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Abstract: Sample size calculation for adequate power analysis is critical in optimizing RNA-seq
experimental design. However, the complexity increases for directly estimating sample size when
taking into consideration confounding covariates. Although a number of approaches for sample
size calculation have been proposed for RNA-seq data, most ignore any potential heterogeneity.
In this study, we implemented a simulation-based and confounder-adjusted method to provide
sample size recommendations for RNA-seq differential expression analysis. The data was generated
using Monte Carlo simulation, given an underlined distribution of confounding covariates and
parameters for a negative binomial distribution. The relationship between the sample size with the
power and parameters, such as dispersion, fold change and mean read counts, can be visualized. We
demonstrate that the adjusted sample size for a desired power and type one error rate of α is usually
larger when taking confounding covariates into account. More importantly, our simulation study
reveals that sample size may be underestimated by existing methods if a confounding covariate
exists in RNA-seq data. Consequently, this underestimate could affect the detection power for the
differential expression analysis. Therefore, we introduce confounding covariates for sample size
estimation for heterogeneous RNA-seq data.

Keywords: RNA-seq; sample size; power; Monte Carlo simulation; FDR; confounding covariates

1. Introduction

Sample size and power are important factors for planning a biological experiment
using high-throughput sequencing technologies for differential gene expression (RNA-
seq). Larger sample sizes typically provide a more accurate estimate of the differential
gene expression with high confidence. However, since RNA-seq techniques are costly, a
large sample size is sometimes not feasible when limited research budgets are considered.
Therefore, an optimized sample size is desired to achieve a specific power for detecting
gene expression changes within realistic budget constraints. Moreover, since read depths
often vary significantly between runs, this particular technical variation also needs to be
taken into consideration in any sample size estimation.

With the rapid growth of RNA-seq studies, a number of sample size estimation
methods and software tools have been proposed [1–9]. However, these methods have their
limitations and assumptions. Since RNA-seq data are short read counts, Fang and Cui
(2011) used a Poisson distribution to derive a sample size calculation formula combined
with a Wald-like Z-statistic test on a single gene [1]. Li et al. (2013) extended sample size
calculation methods using a Wald test, a score test and a likelihood ratio test (LRT) based
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on testing a single gene or multiple genes [2]. However, the studies [10,11] found that
a Poisson distribution may not be appropriate to model gene read counts in RNA-seq
data due to over-dispersion as a result of natural biological variation. To address this
issue, a negative binomial (NB) distribution combined with an exact test and/or likelihood
ratio test (LRT) was proposed to model RNA-seq data in differential gene expression
analysis [10–12]. Subsequently, other sample size calculation methods were proposed
using an NB distribution [3–5,7,8]. Hart et al. (2013) proposed a sample size calculation
method using a score test based on a single gene [7] and Liu et al. (2014) further proposed
sample size calculations using an exact test implemented in edgeR [8]. Later, Li et al.
(2013) developed the RnaSeqSampleSize R package based on TCGA data [13]. Similarly,
Ching et al. [6] and Wu et al. [14] performed a power analysis implemented in DESeq2
and/or edgeR while controlling false discovery rate (FDR). These methods employed the
common analysis approaches with the aid of DESeq2 or edgeR. However, these studies have
reported the actual FDR resulting from NB-based methods such as DESeq2 and edgeR was
inflated in many cases [15–20]. To address this issue, Yu et al. [9] proposed a power analysis
based mainly on simulation studies for a given desired type I error rate. In addition, several
sample size calculations were developed using a Wald test, a log-transformed Wald test
and an analytical method using a log LRT test based on a single gene or multiple genes
with controlling FDR [4]. Recently, we proposed a method for sample size calculation
using a generalized linear model (GLM) with an NB distribution where the dispersion was
estimated on the basis of a variance–covariance matrix between two groups [5]. However,
the sample sizes estimated in all these studies may only be appropriate for homogeneous
data with tightly controlled conditions.

With a GLM, it is very important to identify independent covariates and confounding
covariates in an experimental design. The difference in covariates is that the independent
covariates can be controlled by experimental design, while the confounding covariates
cannot be controlled. These confounding covariates from heterogeneous data commonly
exist in clinical RNA-seq studies such as cancer and other disease-associated datasets. For
example, age and sex are common confounding factors in RNA-seq, as are more complex
variables such as diet, exercise, and environmental influences. Existing methods for
determining sample size are suitable for cell lines or animal studies where other variables
can be tightly controlled. However, when a confounding covariate exists in an experiment,
such as with nearly all human studies, these methods may underestimate the sample size,
eventually affecting the statistical power of the experiment.

To address this issue, we introduce confounder-adjusted sample size calculation
using a simulation-based empirical approach. These simulated data are based on a NB
regression model with the aid of the rnbinom and glm.nb functions of the MASS R package.
The confounding covariate of the simulated study is defined as a continuous variable
(i.e., age) or a categorical variable (i.e., sex). We illustrate how to calculate age and sex-
adjusted sample size and power using the public colon adenocarcinoma (COAD) data
downloaded from Broad GDAC Firehouse. The method described here can provide an
additional option for clinical researchers to determine sample size in designing complex
RNA-seq experiments.

2. Materials and Methods
2.1. A Generalized Linear Model with a NB Distribution

A Generalized liner model (GLM) has been widely applied in scientific fields [21].
For a single gene in RNA-seq data, the independent random sample (Yij) for the sample
j (j = 1, . . . , ni) in condition i (i = 0, 1) is assumed to have an identical NB distribution,
such as Yij ∼ NB

(
µij, φ

)
. Thus, the probability mass function of the observation yij is

defined as:

P(yij) =
Γ(φ−1 + yij)

Γ(φ−1)yij!
(

φµij

1 + φµij
)yij(

1
1 + φµij

)φ−1
, (1)
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where µij = sijγi, sij is the size factor for normalizing read depth, γi is the true expression
of the gene and is unknown, and µij is the expected mean expression.

For the purpose of power and sample size calculation within the framework of a GLM,
we defined the expected mean read counts (µij) for yij by a log link function as:

log uij = log sij + ψ0 + ψ1Zi + bLi + λXi, (2)

where the covariate Zi, a treatment group indicator, takes value Z0 = 0 if i = 0 for the
control group and Z1 = 1 if i = 1 for the treatment group. The multiple covariates Li and
Xi, confounding variables, are assumed to be a continuous variable and/or categorical
variable, respectively, and the quantity log sij denotes an offset. The true expression of γi
is analyzed directly by the GLM and can also be expressed as:

log γi = ψ0 + ψ1Zi + bLi + λXi , (3)

Thus, the true expression γ0 and γ1 from Equation (3) can be obtained as:

γ0 = eψ0+bL0+λX0 , γ1 = eψ0+ψ1+bL1+λX1 and
γ1

γ0
= eψ1+b(L1−L0)+λ(X1−X0) (4)

Replacing uij = sijeψ0+ψ1+bLi+λXi = sijγi in Equation (1), the log-likelihood function
is expressed as:

l =
1

∑
i=0

ni

∑
j=1

[
log

Γ
(
φ−1 + yij

)
Γ(φ−1)yij!

+ yijlog φsijeψ0+ψ1Zi+bLi +λXi −
(

yij +
1
φ

)
log
(

1 + φsijeψ0+ψ1Zi+bLi +λXi
)]

(5)

The covariant-adjusted coefficient ψ1 is expected to be different for the log count of
the gene between the treatment and the control groups. In this study, the p-value along
with the coefficient ψ1 obtained from the glm.nb function is used to determine if the gene
read counts in the treatment group is statistically significant from the control.

2.2. Simulation-Based Studies

The RNA-seq data relies on parameters to be simulated. The sample size and actual
power are determined by the DEG analysis for the different parameter settings. In this
study, we considered the presence of both single and dual confounding variables.

2.2.1. Sample Size Estimation for a Single Gene

Simulation of single confounding factor data: For a single confounding variable, we
have two sets of linear predictors in the form log γ0 = ψ0 + λX0 and log γ1 = ψ0 + ψ1 +
λX1 for the control and treatment group, respectively. For dual confounding variables,
they are log γ0 = ψ0 + bL0 + λX0 and log γ1 = ψ0 + ψ1 + bL1 + λX1 . Three scenarios in
single confounding variables are described as follows. In the first scenario, we consider
the confounding covariate X0, given Z0 = 0, and X1, given Z1 = 1, follows a normal
distribution with equal and/or unequal means and variance resulting in four settings:
N0(0, 1) and N1(0, 1.52), N0(0, 1) and N1(1.5,1), N0(40, 52) and N1(42, 52), N0(40, 22) and
N1(42, 52) and N0(30, 32) and N1(40,32) for the control and treatment group, respectively.
In the second scenario, we consider the covariate X0 and X1 follows a Poisson distribution
with equal and/or unequal means resulting in three settings: Pois0(10) and Pois1(12),
Pois0(10) and Pois1(15) and Pois0(25) and Pois1(20). Two settings are a mixture of normal
and Poisson distributions: Pois0(10) and N1(12, 1) and Pois0(10) and N1(12, 10) for the
control and treatment groups, respectively. This is assumed in a rare situation. In the last
scenario, we consider the confounding covariate X0 and X1 as categorical variables, each
taking the binary value 0 or 1. There are six different settings, including I(0.25, 0.25, 0.25,
0.25), II(0.2, 0.3, 0.3, 0.2), III(0.3, 0.2, 0.2, 0.3), IV(0.1, 0.4, 0.4, 0.1) and V(0.4, 0.1, 0.1, 0.4)
and VI(0.1, 0.3, 0.4, 0.2). Each of the six settings corresponds to the different proportion
of the single covariate in two groups (0,1) such as sex (male, female). Three of them were



Biomedinformatics 2021, 1 50

originally proposed by Self Steven for a GLM with a Bernoulli distribution [22]. I(0.25, 0.25,
0.25, 0.25) is assumed from a homogeneous confounding covariate, and VI(0.1, 0.3, 0.4, 0.2)
is assumed completely unequal proportion in control and treatment groups

Simulation of dual confounding variables: For the dual confounding variables, one
confounding covariate (L0 and L1) is set to follow a normal distribution with equal and/or
unequal mean and variance resulting in two settings: N0(0, 1) and N1(1.5, 1), and N0(40, 22)
and N1(42, 52). The second confounding covariate (X0 and X1 ) is set as a categorical
variable with four different settings: I(0.2, 0.3, 0.3, 0.2), II (0.1, 0.4, 0.4, 0.1), III (0.1, 0.3, 0.4,
0.2) and V(0.15, 0.35, 0.35, 0.15).

Parameter estimation: In the simulation, the alternative hypothesis test on a single
gene is that the gene is considered differentially expressed when ψ1 6= 0. In this study, the
fold change (ρ) is set to be 0.5, 1.5, 2.0 or 3.0, corresponding to ψ1 6= 0. The minimum
mean read count of the DEGs in the control group, µ0, is set to be 5 and 10. The ratio
of mean size factors, w = s1

s0
, is set to be 1 for normalized RNA-seq data and w 6= 1 for

unnormalized RNA-seq data; the constant dispersion parameter φ is set to be 0.1, 0.2 or 0.5;
the ratio of sample sizes is set to be k = 1 for a balanced design.

Simulation of RNA-seq data: For a fixed sample size of n given the designed parameter
setting, two groups of NB random samples are generated. For the control group, the
random samples are generated given the parameters n0, µ0 and φ. For the treatment
group, the random samples are generated given the parameters n1 = kn0, µ1 = ρw, µ0
and φ. k 6= 1 indicates an imbalanced design. Given a fixed n and a specified covariate
distribution for the control and treatment groups, the two datasets are randomly and
independently generated.

Sample size and power estimation: For a given model and covariate distribution,
sample sizes are estimated by testing the hypothesis: H0: ψ1 = 0 vs. H1: ψ1 6= 0 with
significance level α and power 0.80. Each Monte Carlo estimate of power associated
with a fixed sample size is imputed under different scenarios and settings through 1000
independently generated datasets.

The procedure for sample size and power estimation can be briefly summarized as
the following steps:

1. Obtain the pre-specified parameters, such as fold change (ρ), the ratio of size factors
w and the ratio of sample sizes k between two-sample groups.

2. Specify a desired statistical power (i.e., 0.80) and significance level α 0.05.
3. Simulate control and treatment groups RNA-seq data given the mean counts in the

control group (u0) and common dispersion (φ) for a fixed n using an NB distribution
with the aid of the rnbinom function in R.

4. Simulate a confounding covariate under different scenarios given a fixed n and
distribution with the aid of the rnorm function for a normal distribution, the rpois
function for a Poisson distribution and rnbinom for a binomial distribution for a
categorical confounder.

5. Fit the GLM with a NB distribution using the R glm.nb function.
6. Obtain the coefficient ψ1 along with the standard error, z-score and p-value for statis-

tical test on ψ1 from the simulated data set. For a two-sided test, record whether a
p-value ≤ α/2 in testing a single gene or p-value ≤ α∗/2 in testing multiple genes.

7. Repeat steps 3–6 for 1000 times and impute the statistical power for the fixed sam-
ple size.

8. Repeat steps 3–7 by increment of sample size by one (n = n + 1) if the power is
smaller than 0.7999 ≈ 0.80. Stop when a desired statistical power is obtained and
then record the sample size n and the actual power.

The R source codes are provided for the illustration of estimating the empirical power
and sample size n (Supplementary File S2).
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2.2.2. Sample Size Estimation for Controlling FDR in Testing Multiple Genes

In this study, the size α for a single gene has been adjusted for testingmultiple genes,
which has been implemented in recent studies [3,5]. A similar approach to the previous
studies was used to calculate the new size α by incorporating FDR [2–4]. Briefly, given a
nominal FDR at a specified level f of 0.05, the adjusted significance level α∗ for the expected
number of true rejection t1 is defined

α∗ =
t1 f

t0(1− f )
, (6)

where t0 is the number of true null hypotheses. Replacing the size α 0.05 in testing a single
gene with a smaller α∗ in simulation study from steps 1 to 8, the expected sample sizes and
estimates of power corrected by FDR at level f are then obtained.

3. Results

The sample size n (biological replicates) and actual power are calculated given a sig-
nificance level alpha of 0.05 and a desired 80% power for a single gene or multiple genes at
a controlling FDR of 0.05. Monte Carlo estimates are based on empirical data generated for
different parameter settings. We performed a GLM with an NB distribution incorporating
potential confounding covariates denoted either as a categorical or continuous variable at
a normal and Poisson distribution. The Wald-like z test in glm.nb with a log link function
is used for testing the significance of the coefficient ψ1 with the inverse of dispersion 1/φ.
ψ1 is the coefficient of the treatment group as an independent variable in a GLM. φ is the
dispersion parameter in an NB distribution. The variance of NB distribution is a function
of its mean and additional overdispersion of φ. The genes between the two groups are
considered significantly different when the p-value is ≤ α/2 for a two-sided test. The
procedures are repeated 1000 times, and the power is calculated as the percentage of the
number of times that the null hypothesis H0 is rejected. Table 1 summarizes the results
under different scenarios with a variety of parameter settings, as illustrated in Figures 1–8.

Table 1. A summary of the simulation characteristics for the sample size calculation illustrated in
Figures 1–8.

Figure Single Gene Multiple Genes Number of
Confounders Data Type

Figure 1 Yes No 1 Numerical with normal
distribution

Figure 2 Yes No 1 Numerical with normal or
Poisson distribution

Figure 3 Yes No 1 Categorical

Figure 4 Yes No 2 Numerical and categorical data

Figure 5 No Yes 1 Numerical with normal
distribution

Figure 6 No Yes 1 Numerical with normal or
Poisson distribution

Figure 7 No Yes 1 Categorical

Figure 8 No Yes 2 Numerical and categorical
The parameter settings are φ (dispersion) = (0.1, 0.2, 0.5), µ0 (mean read counts of control) = (5, 10), ρ(fold change)
= (0.5, 1.5, 2, 3), α (type I error rate) = 0.05, α∗(adjusted α) = 0.000859 and a nominal power at 0.8.

3.1. Sample size n and actual power from a single confounder variable for testing single gene

The bar graphs in Figures 1–3 illustrate the sample size n versus the fold change ρ
with fixed φ and µ0 adjusted by different covariates for testing a single gene. The actual
power calculated from the simulation is ≥ 0.8. The color-coded bars in Figure 1 represent
confounding covariates in a normal distribution with equal/unequal mean and variance
between two groups. The height of the bars illustrated in the figures represents the number
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of the sample size. We first observe that the n decreases as the fold change ρ increases from
1.5 to 3, where the ρ of 0.5 indicates a 2-fold down-regulated gene. The figures show that
a much larger n is required for the gene that has a fold change of 1.5 compared to a fold
change of 2 or 3, which is expected. Given a fixed µ0 and ρ, n increases as φ increases from
0.1 to 0.5 (Figure 1a–f). This is also expected, which indicates that a larger n is required
for a higher variation of samples. We also observed that n decreases as the read count µ0
increases from 5 to 10 (Figure 1a–f), given a fixed ρ and φ or vice versa. Since µ0 represents
the abundance of gene expression, this suggests that a larger n for a lowly expressed
gene is required in order to achieve an empirical power close to 0.80 in the DEG analysis.
Furthermore, we need to point out that the values of n are not similar for a fold change
of 0.5 and 2 because there is no symmetry between laws in H0 and H1. Given different
confounding covariates, similar changes of n for the parameter settings (ρ, µ0 and φ) are
observed in Figures 2 and 3.

Figure 1. Calculated sample size n and actual power adjusted by a confounder with a normal distribution. The color-coded
bars represent covariates, and the height of the bars represents the sample size given α for testing a single gene. (a–c) shows
n vs. fold change ρ given dispersion φ (0.1, 0.2, 0.5) and mean counts in control µ0 = 5. (d–f) shows n vs. ρ given φ (0.1, 0.2,
0.5) and µ0 = 10.
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Figure 2. Calculated sample size n and actual power adjusted by a confounder with a Poisson distribution or a mixture
of normal and Poisson distribution. The color-coded bars represent confounding covariates, and the height of the bars
represents n given α for testing a single gene. (a–c) shows n vs. ρ given φ (0.1, 0.2, 0.5) and µ0 = 5. (d–f) shows n vs. ρ given
φ (0.1, 0.2, 0.5) and µ0 = 10.

Next, we examined the change of n between the confounding covariates in Figure 1.
We observed that the confounder-adjusted n is generally larger than that for a non-adjusted
one. The colored-coded bars show that the adjusted n obtained from the confounding
covariate with the difference of the mean in two groups, such as N0(0, 1) and N1(1.5, 1) in
green, N0(40, 52) and N1(42, 52) in cyan and N0(30, 32) and N1(40, 32) in magenta, are much
larger than a non-adjustment in orange. However, the n obtained from the equal mean
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confounders N0(0, 1) and N1(0, 1.52) in yellow, and N0(40, 22) and N1(40, 52) in azure either
has no effect or a small effect compared to the non-adjustment. The confounding covariates
corresponding to the adjusted n from largest to smallest are: N0(30, 32) and N1(40, 32) >
N0(0, 1) and N1(1.5, 1) > N0(40, 52) and N1(42, 52) ≥ N0(0, 1) and N1(0, 1.52), and N0(40, 22)
and N1(40, 52). This indicates that a larger n is required in highly heterogeneous data to
achieve a desired power compared to homogeneous data (no-confounder present), which
is expected.

Figure 3. Calculated sample size n and actual power adjusted by a categorical confounder. The color-coded bars represent
confounding covariates, and the height of the bars represents n given α for testing a single gene. (a–c) shows n vs. ρ given φ

(0.1, 0.2, 0.5) and µ0 = 5. (d–f) shows n vs. ρ given φ (0.1, 0.2, 0.5) and µ0 = 10.
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Figure 4. Calculated sample size n adjusted by two confounders. The color-coded bars represent categorical confounders
(Covariate 2), and the height of the bars represents n given α for testing a single gene. The confounder (Covariate 1) in
panel A (a–f) has a normal distribution: N0(0, 1) and N1 (1.5, 1). The confounder (Covariate 1) in panel B (g–l) has a normal
distribution: N0 (40, 52 ) and N1 (42, 52 ).

Figure 2 displays the n obtained when the confounding covariate follows a Poisson
or normal distribution with different settings between two groups. The color-coded bars
illustrate that a larger n is required for all of the confounding covariates relative to when
there was no confounder present. The n changes with the characteristics of confounding
covariate heterogeneity (Figures 1 and 2) are similar. We observed that the greater the
mean difference of the confounders between the two groups, the larger n is required to
achieve a desired power. The confounding covariates corresponding to the adjusted n
from largest to smallest are: Pois0(10) and Pois1(15) in azure > Pois0(25) and Pois1(20) in
magenta > Pois0(10) and N1(12,1) in yellow > Pois0(10) and Pois1(12) in cyan > Pois0(10) and
N1(12, 102) in green. It is interesting to observe that a different distribution of confounders
between the two groups, such as a Poisson distribution Pois0(10) with a mean and variance
of 10 and normal distribution N1(12,1) with a mean of 12 and variance of 1, requires a
larger n compared with the same distribution of the covariate (Pois0(10) and Pois1(12)) or
different distribution of the covariate with same variance Pois0(10) and N1(12, 102). This
suggests that high variances in confounding covariates can affect sample size.

Figure 3 lists the n calculated from the simulated data when the covariate is a cate-
gorical confounder. In this scenario, the confounder covariate X0 and X1 take the binary
value 0 and 1 for the control and treatment group, respectively. Six different settings are
denoted as I(0.25, 0.25, 0.25, 0.25), II(0.2, 0.3, 0.3, 0.2), III(0.3, 0.2, 0.2, 0.3), IV(0.1, 0.4, 0.4,
0.1), V(0.4, 0.1, 0.1, 0.4) and VI(0.1, 0.3, 0.4, 0.2). Each of the six settings corresponds to
the different proportion of the single confounder in two groups (0,1) such as sex (male,
female). For example, the IV(0.1, 0.4, 0.4, 0.1) has high disproportion between control and
treatment groups, which stands for 10% female and 40% male in the control group, and
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40% female and 10% male in the treatment group. Compared with no confounders or an
equal proportion between the two groups (I (0.25, 0.25, 0.25, 0.25)), we observed a larger
n at high proportion between the two groups is required. The categorical confounding
covariates corresponding to the adjusted n from largest to smallest are: IV(0.1, 0.4, 0.4, 0.1)
in cyan and V(0.4, 0.1, 0.1, 0.4) in purple > II(0.2, 0.3, 0.3, 0.2) in green, III(0.3, 0.2, 0.2, 0.3) in
light green and VI(0.1, 0.3, 0.4, , 0.2) in magenta ≥ I(0.25, 0.25, 0.25, 0.25) in yellow.

Figure 5. Calculated sample size n adjusted by a confounder in a normal distribution. The color-coded bars represent
confounding covariates, and the height of the bars represents n given α* for testing 10000 genes. (a–c) shows n vs. fold
change ρ given dispersion φ (0.1, 0.2, 0.5) and mean counts in control µ0 = 5. (d–f) shows n vs. ρ given φ (0.1, 0.2, 0.5) and
µ0 = 10.

In summary, the greater the heterogeneity of the confounding covariate, the larger n is
required to achieve a desired power 0.80 with a significance level alpha of 0.05 compared
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to the homogeneous covariates such as N0(0, 1) and N1(0, 1.52), N0(40, 22) and N1(40, 52)
and I(0.25, 0.25, 0.25, 0.25).

Figure 6. Calculated sample size n adjusted a confounder in a Poisson distribution or a mix of normal and Poisson
distribution. The color-coded bars represent confounding covariates, and the height of the bars represents n given α* for
testing 10000 genes. (a–c) shows n vs. fold change ρ given dispersion φ (0.1, 0.2, 0.5) and mean counts in control µ0 = 5.
(d–f) shows n vs. ρ given φ (0.1, 0.2, 0.5) and µ0 = 10.

3.2. The n and Actual Power from Two Confounders for Testing a Single Gene

Figure 4 illustrates the n adjusted by two confounders. In the upper panel A (a–f), a
larger n in cyan is observed for the confounding variable N0(0, 1) and N1(1.5, 1) combined
with the high disproportion covariate of II(0.1, 0.4, 0.4, 0.1). Similarly, a larger n in cyan
(the bottom panel B: g–l) is observed for N0(40, 22) and N1(40, 52) combined with the
high disproportion covariate of II(0.15, 0.35, 0.35, 0.15) compared to I(0.2, 0.3, 0.3, 0.2) and
III(0.1, 0.3, 0.4, 0.2) with low disproportion. The two confounding covariates corresponding
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to the adjusted n from largest to smallest are: {N0(0, 1) and N1(1.5,1), II(0.1, 0.4, 0.4, 0.1)
> {N0(0, 1) and N1(1.5, 1), II(0.2, 0.3, 0.3, 0.2) or III(0.1, 0.3, 0.4, 0.2)}[5,9] > {N0(40, 22) and
N1(40, 52), II(0.15, 0.35, 0.35, 0.15)} > {N0(40, 22) and N1(40, 52), II(0.2, 0.3, 0.3, 0.2) or III(0.1,
0.3, 0.4, 0.2)}. While compared to the results from the single confounding variable in
Figures 1–3, we observed a larger n is required for adjusting two confounding variables
such as N0(0, 1) and N1(1.5, 1) combined with I(0.15, 0.35, 0.35, 0.15) or II(0.1, 0.4, 0.4, 0.1).
However, there is no significant difference in the n for the covariate with equal mean (e.g.,
(N0(40, 22) and N1(40, 52)) combined with a categorical covariate at smaller disproportion
(II(0.2, 0.3, 0.3, 0.2) and III(0.1, 0.3, 0.4, 0.2)).

Figure 7. Calculated sample size n adjusted by a categorical confounder. The color-coded bars represent confounding
covariates, and the height of the bars represents n given α*. (a–c) shows n vs. ρ given φ (0.1, 0.2, 0.5) and µ0 = 5. (d–f) shows
n vs. ρ given φ (0.1, 0.2, 0.5) and µ0 = 10 for testing 10000 genes.
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Figure 8. Calculated sample size n adjusted by two confounders. The color-coded bars represent categorical confounders
(Covariate 2), and the height of the bar graph represents the n given α* for testing 10000 genes. The confounder (Covariate 1)
in the panel A (a–f) has a normal distribution: N0(0, 1) and N1 (1.5, 1). The confounder (Covariate 1) in the panel B (g–l) has
a normal distribution: N0 (40, 52 ) and N1 (42, 52 ).

3.3. The n and Actual Power for Testing Multiple Genes

The objective is to calculate the n and actual power for testing multiple genes via
rejecting at least one null hypothesis when given a set of genes. In this simulation, the total
number of genes per sample T is set to be 10000, true positive genes (DEGs) T1 is set to
be 200. Thus, we have the number of true negative t0 = T − T1, which is the number of
genes that are not differentially expressed under H0. The expected number of true DEGs
for a desired power 0.80 is t1 = 160. The rest of the parameters, including µ0, w, ρ and φ,
remain the same as in testing a single gene. Thus, a significance level α∗ in the Equation (6)
is calculated as 0.000859, given a nominal FDR ( f = 0.05).

For each combination of these parameter settings, the n is calculated when the ob-
served power is close to the nominal power of 0.80. The gene between two treatment
groups for the multiple corrections is considered to be significantly different only when
a p-value is ≤ α∗

2 = 0.000043 using a two-sided test. The actual power is imputed as the
percentage of the number of times that the null hypothesis is rejected at the significance
level α∗/2 in the 1000 simulated dataset. Results for each combination of the desired
parameters are described below.

Figures 5–8 list the n for testing multiple genes in combinational settings correspond-
ing to Figures 1–4 for testing a single gene, respectively. The confounding covariates in
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Figures 5 and 6 are continuous variables following either a normal or Poisson distribution.
The confounder in Figure 7 is a categorical covariate. The sample sizes in Figure 8 are
obtained by adjusting two confounding variables. We observed that the pattern of the n
changed from different combinations of µ0, φ and ρ in Figures 5–8 is similar to the one
observed in Figures 1–4. However, given the similar setting, a much larger n for each
group is required to achieve the desired power of 0.80 with α∗ when testing multiple genes
compared to a single gene.

3.4. An Example Using COAD RNA-seq Data

We used a colon adenocarcinoma (COAD) data set to illustrate how to calculate sample
sizes that are adjusted by age, sex or both in the case of testing multiple genes. The mapped
raw reads with 20,531 genes and 500 samples from the file (COAD.mRNAseq_raw_counts.txt)
and corresponding clinical matrix data with 459 samples and 3222 covariates from the
file (COAD.clin.merged.txt) were downloaded from the Broad GDAC Firehouse on 22
January 2020 (https://gdac.broadinstitute.org). The COAD data file was used in this study
is provided (Supplementary File S1).

With the aid of R scripts, we extracted 359 COAD and 41 uninvolved tissue samples
that were adjacent to the COAD primary tumors called the normal group in this study.
The age and sex for these samples are matched using the COAD.clin.merge.txt file. The
genes with more than 60% zero counts across all the samples in both groups and the
mean counts across the sample fewer than five were filtered out. A total of 16682 genes
remained for downstream analysis. We used the edgeR package to perform the analysis [12].
Briefly, the raw read counts with 500 samples containing 16682 genes were loaded into
edgeR for estimating common dispersion and normalization factors (size factor). The TMM
(trimmed-mean M value) normalization method from edgeR was used to estimate the size
factor. The ratio of the size factor (w) between the normal and COAD groups is 1.05. The
estimated common dispersion φ is approximately 0.53 [11].

For the confounding covariate age, we estimated the sample mean and variance using
the TMM normalized data for the normal and COAD groups. The mean age in the normal
and COAD groups is 70.34 and 66.88 years, respectively. The standard deviation of age
in the normal and COAD groups is 13.23 and 13.1 years, respectively. Thus, we set age as
N0(70, 132).) and N1(67, 132). For the categorical covariate sex, the proportion of males and
females in the normal group is 0.24 and 0.26, respectively, while the proportion of males
and females in the COAD is 0.26 and 0.24, respectively. Thus, we set sex as VII (0.24, 0.26,
0.26, 0.24) for sample size estimation.

We assumed that the top 500 of 16682 genes are likely prognostic genes (DEGs) and
have the largest FC for up or down-regulated genes. The sample size was estimated by
setting the mean counts in the control group to be µ0 = 2, 5 and 10 for the genes in different
scenarios. In this study, the nominal power is set to be 0.80, which indicates that 400 or
more out of the 500 differentially expressed genes (DEGs) will be detected. Given the
FDR at f = 0.05 and a 0.80 nominal power, we set T = 16682, T1 = 500, t0 = T− T1 and
t1 = 400 (the expected DEG). The FC is set to be ρg = 0.5, 1.5 and 2 with φ ≈ 0.53. With
these settings, the new alpha α∗ = 0.0013 is obtained from the formula (5) at a desired
t1 = 400. Finally, the n and actual power are estimated using α∗/2 and a nominal power
0.80 (Table 2).

Table 2 reports sample size n in the control and the COAD groups with and without
covariate-adjusted by the age, sex and both while assuming 500 DEGs. For the 2 FC of
down-regulated genes at ρ = 0.5, the minimum n for the case of non-adjustment is 107,
given the minimum mean reads of the gene in the control group µ0 = 2. As the µ0 increases
to 5 and 10, the n decreases to 71 and 59, respectively. We observed that the n adjusted by
the age or sex and both variables is slightly larger than that of non-adjustment in some of
the settings. However, the samples size n adjusted by both of age and sex is slightly larger
than non-adjustment for all the settings. Similar results are observed for upregulated genes

https://gdac.broadinstitute.org
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with ρ = 1.5 and 2. This indicates that age and sex could be the potential confounding
variables in the COAD RNA-seq data.

Table 2. The calculated sample size n and estimates of power from COAD data.

ρ µ0

No confounders Age
N0(70, 13) and N1(67,13)

Sex
VII(0.24, 0.26, 0.26, 0.24) Age and Sex

n Power
(%) n Power

(%) n Power
(%) n Power

(%)

0.5

2 107 80.2 108 80.1 107 80.2 109 80.26

5 71 80.2 73 80.6 72 80.5 73 80.52

10 59 80.8 59 80.1 59 80.6 60 80.90

1.5

2 165 80.3 168 80.5 166 80.4 168 80.34

5 124 80.62 125 80.08 124 80.64 125 80.5

10 107 80.4 109 80.16 108 80.28 109 80.26

2

2 60 80.9 60 80.0 60 80.8 61 80.58

5 44 80.2 45 80.6 45 81.3 45 80.6

10 40 80.7 41 80.8 40 80.6 41 80.46

Shown are n and actual power adjusted by the confounders of age and sex variables given nominal power of 0.8 with FDR 0.05, the ratio of
size factor w = 1.05, dispersion φ = 0.53 and adjusted size α∗ = 0.0013.

4. Discussion

In this study, we performed both non-covariate and covariate-adjusted sample size and
power calculations using simulated data as well as a real dataset. Taking the confounding
covariates into consideration is an extension of our previous work [4,5]. This approach
is an advancement over the current methods for sample size calculation in designing
RNA-seq experiments [1–3,6–8,13,14]. Based on our knowledge, currently, there are no
existing methods for calculating sample sizes by adjusting confounding covariates for buck
RNA-seq experimental design. Therefore, there are no benchmark comparisons in our
study. More importantly, our simulation-based method for estimating sample size and
power described here is quite flexible and very useful to apply in both basic science and
clinical science RNA-seq data.

In performing the simulation studies, we considered different scenarios for the con-
founding covariates with a different data type and distribution. We found that a large
sample size is required to achieve the desired 80% detection power when the heterogeneous
confounding variables exist. Without consideration of cofounding covariates, the sample
size obtained by the methods will likely be underestimated. Consequently, the power for
detecting the DEGs will probably be below the desired power of 0.8.

Similarly, we used a two-sided statistical test for the model parameter ψ1 from a
standard GLM to estimate sample size and power, which are based on the DEG analysis in
RNA-seq data [5]. We have incorporated a common dispersion parameter, the size factor
and confounding covariates via a log link function using an NB regression model, which is
extended from the previous study [23].

Most importantly, in this paper, sample size calculation methods are presented under
a wide range of settings for accommodating confounding covariates denoted by a continu-
ous [24], a categorical variable [22] or both. The actual power in this study is very close
to or higher than the nominal power of 0.80 for all the settings. The results indicate the
required sample size is larger given additional heterogeneity in the data, which needs to be
addressed in RNA-seq studies.

In the simulation study, we arbitrarily chose µ0 = 5 as a minimum read in control
group of DEGs, which is commonly used as a cutoff to filter out lowly expressed genes in
RNA-seq analysis. For a low µ0, a study requires a large n to achieve a nominal power at
80% or higher, which may not be feasible in practice due to the cost. As an alternative, a
higher read depth sequencing may be chosen to increase the mean read counts for each



Biomedinformatics 2021, 1 62

sample instead of directly increasing the sample size, as is shown in Lamarre et al. [25].
In current simulations, µ0 parameters are simply fixed as 5 and 10. For the real dataset,
µ0 varies with sequencing read depth and experimental conditions. For differentially and
highly expressed genes in an experiment, the µ0 could be chosen to be larger than 5 or 10 or
vice versa. Moreover, when testing multiple genes in the simulation, we arbitrarily chose
10000 genes with 200 true DEGs (Figures 5–8). In reality, the total number of detected genes
could vary depending upon the read depth in each sequencing sample and experimental
conditions. In this example analysis, we demonstrate that the sample size is calculated
based on the number of genes and parameters that are estimated from real RNA-seq data.
Due to the large sample size from COAD data, we set 500 true DEGs to estimate the sample
size with a desired power. Currently, the number of DEGs identified by the common
RNA-seq analysis tools is varied due to high false-positive rates [18]. Determining the true
number of DEGs is usually objective by researchers because it depends on the tools and the
cutoff value of fold change and adjusted p-value that are chosen. Finally, in this study, we
focused on the equal read depth due to improvements in RNA-seq technology and library
preparation. We also focused on a balanced experimental design for the simulation study.

5. Conclusions

In summary, the methods described here illustrate how to estimate sample size when
confounding variables are likely to exist in any complex RNA-seq experimental design.
We observed that a larger sample size is required for the likely presence of single or
multiple confounding variables in order to achieve a nominal power of 0.80. The results
provide investigators with a variety of choices for the sample size that might be required
for designing their experiments. Most importantly, when a confounding covariate with a
known distribution exists in an experiment, one should incorporate such information into
sample size calculation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biomedinformatics1020004/s1: File S1: R source codes for the simulation study with detailed
explanations are provided. File S1 R codes in PDF format illustrate how to estimate sample size and
power for testing a single gene for Figure 1 and multiple genes for Figure 5 given FC = 2 and other
parameters in the presence of confounding covariates. File S2: Datasets used for the analysis. This
zipped file folder contains COAD raw reads of 500 samples (COAd.uncv2.mRNAseq_raw_counts.txt).
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