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Abstract: Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) is a cancer with very
poor prognosis despite early surgical management. To date, only clinical variables are used to
predict outcome for decision-making about adjuvant therapy. We sought to generate a deep learning
approach based on hematoxylin and eosin (H&E) or hematoxylin, eosin and saffron (HES) whole
slides to predict patients’ outcome, compare these new entities with known molecular subtypes and
question their biological significance; Methods: We used as a training set a retrospective private cohort
of 206 patients treated by surgery for PDAC cancer and a validation cohort of 166 non-metastatic
patients from The Cancer Genome Atlas (TCGA) PDAC project. We estimated a multi-instance
learning survival model to predict relapse in the training set and evaluated its performance in the
validation set. RNAseq and exome data from the TCGA PDAC database were used to describe the
transcriptomic and genomic features associated with deep learning classification; Results: Based on
the estimation of an attention-based multi-instance learning survival model, we identified two groups
of patients with a distinct prognosis. There was a significant difference in progression-free survival
(PFS) between these two groups in the training set (hazard ratio HR = 0.72 [0.54;0.96]; p = 0.03) and
in the validation set (HR = 0.63 [0.42;0.94]; p = 0.01). Transcriptomic and genomic features revealed
that the poor prognosis group was associated with a squamous phenotype. Conclusions: Our study
demonstrates that deep learning could be used to predict PDAC prognosis and offer assistance in
better choosing adjuvant treatment.

Keywords: biomarker; pancreatic cancer; deep learning; prognostic

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fifth most common digestive cancer
in terms of incidence but it is one of the most lethal cancers, with an aggressive behavior
and being difficult to diagnose early [1–3]. The prognosis is very poor, with a 5-year overall
survival rate in PDAC cancer of approximately 10%. Moreover, more than half of the cases
are diagnosed at an advanced stage and are not candidates for surgery [4]. It is mostly a
disease of older adults, with more than 60% of cases diagnosed in patients over 65 years
old, with a median age at diagnosis of 71 years [5]. The incidence of pancreatic cancer is
increasing, reflecting the aging population, with an expected 20% increase in adults over
65 years by 2030. Pancreatic cancer is also projected to surpass colorectal cancer in western
countries [5].

The current standard of care for treating localized PDAC is based on surgery followed
by adjuvant therapy. Surgery is the only curative treatment for PDAC. Only 20% of patients
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are candidates for tumor resection, while the vast majority of patients are diagnosed with
locally advanced or metastatic disease and should therefore be considered for palliative
treatment strategies [6,7]. Surgery alone, however, does not cure a majority of patients;
median survival is around 10 months and early tumor relapse is observed in most patients.
Only 10% of patients are completely cured by surgery [3,8]. Adjuvant chemotherapy has
thus been developed during the last decades. Gemcitabine adjuvant therapy was the
standard of care for more than, 20 years and this treatment led to major improvements
in survival with around 30% of patients relapse-free after 2 years [9–11]. More recently,
adjuvant chemotherapy with modified folinic acid, fluorouracil, irinotecan and oxaliplatin
(mFOLFIRINOX) has strongly improved outcomes, achieving median overall survival of
54.4 months in the mFOLFIRINOX group and about half of the patients being relapse-free
after 2 years [12].

Prognostic markers aimed at predicting PDAC recurrence are still an unmet need.
Histological evaluation and clinical staging remain the gold standard in the determination
of the characteristics of tumor prognostic factors and adjuvant therapy. Emerging progno-
sis markers are in development, based on the histology-like analysis of fibroblastic tissue
whose characteristics are linked to outcome [13] or immune parameters [14]. Similarly,
transcriptomic classification by Bailey [15] defined four subtypes (squamous, pancreatic
progenitor, immunogenic and aberrantly differentiated endocrine (ADEX)), with the “squa-
mous” subtype having the worst outcome. More recently a transcriptome-based machine
learning algorithm was developed to predict response to gemcitabine or FOLFIRINOX [16].

Recent advances in deep learning for computational pathology have enabled the use
of whole-slide images (WSIs) to perform cancer diagnosis, analysis of mutational charac-
teristics or determination of prognostic factors in various pathologies. Such algorithms
require human expertise, and the detection of novel prognostic morphological features is
limited because of the need for human annotations [17]. Histopathological images represent
millions of pixels divided into smaller patches, commonly used as input for deep learning
models. Most strategies use weakly supervised learning, which relies on slide-level clinical
annotation. Weakly supervised learning refers to the fact that there is no a priori knowledge
of which patches within the slide are associated with the label of interest. In the context of
survival models, a single survival label corresponds to multiple image patches, with one or
more patches contributing towards the survival outcome. Thus, one purpose of the model
is to discern which patches are relevant to the prediction task. Information from multiple
patches in a WSI must then be aggregated to predict one class per slide. The multiple
instance learning (MIL) paradigm is one way to deal with this task. In MIL, each patch is
represented as an instance in a bag. Since WSIs have more than one patch, the bag contains
multiple instances, hence the name “multiple” instance learning. During training, only
global (slide-level) image labels are required for supervision. An aggregation mechanism is
then used to summarize all the information in instances to make a final prediction.

In this study, we used a survival prediction model based on the attention-guided deep
MIL proposed by Yao et al. [18] to determine the prognosis of PDAC treated by surgery;
we then characterized patients according to their prognostic groups using transcriptomic
and genomic features.

2. Materials and Methods
2.1. Patients

Two retrospective datasets were used in this study, namely, one training cohort (here-
after called the “Besançon cohort”), and one validation cohort (hereafter “TCGA dataset”).

The Besançon training cohort comprised 206 patients with histologically confirmed
PDAC, who underwent complete surgical resection at the University Hospital of Besançon,
France, between January 1998 and December 2018 [19]. HES diagnostic whole-slide im-
ages (WSIs) and clinical information were available for all of the patients. The database
was registered with the National French Commission for bioinformatics data and patient
liberty (CNIL) under the number 1906173 v 0. The study methodologies conformed to
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the standards set by the Declaration of Helsinki. Written informed consent for the use
of medical data for research purposes was provided by all patients with cancer at the
time of their first visit to the Department of Medical Oncology. Samples were provided
by the regional tumor bank of Franche-Comté (University Hospital of Besançon, France;
registration number BB-0033-00024). The project was approved by the scientific board of
the biobank (#F1860-PAC-MA).

The TCGA dataset comprises 191 H&E diagnostic WSIs from 166 patients, with
corresponding molecular (Whole Exome Sequencing (WES) and RNA sequencing) and
clinical data. WSIs at X20 magnification, RNAseq raw counts and clinical data, including
Bailey classifications, were collected from TCGA via the NIH Genomic Data Commons
Data Portal (https://portal.gdc.cancer.gov/, accessed on 5 July 2023). Data were generated
by the TCGA Research Network (https://www.cancer.gov/tcga, accessed on 5 July 2023).
The inclusion criteria were previously described (https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8, accessed on 5 July 2023).

The WES biomarkers were obtained from Knijnenburg et al. [20]. WES data were
available for 132 patients and RNAseq data for 160 patients.

2.2. HES Staining and Numerization

For the Besançon cohort, HES-stained slides from Formalin-Fixed Paraffin-Embedded
(FFPE) specimens were digitized with a Nanozoomer HT2.0 (Hamamatsu Photonics, Hama-
matsu City, Japan) at 20× magnification to generate WSI files in ndpi format. We parti-
tioned the WSIs into non-overlapping 402 × 402 pixel tiles at 0.5 mm/pixel resolution
using QuPath v.0.2.3.

2.3. Tile Pre-Processing

Tiles were removed if they contained more than 2/3 of white background. The color
channel values were normalized by Macenko [21] normalization to neutralize color differ-
ences between slides by bringing them into a common, normalized space. The Macenko
method is based on a transformation of the original image into an optical density (OD)
space. The primary stained vectors are then estimated using Singular Value Decomposition
(SVD), and the image is separated into its stain components. The last step is to normalize
these components to a reference distribution and reconstruct the normalized image.

To estimate the deep learning model, we used the Besançon cohort and randomly
divided it into training, validation and test sets, as recommended, using, respectively, 60%,
20% and 20% of the tiles. Tiles associated with a given slide were not separated but were
associated with one of these three sets to prevent the overlap of slides between sets.

2.4. Statistical Analysis
2.4.1. Software

R v4.2.2 was used for statistical analysis. Figures were performed using GraphPad
9.4.1. The deep learning model was implemented and trained using TensorFlow 2.1.0 and
Python 3.5. Calculations were performed using HPC resources from DNUM CCUB (Centre
de Calcul de l’Université de Bourgogne).

2.4.2. Deep Learning Survival Model

We used a survival prediction model using attention-guided deep MIL, as proposed by
Yao et al. [18]. Briefly, the following steps were taken. 1—clustering of tiles from WSIs using
k-means approach based on the use of the VGG16 neural network [22] previously trained
on ImageNet. These clusters correspond to different phenotypes providing morphology-
specific representation. 2—extraction of cluster (phenotype)-level information through
a Siamese MIL-based network from tile-level features. The use of this network allows
the individual phenotypes provided by the clusters to be taken into account. 3—use of
attention mechanism to aggregate these phenotypes features into patient-level information
with a trainable weighted average where weights are optimized by neural networks using

https://portal.gdc.cancer.gov/
https://www.cancer.gov/tcga
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8
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the negative log partial likelihood of a Cox model as the loss function. The architecture of
DeepAttnMISL is presented in the original paper describing the model [18]. The output is
risk scores, corresponding to the probability of the survival event occurring. These scores
then allow the discrimination of patients into low- or high-risk groups.

2.4.3. Survival Analysis

For survival analysis, the prognostic value of the different variables was tested using
univariate or multivariate Cox regression models for progression-free survival (PFS) or
overall survival (OS). Univariate models were used to test the association between single
variables and the outcome, while multivariate models were used to test the association
of multiple variables as predictors. PFS was defined as time to the first relapse or death
from any cause. Survival probabilities were estimated using the Kaplan–Meier method,
and survival curves were compared using the log-rank test.

Subgroup analysis was conducted on the pooled cohorts to evaluate the effect of
adjuvant therapy.

Risk scores were dichotomized using the methodology of Hothorn et al. via the
maxstat R library [23]. Using a maximally selected log-rank statistic, this method provides
a statically proven optimal cut-off point that corresponds to the most significant relation
with the outcome. The resulting dichotomized score yields a variable with two modalities,
low or high, according to whether the risk score is above or below the cut-off value.

The flowchart depicted in Supplementary Figure S1 summarizes the different steps of
our study.

2.4.4. TCGA RNAseq Analysis

Raw counts already computed with STAR software [24] were downloaded through
TCGAbiolinks [25] R library. Gene-level counts were created with the DESeq2 library [26].
Low-count genes were pre-filtered by removing genes with fewer than 5 reads. Genes
differentially expressed were then selected using the same R package. Gene set enrichment
analysis (GSEA) [27] was performed on resulting differential genes using Hallmarks of
cancer gene sets from MSigDB (https://www.gsea-msigdb.org/gsea/msigdb, accessed on
20 February 2024) and the fgsea R package [28].

2.4.5. TCGA Exome Analysis

Exome-derived biomarkers were taken from Knijnenburg et al. [20]. More precisely,
we investigated mutational signatures derived by the PanCancer Signature group [29],
mutational load, ploidy, aneuploidy score (total number of arm-level amplifications and
deletions), Homologous Repair Deficiency (HRD) score, two Loss of Heterozygosity (LOH)
scores (total number of segments with LOH events and fraction of genome containing LOH
events) and two Copy Number Alteration (CAN) scores (number of segments and fraction
of genome altered). The aneuploidy score corresponds to the total number of arm-level
amplifications and deletions. Precisions of how these biomarkers were estimated can be
found in Knijnenburg et al.

3. Results
3.1. Dataset Description

To test the performance of the deep learning model for the prediction of outcome in
PDAC, we used two large datasets with high-resolution WSIs. The Besançon cohort, used as
the training set, comprised 206 patients and contained 7,147,508 tiles, ranging from 11,052
to 56,446 tiles per slide (median = 34,890 tiles). The validation cohort came from the TCGA
database and contained 191 slides from 166 patients, with 3,671,750 tiles, ranging from 1128
to 46,304 tiles per slide (median = 18,578 tiles). Patients with neuroendocrine carcinoma
(N = 8) were excluded from analysis because this type of tumor was not included in the
Besançon cohort. In addition, these tumors have different treatment and prognosis than
adenocarcinoma and could therefore bias the analysis. WSIs from the training cohort used

https://www.gsea-msigdb.org/gsea/msigdb
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HES staining, while TCGA used H&E staining only. All the available clinical characteristics
of the patients are summarized in Table 1.

Table 1. Summary of clinical characteristics of patients from the Besançon (N = 206) and TCGA
(N = 166) cohorts.

Variables Besançon Cohort,
N = 206 1

TCGA Cohort,
N = 166 1 p-Value 2

Sex data 0.43
F 103 (50%) 74 (45%)
M 101 (50%) 92 (55%)

Unknown 1 -
Age 67 (40, 86) 66 (36; 89)

Unknown 1 -
Neoadjuvant

treatment -

No 194 (95%) 165 (99%) 0.03
Yes 10 (5%) 1 (1%)

Unknown 1 -
Adjuvant treatment <1.10−3

No 46 (24%) 51 (44%)
Yes 146 (76%) 66 (56%)

Unknown 13 49
Resection 0.003

0 161 (80%) 99 (65%)
1 37 (18%) 49 (32%)
2 2 (2%) 5 (3%)

Unknown 5 13
Histological grade 0.003

1 42 (21%) 23 (14%)
2 125 (61%) 90 (55%)
3 32 (16%) 50 (30.5%)
4 5 (2%) 1 (0.5)%

Unknown 1 2
Tumor status <1.10−3

1 24 (14%) 6 (4%)
2 110 (64%) 23 (11%)
3 39 (23%) 137 (83%)
4 0 (0%) 4 (2%)

Node status <1.10−3

0 49 (24%) 45 (27.5%)
1 83 (41%) 115 (72.5%)
2 72 (35%) 0

Unknown 1 2
1 Median (min, max); n (%); 2 Wilcoxon rank sum test; Pearson’s chi-squared test; Fisher’s exact test.

The training cohort includes 101 (50%) male patients while TCGA includes 96 (55%)
male patients. The mean age was 67 years old for the training dataset and 66 years for the
TCGA cohort. In the training cohort, 146 (76%) patients received adjuvant therapy while 66
(56%) patients for whom information was available received adjuvant therapy in TCGA.
Median OS was 21.9 months (95% CI 18.4; 25.7) and 19.2 (95% CI 16.5; 21.5) months for
the Besançon and TCGA cohorts, respectively. Median PFS was 10.10 months (95% CI 9.4;
11.5 months) for the Besançon cohort and 14.7 months (95% CI 12.6; 17.0 months) for the
TCGA cohort.

3.2. Estimation of the Attention-Guided Multiple Instance Learning Model

To estimate a robust deep learning model to learn survival patterns, the training
cohort was separated into internal training, validation and test sets, with a 60%–20%–20%
distribution.
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As explained in Section 2, image patches were first clustered for each patient, leading
to phenotype clusters with patches sharing common appearance. For the k-means step,
k was set to 10 clusters. Examples of phenotype pattern visualization after clustering are
depicted on three WSIs from two distinct patients in Supplementary Figure S2.

To learn patient-level information from phenotype clusters, a Multiple Instance Fully
Convolutional Network (MI-FCN) running inside the deep learning architecture was used,
with weights being shared among them, as in the Siamese architecture [18]. The output of
the model is the hazard survival risk, corresponding to the probability of the progression-
free survival event occurring. The estimated risk scores were then used to classify patients
into low- or high-risk groups, based on the best cut-off strategy proposed by Hothorn
et al. [23].

We tested various models using 5-fold cross-validation and 10 to 80 epochs. Using the
Besançon cohort, the model yielding the best accuracy in the internal test set was retained
and showed an association between a high score and a good outcome. A high score was
associated with an HR of 0.72 [0.54;0.96]; p = 0.03 for PFS and 0.70 [0.52;0.94]; and p = 0.02
for OS in the training cohort (Figure 1A,B). In the TCGA validation set, using the same
threshold, a high score was associated with an HR of 0.62 [0.42;0.94]; p = 0.01 for PFS and
0.53 [0.38;0.81]; and p = 0.001 for OS (Figure 1C,D).
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Figure 1. Kaplan–Meier curves for progression-free and overall survival with patients stratified
according to the image-based prognostic (IBP) score in the Besançon cohort (A,B) and the TCGA
cohort (C,D).

Upon subgroup analysis in our study, our model remained significant in patients
treated with adjuvant therapy (HR = 0.62 [0.4;0.83]; p = 0.001), and close to significance
in untreated patients (HR = 0.70 [0.47;1.04]; p = 0.06); this analysis was conducted on the
pooled cohorts to increase statistical power (Figure 2).
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Figure 2. Kaplan–Meier curves for progression-free survival with patients stratified according to the
image-based prognostic (IBP) score in the pooled cohort for patients treated (A) or untreated with
adjuvant therapy (B).

3.3. Generation of a Composite Clinical and Image-Based Prognostic Score

We next explored the capacity to generate a prognostic composite model associating
an image-based prognostic (IBP) score and clinical features in the training set. To increase
the power of the analysis, we pooled the two cohorts. We built a multivariate model using
each clinical variable significantly associated with PFS by univariate Cox proportional
hazards analysis, namely, resection status, nodal status and histological grade; only nodal
status and histological grade remained significant in the multivariate model (Table 2). For
OS, the same three variables were significant in the univariate and multivariate models
(Supplementary Table S1).

Table 2. Univariate and multivariate Cox models for clinical variables and progression-free survival
in the Besançon and TCGA pooled cohorts.

Univariate Multivariate
Variables N HR 1 95% CI 1 p-Value HR 1 95% CI 1 p-Value

Histological grade 370
1 — — — —
2 1.16 0.85, 1.60 0.35 1.37 0.98, 1.91 0.063
3 1.87 1.29, 2.70 <0.001 2.22 1.50, 3.30 <0.001
4 1.33 0.51, 3.43 0.56 1.78 0.61, 5.21 0.29

Age 372 1.01 1.00, 1.02 0.25
Sex 372
F — —
M 0.86 0.69, 1.09 0.21

Tumor size status 343
1 — —
2 1.26 0.80, 1.97 0.32
3 1.07 0.69, 1.67 0.77

Node status 370
0 — — — —
1 1.34 1.00, 1.79 0.053 1.25 0.92, 1.70 0.15
2 2.03 1.45, 2.83 <0.001 2.05 1.44, 2.91 <0.001

Resection 356
0 — —
1 1.56 1.20, 2.03 0.001 1.52 1.16, 2.00 0.002
2 3.16 1.48, 6.75 0.003 2.52 1.17, 5.43 0.018

Adj. treatment 371
0 — —
1 0.82 0.64, 1.04 0.10

1 HR = hazard ratio, CI = confidence interval.
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We then generated a combined model with image-based and clinical prognostic vari-
ables. We observed that the combined score had a strong prognostic value for PFS and OS
(Table 3 and Supplementary Table S2).

Table 3. Univariate and multivariate Cox models for variables included in the combined model and
progression-free survival in the Besançon and TCGA pooled cohorts.

Univariate Multivariate
Variables N HR 1 95% CI 1 p-Value HR 1 95% CI 1 p-Value

Histological grade 370
1 — — — —
2 1.16 0.85, 1.60 0.35 1.37 0.98, 1.91 0.065
3 1.87 1.29, 2.70 <0.001 2.28 1.54, 3.38 <0.001
4 1.33 0.51, 3.43 0.56 1.55 0.53, 4.55 0.42

Resection 356
0 — — — —
1 1.56 1.20, 2.03 0.001 1.51 1.15, 1.97 0.003
2 3.16 1.48, 6.75 0.003 2.60 1.21, 5.59 0.015

Node status 370
0 — — — —
1 1.34 1.00, 1.79 0.053 1.23 0.91, 1.68 0.18
2 2.03 1.45, 2.83 <0.001 1.95 1.37, 2.77 <0.001

IBP score 372
Low — — — —
High 0.67 0.53, 0.85 <0.001 0.71 0.55, 0.90 0.001

1 HR = hazard ratio, CI = confidence interval.

AUC comparisons showed that the combined score had added value over the clin-
ical score (Likelihood Ratio test p = 0.005) and image-based score (Likelihood Ratio test:
p < 1.10−3).

However, when we split the patients into two groups of clinical risk of relapse, we
observed that the deep learning model yielded additional prognostic information only in
the low clinical risk score group for PFS and in both groups for OS (Figure 3).
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3.4. Interpretability of the Deep Learning Image Model

The attention mechanism in DeepAttnMISL makes it possible to detect important
phenotypes associated with patients’ clinical outcomes. To determine the histological
pattern associated with the attention mechanism, we collected and examined the attention
weights as well as their corresponding patch images for several representative slides of
patients split into low or high IBP groups (Figure 4).
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Figure 4. HES images and corresponding attention maps reflecting attention weight patterns for
2 patients. Blue color corresponds to the highest-level attention tiles. Numbers 1 to 3 refer to 3 zones
on each slide that were highlighted and for which a zoom was provided.

We asked two pathologists to evaluate low- and high-attention weight regions to
add an interpretative layer to our results. Interpretations were hard to establish. On the
slides depicted in Figure 4, the peritumoral areas (1) (upper and lower slides) showed
high attention mainly on the fibrosis region and less on the epithelial cells. Some attention,
particularly on the upper slide, was focused on the mucin content. Little or no attention
was focused on the healthy regions such as the exocrine pancreatic glands, immune patches
((2) and (3) on upper slide), duodenum mucosa and muscularis propria ((2) and (3) on
lower slide).

For some slides, low attention was given to normal tissue and background, and high
attention was given to the tumor area; these observations were not valid for all slides. It
was hard to find homogeneous patterns of relapse. Moreover, some patterns that were
identified were not intuitive to pathologists. These observations are consistent with the
difficulty pathologists encounter in identifying patients with a low or high risk of relapse.

3.5. Description of Molecular Characteristics

To go further in the analysis of the biological differences between the two image-based
prognostic groups, we used whole exome and RNAseq from the TCGA dataset. Bailey
transcriptomic classification was obtained for 139 patients. Using this classification, patients
were split into four categories: squamous for 27 patients, immunogenic for 26 patients,
progenitor for 49 patients and ADEX for 37 patients. In this dataset, the squamous molecular
subtype was associated with poor PFS. The squamous and immunogenic subsets presented
a significantly lower IBP score compared to ADEX and progenitor type tumors. The low
IBP score population was significantly enriched in squamous and immunogenic tumors
compared to ADEX tumors (Figure 5A). However, the IBP score is not a perfect reflection
of molecular classification.



Biomedicines 2024, 12, 2754 11 of 16

Biomedicines 2024, 12, 2754 11 of 16 
 

 

3.5. Description of Molecular Characteristics 
To go further in the analysis of the biological differences between the two image-

based prognostic groups, we used whole exome and RNAseq from the TCGA dataset. 
Bailey transcriptomic classification was obtained for 139 patients. Using this classification, 
patients were split into four categories: squamous for 27 patients, immunogenic for 26 
patients, progenitor for 49 patients and ADEX for 37 patients. In this dataset, the squa-
mous molecular subtype was associated with poor PFS. The squamous and immunogenic 
subsets presented a significantly lower IBP score compared to ADEX and progenitor type 
tumors. The low IBP score population was significantly enriched in squamous and immu-
nogenic tumors compared to ADEX tumors (Figure 5A). However, the IBP score is not a 
perfect reflection of molecular classification. 

Using differential expression analysis, we compared gene expression between low 
and high IBP scores (Figure 5B). With a cut-off of a log fold change of 2 and adjusted p-
value < 0.05, only high KRT4 expression and LINC00491 were associated with a low IBP 
score. In contrast, 12 genes were significantly more highly expressed in patients with a 
high IBP score. Using EnrichR software (v1) and the Reactome 2022 database, these 12 
genes were enriched in the Alfa-defensins pathway (p-val < 1.10−3). Using gene set enrich-
ment analysis and Hallmarks of cancer, we observed that oxidative-phosphorylation, E2F 
and MYC targets, DNA repair and coagulation pathways were upregulated in high IBP 
score tumors, while inflammatory response, gamma response, UV response, allograft re-
jection and mesenchymal transition were upregulated in low IBP score tumors (Figure 
5C). 

 
Figure 5. (A) Left: Boxplot displaying image-based prognostic score depending on squamous mo-
lecular subtype. Each point corresponds to the IBP score of one patient. Right: Barplot displaying 
the repartition of molecular subtypes for patients with low and high image-based prognostic score. 
(B) Volcano plot displaying differentially expressed genes, given IBP score. The vertical axis (y-axis) 
corresponds to the mean expression value of log 10 of adjusted p value using Benjamini–Hochberg 

Figure 5. (A) Left: Boxplot displaying image-based prognostic score depending on squamous
molecular subtype. Each point corresponds to the IBP score of one patient. Right: Barplot displaying
the repartition of molecular subtypes for patients with low and high image-based prognostic score.
(B) Volcano plot displaying differentially expressed genes, given IBP score. The vertical axis (y-axis)
corresponds to the mean expression value of log 10 of adjusted p value using Benjamini–Hochberg
FDR correction, and the horizontal axis (x-axis) displays the log 2 fold change value. Green dots on
the right (or left, respectively) are genes significantly upregulated (or downregulated) in patients
with high IBP score. (C) Pathway classification from RNA-seq results using gene set enrichment
analysis based on the hallmark of cancer database comparing patients with high vs low IBP scores.
NES: normalized enrichment score.

Using differential expression analysis, we compared gene expression between low
and high IBP scores (Figure 5B). With a cut-off of a log fold change of 2 and adjusted
p-value < 0.05, only high KRT4 expression and LINC00491 were associated with a low IBP
score. In contrast, 12 genes were significantly more highly expressed in patients with a high
IBP score. Using EnrichR software (v1) and the Reactome 2022 database, these 12 genes
were enriched in the Alfa-defensins pathway (p-value < 1.10−3). Using gene set enrichment
analysis and Hallmarks of cancer, we observed that oxidative-phosphorylation, E2F and
MYC targets, DNA repair and coagulation pathways were upregulated in high IBP score
tumors, while inflammatory response, gamma response, UV response, allograft rejection
and mesenchymal transition were upregulated in low IBP score tumors (Figure 5C).

Using genomic TCGA analysis, we observed that KRAS and TP53 are the most fre-
quently mutated genes (Supplementary Figure S3). No differences in single nucleotide
variants between the two IBP groups were observed. Using mutational signature analysis
of the WES data through SBS96 classification, we observed that only signatures 48 and 91
were highly expressed in the low IBP group. However, the SBS91 signature was expressed
only in three patients (all with low IBP score), and SBS48 was expressed only in seven
patients, leading us to consider these observations with caution.
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4. Discussion

This work presents an automated weakly supervised deep learning method to predict
PFS and OS of localized PDAC treated by surgery based on the analysis of a single whole
H&E or HES slide. Our digital marker allowed the automatic prediction of PFS and OS of
PDAC with an HR around 0.7 when comparing patients with low and high digital score. We
validated our results in an independent public dataset, thus strengthening our conclusions.
Using AUC, we could demonstrate that the deep learning model improved prediction
capacity when compared to clinical variables alone, thus suggesting its interest in clinical
practice. Upon subgroup analysis, the additive predictive information of the deep learning
model seemed more powerful in patients with good clinical-based prognostic and in
patients who received adjuvant therapy, thus suggesting that it could be a clinically relevant
tool to help with decisions regarding adjuvant therapy in patients with small tumors.

When trying to characterize IBP-based prognostic groups, we showed that high KRT4
and LINC00491 expression was associated with a low IBP score. KRT4 is a marker of
squamous differentiation. This squamous differentiation is a well-known biomarker of poor
prognosis in pancreatic cancer [30]. The gene encodes for Keratin 4, a type II cytokeratin
consisting of basic or neutral proteins that are arranged in pairs of heterotypic keratin
chains, co-expressed during the differentiation of simple and stratified epithelial tissues.
In normal tissues, this cytokeratin is specifically expressed in esophageal epithelia, and
it is expressed in most squamous tumors. This could be linked to the observation that
the population with a low IBP score was significantly enriched in squamous subtypes,
associated with poor PFS. The mesenchymal transition pathway was also associated with
low IBP score. Among the genes involved in the EMT signature, we observed that 12 genes
(VCAN, COL11A1, ITGB5, TIMP3, INHBA, LRP1, MATN3, NOTCH2, CDH11, IGFBP3,
COL8A2, THBS2) were significantly (adjusted p-values below 0.05) associated with low
IBP. LINC00491 is a long non-coding RNA that was previously associated with aggressive
features of pancreatic cancer with high proliferation and invasive capacities [31]. In contrast,
a high IBP score is associated with high expression of alfa defensin-related genes. Alfa
defensin-related genes were previously described as being highly expressed in various
cancers and DEFA5 was described as a potent suppressor of cancer growth [32].

Deep learning strategies are emerging in pancreatic cancer. A recent review by Patel
et al. [33] gave an overview of the applications of deep learning (DL) in the diagnosis,
management and monitoring of patients diagnosed with pancreatic cancer. Most meth-
ods propose models for diagnosis rather than for prognosis. Among others, the authors
investigated applications in treatment response. They cited a study from Watson et al. [34]
conducted on 81 patients for whom preoperative cross-sectional imaging was available; the
authors proposed a composite model combining biomarkers derived from a preoperative
imaging model (CNN based on LeNet architecture) and a CA 19-9 model, achieving an
AUC of 0.79. To our knowledge, they did not provide any interpretation layer. A number
of studies used radiomic to determine pancreatic cancer prognostic factors [35–37]. A deep
learning-based computed tomograpy imaging-derived score enabled the prediction of OS
for patients with resectable PDAC. Similarly, a multiomics approach could also be analyzed
using a deep learning model to predict outcome. Using autoencoder integrated multiomics
of 146 patients with PDAC enabled the identification of two PDAC subtypes with dis-
tinct survival outcomes (median survival 10.1 and 22.7 months) [38]. Using pathological
slides, some models are available to improve tumor detection on histological slides or to
improve prediction [39]. In contrast, very few deep learning models were trained to predict
prognostic factors of PDAC. A recent paper showed interest in using machine learning
to predict survival in pancreatic neuroendocrine carcinoma [40]. In the field of PDAC,
Pacpaint software (v1.0.0) was developed as a multi-level artificial intelligence-based tool
using deep learning models to determine PDAC molecular subtypes, thus enabling intra-
tumor heterogeneity to be deciphered. Pacpaint highlights the presence of aggressive basal
contingent and thus helps to detect patients with a poor outcome [41]. Accordingly, in
our study, we observed that a low image-based deep learning score, associated with poor
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prognosis, was also associated with a higher incidence of the squamous phenotype upon
transcriptomic analysis but did not strictly reproduce the molecular classification of PDAC,
thus suggesting that our model may detect squamous features and probably some parame-
ters other than molecular classification. However, we could not define clear pathological
structures associated with outcome. In fact, the interpretation of low- and high-attention
weight regions derived from the model by pathologists was hard to establish. We believe
that this is consistent with the fact that currently, it is also difficult for pathologists to find
patterns associated with the risk of relapse. Our model may highlight particularities that
are not evident to the naked eye.

Only one recent report using pan-cancer data underlined the capacity to generate a
deep learning-based multimodal fusion algorithm that uses both H&E WSIs and molecular
profile features (mutation status, copy-number variation, RNA sequencing expression) to
measure and explain the relative risk of cancer death. The protocol used an attention-based
multiple instance learning model (AMIL) with WSIs in 14 types of cancers. In this study, the
AMIL could not predict PDAC survival with H&E WSIs alone, whereas the association of
H&E WSIs and molecular data was powerful in predicting survival [42]. In our study, our
model differs in the first clustering step, which allows the definition of different patterns
for each patient; these phenotype clusters are considered as the instance of the bag instead
of individual patches. Such a difference may explain the better discrimination power of
our deep learning tool.

Using the machine learning approach in a small dataset, Nimgaonkar et al. [43] showed
that an image analysis pipeline involving nuclei segmentation, the extraction of 816 features
describing nuclear morphology, and feature selection using least absolute shrinkage and
selection operator (LASSO) regression could be used to predict outcome in patients treated
with gemcitabine in an adjuvant setting. Upon subgroup analysis in our study, our model
remains significant in patients treated with adjuvant therapy, suggesting that deep learning
using H&E WSIs could be used to improve prediction of the efficacy of adjuvant therapy.

However, there were some limitations to our study. First, this study only included data
from retrospective and heterogeneous cohorts. The adjuvant treatment mainly consisted of
gemcitabine, which is not the current standard of care; FOLFIRINOX is now recommended
for these patients. Analysis of the predictive power of our deep learning model in a
prospective series of patients treated with FOLFIRINOX would provide more reliable
evidence of the actual predictive performance of the model.

5. Conclusions

In summary, we presented an automated histological-based deep learning model to
predict outcome in localized pancreatic cancer. This model added predictive information to
clinical data and confirmed the feasibility of using computational histopathology through
deep learning to improve pancreatic cancer management.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines12122754/s1, Figure S1: Flowchart of study; Figure S2:
Phenotype pattern visualization after clustering on 2 WSIs coming from 2 distinct patients; Figure S3:
Oncoplot of the 10 most frequent somatic mutations identified in (A) all sequenced TCGA samples
(N = 164), (B) IBPLow (N = 67) and (C) IBPHigh (N = 97) score patients. Percentage frequency of the
genes is shown in the barchart to the right of the central plot. Continuous IBP scores are indicated
under the central plot. Table S1: Univariate and multivariate Cox models for clinical variables and
overall survival in the Besançon and TCGA pooled cohorts; Table S2: Univariate and multivariate
Cox models for variables included in the combined model and overall survival in the Besançon and
TCGA pooled cohorts.
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