood. Family history also plays a significant role in determining the risk of a
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patient developing fCJD. Being an autosomal dominant mutation, it is very probable that
the children of an fCJD carrier may exhibit clinical symptoms later in life [28].

3. Lessons from the Kuru Epidemic

Kuru, a TSE acquired from consuming prion-infected human brain and nervous tissue,
was a prominent disease of the Eastern Highlands Province (EHP) of Papua New Guinea in
the 1950s before the country conformed to Western influence [72–78]. A common practice
by the Fore tribe, inhabitants of the area, was the consumption of deceased relatives at
mortuary feasts to free the spirit of the dead (endocannibalism). It was believed by the Fore
tribe that the deceased being eaten by their loved ones was preferable to being consumed by
insects. This practice enabled kuru to widely spread among the Fore people, peaking with
mortality rates of up to 3.5% of the population during the 1940s and 1950s [79]. The disease
disproportionately affected more women and children than men, as it was customary for
the women and children to consume the brain while the men preferred muscle tissue. It
is noteworthy that 60% of kuru cases were in adult females while only 2% were found
in adult males, with the remainder being in children [73,79]. By 1960, the practice of
endocannibalism mostly ceased; subsequently, kuru cases gradually disappeared [73].

During the kuru epidemic in the EHP, G127V, a new PRNP polymorphism that substi-
tutes glycine (Gly127) with Val127 arose [80]. The combination of the G127V mutation with
homozygous methionine 129 (Gly127Met129/Val127Met129) provides complete resistance
to kuru and sCJD but not vCJD [80]. With this knowledge, Asante et al. generated trans-
genic mice that were homozygotes or heterozygotes of human PrP Val127Met129 (HuPrP
Val127Met129/Val127Met129 or Gly127Met129/Val127Met129) and tested their resistance to
human TSEs, including kuru, sCJD, and iCJD. The Val127Met129/Val127Met129 mice were
completely resistant to all four of the tested human TSE types (types 1–4) by molecular
classification [80,81], with no clinical symptoms or subclinical infection [80]. That study
also found that mice with the G127V heterozygosity Gly127Met129/Val127Met129 were only
resistant to human TSE types 1–3 but not to type 4. Whether Val127Met129/Val127Met129 or
Gly127Met129/Val127Met129 provide resistance to other types of human TSEs is not known
from this study. X-ray crystallography and NMR spectroscopy demonstrated that the
G127V polymorphism induces structural changes that constrain the conformation of PrPC

in regions associated with prion disease, preventing β-sheet formation [15,82]. The muta-
tion increases the intermolecular hydrogen bonding between PrPC dimers, reducing the
instability and the likelihood of protein misfolding [15,82].

4. Current Development in Treating Prion Diseases

The current treatment for prion diseases is limited to supportive care, as no treatments
with disease-modifying effects are currently available. With the understanding that PrPC

protein misfolding is the cause of prion diseases, various strategies are in development to
prevent PrPC misfolding or to target misfolded PrPSc aggregates. These strategies are often
coupled with treatments that directly reduce the production of PrPC [83,84]. However,
the development of effective treatments for prion diseases is particularly challenging
compared to the more common, slowly progressive neurodegenerative disorders due to
the rapid progression and lack of definitive screening biological markers [85]. Furthermore,
designing formal clinical trials with an adequate patient population for prion diseases
has proven to be extremely difficult, largely because of the rarity of prion diseases. Much
of the clinical evidence regarding treatment effects is based on anecdotal observations
rather than on rigorous scientific data. Consequently, only six treatments for prion diseases
were advanced to the stage of clinical evaluations: flupirtine, quinacrine, doxycycline,
pentosan polysulfate, anti-PrPSc monoclonal antibody PRN100, and a PRNP antisense
oligonucleotide (ASO) [25,85].

Flupirtine is a triaminopyridine that exhibits anti-apoptotic activity against PrPSc and
amyloid beta (Aβ) peptides [86]. It was the first anti-prion drug to enter clinical trials
in which patients with sCJD were treated. While improved cognitive performance was
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observed, there was no significant improvement in patient survival times [87]. Alternately,
quinacrine is an antimalarial drug that was thought to inhibit the conversion of PrPC

to PrPSc [88]. Quinacrine was tested in multiple clinical trials, but the outcomes were
inconclusive [89–91]. At best, a pilot clinical trial demonstrated that quinacrine induced a
marginal improvement in alleviating symptoms [92]. However, expanded clinical trials
with larger patient populations did not demonstrate the same benefit of quinacrine [93,94].

With the positive outcome of antibody-based therapy in treating certain neurological
disorders such as Alzheimer’s disease [95,96], the use of a monoclonal antibody to target
PrPSc had been pursued. However, clinical trials with the PrPSc-targeting monoclonal
antibody PRN100 failed to slow down prion disease progression, despite a reduction in
PrPSc deposits that was found in one patient in a postmortem autopsy [97]. Achieving a
plausible clinical benefit with PrPSc-targeting monoclonal antibodies remains challenging.

Tetracyclines, such as doxycycline, have been shown to mitigate PrPSc aggregation and
neurotoxicity and prolong the survival of animals with prion diseases [98–100]. Doxycycline
has been tested in multiple clinical trials, but conflicting results were observed. In one study,
doxycycline was used to treat CJD patients and showed an improvement in patient survival
by approximately 80% [101]. Conversely, a different clinical trial showed no significant
changes to patient survival and disease progression [102]. The anti-PRNP ASO, ION717,
was recently developed. ION717 was shown to induce a significantly prolonged survival of
mice with scrapie [103]. ION717 recently entered a phase I/II clinical trial (NCT06153966).

5. Perspective Prevention Strategies

Although passive and active immunization strategies and RNAi gene therapies to
target PrPC have been proposed and are currently in development [25,104–111], given that
PrPC is important for normal cellular function, the potential off-target unwanted toxicity
could be a concern [112–116]. In another critical aspect, due to the rapid progression of
prion diseases once the symptoms begin, achieving clinical benefit within this therapeutic
window can be extremely challenging. Thus, preventing or delaying prion disease onset
has been suggested as one of the most promising goals in carriers of pathogenic mutations
in the PRNP gene [25,111].

With the lessons from the kuru epidemic and the outcome from the transgenic animal
study by Asante et al. [80], we propose that CRISPR/Cas9 may be utilized to prevent disease
onset in high-risk individuals suspected of being carriers of prion diseases (Figure 3). This
proposed approach could leverage the future success of safer viral-vector-based or non-viral
delivery systems into the somatic cells of individuals confirmed as being PRNP high-risk
mutation carriers [117–122]. Candidates would be those who have a family history of
fCJD and potentially a family history of sCJD with known pathogenic mutations in the
PRNP gene. Specifically, those with homozygosity for Met129 (Gly127Met129/Gly127Met129)
would be reasonable candidates through PCR screening. The strategy would be introducing
one- or two-nucleotide substitution(s) in the chromosome of the 20th pair to induce the
desired polymorphic change to Gly127Met129/Val127Met129 or Val127Met129/Val127Met129

in the PRNP gene. gRNA designed to target a region of the PRNP gene that includes
the 127th codon position functions with the Cas9 enzyme in the Cas9-gRNA complex to
induce a double-strand break (DSB) in the targeted area. Noteworthily, the success of
CRISPR/Cas9 in preventing TSEs relies on the homology-directed repair (HDR) pathway
of the DSB using a donor DNA template with a nearly identical nucleotide sequence.
PCR can be used as verification that the mutation has been correctly incorporated after
the DSB is repaired. It should be emphasized that the proposed strategy represents a
perspective concept or direction in developing feasible strategies for preventing TSEs
in high-risk individuals. Acknowledging the potential and the infancy stage of using
CRISPR technology in treating human diseases, the feasibility and safety of this proposed
strategy need to be rigorously tested in relevant pre-clinical models. Encouragingly, the
utilization of CRISP-Cas9 technology to treat human diseases is under active investigation
in various pre-clinical animal models of human diseases [123–129]. Recent clinical trials
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have demonstrated excellent safety profiles using in vivo CRISPR/Cas9 editing of the
KLKB1 gene to treat patients with hereditary angioedema and editing the HSV-1 gene
to treat patients with herpetic stromal keratitis [130,131]. The FDA approval and later
successes of using CRISPR/Cas9 ex vivo genome-edited hematological stem cells to treat
sickle-cell disease also shed light on the viability of the proposed approaches [132].

Figure 3. The proposed strategy of CRISPR/Cas9 to introduce the Gly127 polymorphism in PRNP
gene to prevent prion diseases during early life of high-risk individuals, in particular of individuals
with familial PRNP mutations. Only a single or double base pair substitution (outlined in red) is
necessary to induce the Gly127 polymorphism into the PRNP gene.

6. Current Limitations and Challenges of Using CRISPR Gene Editing for Therapy

Given the recent history of CRISPR/Cas9 technology, its application in treating human
diseases is still in its infancy, pending the resolution of the following challenges. The first
challenge is potential non-specific integration. At present, CRISPR/Cas9 has the potential
to induce nucleotide base mismatches between the gRNA and non-target sequences that
may lead to off-target effects, primarily being unknown mutations [133–135]. This is
caused by a duplex conformation that forms upon mismatched base interactions under
strong force [136,137]. Many active investigations are being conducted to overcome these
challenges, potentially through approaches to control Cas9 activation. For example, the
multiple high-fidelity mutants of Cas9, such as HypaCas9, Cas9-HF1, and SuperFi-Cas9,
have exhibited improved accuracy, although at the cost of reduced efficiency [138–141].
While these mutants are not without limitations, they suggest that utilizing Cas9 variants
represents a promising approach for mitigating the off-target effects of CRISPR/Cas9.
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The second challenge is the dependency of Cas9 activity on a suitable PAM site
to perform base changes [142,143]. This limits the applicability of CRISPR/Cas9 as a
therapeutic approach to certain diseases. However, Walton et al. mutated the amino
acid sites of Cas9 to produce an SpCas9 variant (SpRY) that is less dependent on PAM
restrictions [144]. When inducing the same mutations in the Cas9-HF1 variant (SpRY-HF1),
almost all off-target effects were eliminated [145]. Further, modifying Nme2Cas9, a Cas9
variant derived from Neisseria meningitidis, has shown promises [146,147]. Nme2Cas9 has
strong gene-editing activity in mammalian cells and exhibits enhanced capabilities to target
a greater abundance of potential target sites [146,147]. The smaller size of Nme2Cas9 also
provides a greater potential for targeted delivery [146,147]. These approaches, although still
under active investigations, suggest that developing PAM-independent Cas9 may increase
the potential for precise genome editing across a wider variety of genomic sequences.

The third challenge is the potential to induce chromosomal disorganization when
repairing DSBs. Activation of the NHEJ repair pathway is the commonly triggered response
to DSBs. While the probability of chromosomal disorganization during DSB repair is
extremely low, base pair deletions or chromosomal structural translocations can potentially
lead to malignancy [148–153]. It was shown that the recurrent cleavage of target genes
by CRISPR/Cas9 is a significant contributor to the potential occurrence of chromosomal
translocations and deletions [148]. It is noteworthy that Yin et al. combined the structural
domain of the exonuclease TREX2 with Cas9 to create Cas9TX, which was shown to be
highly effective in reducing chromosomal translocations [148]. Collectively, these studies
suggest that modifications to Cas9 have the potential to mitigate adverse effects while
ensuring genome editing efficiency.

Lastly, the proper delivery systems for clinical use remain an actively investigated area
in gene therapy. Both viral and non-viral vectors have been used as the delivery system in
clinical studies [154,155]. Improving the specificity of target cell delivery, the efficiency of
delivery, and reducing immunogenicity are among the current enduring efforts to improve
the delivery system for CRISPR/Cas9 [156–160]. In addition, confounders such as sex, age,
and genetic ethnicity should also be considered as crucially important variables that may
impact the efficacy of CRISPR/Cas9-based interventions [161]. Notwithstanding, the recent
successes proving the safety of using CRISPR/Cas9 in clinical trials, along with the current
active investigations to improve the technology, strongly suggest that the future of using
this technology to prevent prion diseases in high-risk individuals holds great promise.
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