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Abstract: Systematic reviews and meta-analyses have been increasingly used to pool research find-
ings from multiple studies in medical sciences. The reliability of the synthesized evidence depends
highly on the methodological quality of a systematic review and meta-analysis. In recent years,
several tools have been developed to guide the reporting and evidence appraisal of systematic
reviews and meta-analyses, and much statistical effort has been paid to improve their methodological
quality. Nevertheless, many contemporary meta-analyses continue to employ conventional statis-
tical methods, which may be suboptimal compared with several alternative methods available in
the evidence synthesis literature. Based on a recent systematic review on COVID-19 in pregnancy,
this article provides an overview of select good practices for performing meta-analyses from sta-
tistical perspectives. Specifically, we suggest meta-analysts (1) providing sufficient information of
included studies, (2) providing information for reproducibility of meta-analyses, (3) using appro-
priate terminologies, (4) double-checking presented results, (5) considering alternative estimators
of between-study variance, (6) considering alternative confidence intervals, (7) reporting predic-
tion intervals, (8) assessing small-study effects whenever possible, and (9) considering one-stage
methods. We use worked examples to illustrate these good practices. Relevant statistical code
is also provided. The conventional and alternative methods could produce noticeably different
point and interval estimates in some meta-analyses and thus affect their conclusions. In such cases,
researchers should interpret the results from conventional methods with great caution and consider
using alternative methods.
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1. Introduction

Systematic reviews and meta-analyses have been widely used to synthesize results
from multiple studies on the same research topic in medical sciences [1,2]. The reliability
of the synthesized evidence depends critically on appropriate methods used to perform
meta-analyses [3,4]. However, despite the mass production of meta-analyses, it has been
found that many meta-analyses need improvements in their methodological quality [5–10].
This is a particularly crucial issue in the COVID-19 pandemic because of the concerns about
the expedited peer-review process [11–14].

This article uses a systematic review on COVID-19, recently published in The BMJ, to
illustrate some good practices for performing a meta-analysis from statistical perspectives.
Many non-statistical recommendations and quality assessments for a systematic review
and meta-analysis can be found in the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) checklists [3,15,16], the GRADE (Grading of Recommen-
dations Assessment, Development and Evaluation) approaches [17,18], the AMSTAR (A
MeaSurement Tool to Assess systematic Reviews) tools, etc. [19,20]. In recent years, meta-
analyses have begun to adopt these non-statistical recommendations, but there is still much
room for improvement in terms of statistical analyses.

Biomedinformatics 2021, 1, 64–76. https://doi.org/10.3390/biomedinformatics1020005 https://www.mdpi.com/journal/biomedinformatics

https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com
https://orcid.org/0000-0002-3562-9816
https://doi.org/10.3390/biomedinformatics1020005
https://doi.org/10.3390/biomedinformatics1020005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biomedinformatics1020005
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com/article/10.3390/biomedinformatics1020005?type=check_update&version=1


Biomedinformatics 2021, 1 65

For example, several papers pointed out that the well-known statistical method for
the random-effects meta-analysis proposed by DerSimonian and Laird [21] is subopti-
mal [22–24]. Various methods with potentially better performance are available and can be
readily implemented with various statistical software programs [25–29]. Nevertheless, the
DerSimonian–Laird (DL) method continues to dominate contemporary meta-analyses [9].
Some popular software programs for meta-analysis (e.g., Review Manager) use the DL
method as the default and perhaps the only option.

In this article, based on the aforementioned systematic review on COVID-19, we aim
at exploring potential issues when using statistical methods for its meta-analyses and
illustrating potential better alternatives. Reproducible code for all analyses is provided. We
hope these materials will help practitioners accurately use appropriate statistical methods
to perform high-quality meta-analyses in the future.

2. Case Study

We use the data of meta-analyses reported by Allotey et al. [30] as our examples. This
study conducted a living systematic review, which will be updated periodically to incor-
porate evidence from new studies. We use the version of update 1 of the original article
published on 1 September 2020. The systematic review identified a total of 192 studies
and performed multiple meta-analyses to investigate the prevalence, clinical manifesta-
tions, risk factors, and maternal and perinatal outcomes in pregnant and recently pregnant
women (henceforth, pregnant women) with COVID-19. We select this systematic review
for illustrations due to several considerations. It deals with the important research topic of
COVID-19, where the appropriate use of statistical analyses is particularly crucial for timely
and accurate decision-making. Also, this review covers a wide range of meta-analysis set-
tings; the included meta-analyses had diverse outcomes, types of studies (non-comparative
and comparative), numbers of studies, sample sizes, extents of heterogeneity, etc.

This article uses three meta-analyses from this systematic review to illustrate several
statistical advances. The first two meta-analyses synthesize comparative studies; their
outcomes are fever and cough in pregnant women compared with non-pregnant women
of reproductive age with COVID-19. Each meta-analysis contains 11 studies. The original
meta-analysis on fever yielded a pooled odds ratio (OR) of 0.49 with 95% confidence
interval (CI) (0.38, 0.63) and I2 = 40.8% suggesting moderate heterogeneity. The original
meta-analysis on cough yielded a pooled OR of 0.72 with 95% CI (0.50, 1.03) and I2 = 63.6%
suggesting moderately high heterogeneity. Overall, pregnant women with COVID-19
were less likely to have fever and cough than non-pregnant women with COVID-19. The
association with fever was statistically significant, while that with cough was not. For
illustrative purposes, Figure 1 shows the forest plot of the meta-analysis on cough.
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The third meta-analysis combines non-comparative data from 60 studies to obtain a
pooled prevalence of COVID-19 in pregnant women; Figure 2 presents its forest plot. The
original analysis gave a pooled prevalence of 7% with 95% CI (5%, 8%) and I2 = 98.0%
suggesting extremely high heterogeneity.
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3. Good Practices
3.1. Providing Sufficient Information of Included Studies

Meta-analysts should provide sufficient information of included studies so that peer
reviewers and other researchers could reproduce the meta-analyses and validate the results.
The PRISMA statement and its extensions give comprehensive overviews of the reporting of
meta-analyses [15,16,31,32]; meta-analysts are advised to carefully follow these guidelines
for general purposes. Here, we focus on the reporting from statistical perspectives; the
non-statistical parts (e.g., study selection) are not discussed, while they are equally critical
for validating meta-analyses. The statistical data from individual studies can be feasibly
provided in meta-analyses of aggregate data. However, this practice may be challenging
for meta-analyses of individual participant data (IPD), which could involve concerns about
data privacy. In such situations, meta-analysts may provide detailed procedures with other
researchers to apply for access to the de-identified participant-level data. In the following,
we restrict the discussions to meta-analyses of aggregate data.
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In all three examples, the meta-analyses use aggregate data, i.e., the number of subjects
with fever or cough and the sample sizes of pregnant and non-pregnant women in the
comparative studies, and the number of cases of COVID-19 and the sample size of pregnant
women in the prevalence data. These aggregate data are transparently provided by Allotey
et al. [30], displayed in the corresponding forest plots; see, e.g., Figures 1 and 2. With
these data available, we can reproduce the results, such as the prevalence and OR, of
each individual study. They also permit us to employ alternative meta-analysis methods
(detailed later).

3.2. Providing Information for Reproducibility of Meta-Analyses

In addition to the information of individual studies, reproducibility of meta-analyses
also requires transparency in the statistical analyses, including the choice of measures for
quantifying the study results, models for pooling the individual-study data, methods for
assessing heterogeneity between studies and small-study effects, software program and
its version used for performing the analyses, as well as subgroup analyses and sensitivity
analyses (if applicable).

For example, Allotey et al. [30] specified that the OR was used for pooling the com-
parative dichotomous data with random-effect models. If comparative continuous data
are needed to be pooled with dichotomous data, the standardized mean difference was
used as the effect measure of the continuous data and was transformed to the log OR using
the method by Chinn [33]. For the prevalence data, the Freeman–Tukey double-arcsine
transformation was applied to the proportion estimate from each study to stabilize its sam-
ple variance [34]. The authors used the I2 statistic to assess heterogeneity [35,36], but they
did not assess small-study effects or publication bias. When the random-effects model is
used, it is also critical to specify the estimator of the between-study variance, which is a key
parameter in this model and could greatly affect the pooled results, particularly 95% CIs.
The authors only specified that the DL method was used for pooling prevalence data but
did not specify that for pooling comparative data. We have reproduced their meta-analyses
of comparative data and found that the DL method was also used for comparative data.
The original meta-analyses were all performed with Stata 16, which is widely used in the
current literature of meta-analyses.

3.3. Using Appropriate Terminologies

Based on our knowledge, it was not uncommon that some inappropriate terminologies
were used for meta-analysis methods. For example, in the systematic review by Allotey
et al. [30], the prevalence was incorrectly referred to as “rate ratio” in the meta-analyses of
prevalence (Figures 2 and 3 in the original article). As its name suggests, the rate ratio is a
ratio of incidence rates for comparative studies, while the prevalence (or proportion) is a
type of non-comparative data. The incidence rate also includes certain time elements (e.g.,
person-year), while the prevalence does not include such elements.

Besides these minor issues in this case study, Ioannidis [37] explored the problem of
massive citations in detail. Additional examples include referring to the forest plot [38]
as “Forrest plots”, “honoring the nonexistent Dr. Forrest,” and the funnel plot [39,40]. for
assessing small-study effects as “Beggar’s funnel plot,” “apparently copy-pasting from
some original source(s) that mistyped Colin Begg’s funnel plot.” Moreover, the commonly
used Q test for heterogeneity is often referred to as the “Cochrane’s Q” or “Cochran’s Q.”
The former wrongly relates the Q test to the Cochrane Collaboration. The latter is used
in many meta-analyses due to the paper by William G. Cochran [41], although it was not
designed for testing for heterogeneity in Cochran’s original work [42].

In order to use appropriate statistical methods for a meta-analysis, the first step is to
specify their names correctly. When referring to certain meta-analysis methods, we suggest
researchers always reading and citing the original methodological articles or tutorials that
proposed, introduced, or reviewed the methods.
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3.4. Double-Checking Presented Results

A meta-analysis has the power to yield more precise results than individual studies,
but it could also inherit potential research errors from individual studies. It may be difficult
to discover and correct the errors hidden in individual studies. The potential erroneous
results from suspectable studies could be removed from the meta-analysis, or sensitivity
analyses could be conducted to evaluate such studies’ impact on the pooled results.

Additional errors could occur when pooling the individual studies; researchers should
try their best to avoid such errors when inputting the data and outputting the results. For
example, a systematic review team may assign two or more researchers to independently
extract individual studies’ data, perform meta-analyses, check the results, and proofread
the final manuscript. With sufficient information provided, it is more likely to check
for potential internal reporting discrepancies. Several examples of internal reporting
discrepancies are discussed by Puljak et al. [43].

Taking the systematic review by Allotey et al. [30] as an example, several discrepancies
appeared. In the meta-analysis on fever comparing pregnant women with non-pregnant
women with COVID-19 (Figure 5 in the original article), the OR of the study “Wei L 2020”
was reported as 0.40 with 95% CI (0.11, 0.77), and the OR of another study “Wang Z 2020”
was reported as 0.29 with 95% CI (0.11, 0.77). The reported CIs were identical, while the
point estimates of the ORs were different, and the CIs were displayed differently in the
forest plot. Based on the forest plot, the CI of “Wei L 2020” encompassed the null value 1, so
the reported CI of this study was likely erroneous when copying and pasting the numeric
results in the forest plot. Fortunately, because the event counts and sample sizes (8 and
17 for pregnant women and 18 and 26 for non-pregnant women) were reported for this
study, we can derive the correct 95% CI as (0.11, 1.40). A similar issue occurred in the study
“Zambrano LD 2020,” whose OR was reported as 0.52 with 95% CI (0.50, 0.50). The CI did
not even encompass the point estimate; again, this was likely due to a typesetting error. In
the meta-analysis on cough (also Figure 5 in the original article), the total sample sizes of
pregnant and non-pregnant women across the 11 studies were reported as 5468 and 75,053,
respectively. These total sample sizes were also apparently erroneous because they are
smaller than the sample sizes in the single study “Zambrano LD 2020.” The correct total
sample sizes should be 17,806 and 222,493 (Figure 1).

3.5. Considering Alternative Estimators of Between-Study Variance

As mentioned earlier, the example meta-analyses were performed with the random-
effects model, and the well-known DL method was used to estimate the between-study
variance. The DL estimator is based on the method of moments. This method is popular
possibly because it is a simple, non-iterative method with a closed-form [21]. Many alter-
native estimators have been proposed for the between-study variance [44–46]. Although
the DL estimator retains its usefulness in some situations (e.g., large sample sizes) [22], it
could bias the estimated between-study variance, and the restricted maximum-likelihood
(REML) estimator generally performs better among various frequentist methods [25,26,47].
Bayesian methods can also be good alternatives as they have the ability to incorporate prior
information (e.g., from external evidence or experts’ opinions) in the final estimates [48,49].
The method used to estimate heterogeneity plays a crucial role in a meta-analysis because
it could greatly affect the estimated overall effect, particularly the width of its CI and thus
the statistical significance. Therefore, we suggest researchers exploring alternative options
for estimating the between-study variance offered by the software programs used for their
meta-analyses. In many cases, the alternative estimators may produce similar results to
the DL estimator, and the DL estimator may be considered reliable. However, if these
estimators yield fairly different results, researchers may consider alternative estimators.

In the example meta-analysis on fever, the DL method estimated the between-study
variance as 0.053, leading to an overall OR estimate of 0.488 with 95% CI (0.377, 0.632).
Using the REML method, the estimate became 0.127, leading to an overall OR estimate of
0.453 with 95% CI (0.326, 0.629). In the example meta-analysis on cough, the DL method
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estimated the between-study variance as 0.168, leading to an overall OR estimate of 0.719
with 95% CI (0.502, 1.031). Using the REML method, the estimate became 0.239, leading to
an overall OR estimate of 0.711 with 95% CI (0.476, 1.061).

3.6. Considering Alternative Confidence Intervals

Conventionally, the CI of the overall estimate in a meta-analysis is produced assuming
normality (e.g., for the log OR). However, this normality assumption might be questionable
in some situations [50]; as such, the normality-based CI may not have the desired cover-
age probability (e.g., 95%). Hartung and Knapp [51,52] and Sidik and Jonkman [53,54]
independently introduced a refined CI based on the t-distribution for the random-effects
meta-analysis. This t-based CI has been shown to have better coverage probabilities than
the standard normality-based CI by various simulation studies, particularly when a meta-
analysis only contains a few studies [29,55–57]. Of note, this CI was designed for the
random-effects meta-analysis, and it is inappropriate to apply it to the fixed-effect (also
known as common-effect) meta-analysis that assumes no heterogeneity.

The t-based 95% CI of the overall OR in the example meta-analysis on fever was (0.352,
0.678) and (0.316, 0.650) using the DL and REML methods, respectively, both wider than
their counterparts of normality-based 95% CIs (0.377, 0.632) and (0.326, 0.629). Similarly,
in the example meta-analysis on cough, the t-based 95% CI of the overall OR was (0.463,
1.118) and (0.453, 1.114) using the DL and REML methods, respectively. Also, both were
wider than their counterparts of normality-based 95% CIs (0.502, 1.031) and (0.476, 1.061).

3.7. Reporting Prediction Intervals

Heterogeneity between studies frequently appears and is generally expected in a
meta-analysis [58]. Standard meta-analysis approaches use the random-effects model to
account for the heterogeneity and use the estimated between-study variance τ2 and/or the
I2 statistic to quantify it. However, it is difficult to apply these metrics to clinical practice for
future research. Over the last decade, much effort has been made to promote the reporting
of the prediction interval (PI) in a meta-analysis, but only a small proportion of meta-
analyses adopt this recommendation in the current literature [9,59–63]. The PI represents
the expected range of the true effects in future studies, making it easier to apply meta-
analysis results to clinical practice. The PI is wider than the CI due to the heterogeneity
between existing studies in a meta-analysis and future studies. A meta-analysis may have
a CI not encompassing the null value (thus implying a statistically significant effect), but its
PI could encompass the null, indicating that a future study could have opposite results [64].

Despite the attractive features of the PI, researchers should note that the PI could be
subject to large uncertainties when the number of studies in a meta-analysis is relatively
small (e.g., <10). In the presence of small-study effects (detailed in the following subsection),
the PI could have poor coverage due to biased estimates. Therefore, the PI should be
interpreted with caution in these situations. Also, the PI is designed for a random-effects
meta-analysis; it is not sensible for a fixed-effect meta-analysis.

In the example meta-analysis on fever, based on the REML estimator of the between-
study variance, the 95% PI of the overall OR is (0.186, 1.104), encompassing the null value 1.
Recall that the 95% CI of this meta-analysis is (0.326, 0.629), not encompassing 1. Therefore,
although the meta-analysis concludes a statistically significant association between fever
and pregnancy, this conclusion could be changed in a new study.

In the example meta-analysis on cough, based on the REML estimator of the between-
study variance, the 95% PI of the overall OR is (0.214, 2.356), much wider than its 95% CI
(0.476, 1.061). The PI can be incorporated into the forest plot [60,65], as shown in Figure 1.
Of note, the results in Figure 1 were produced using the DL method to reproduce the
original results in Allotey et al. [30], so the interval estimates were different from the
foregoing results based on the REML method.
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3.8. Assessing Small-Study Effects Whenever Possible

Small-study effects refer to the phenomenon that smaller studies containing fewer
subjects have substantially different results from larger studies with more subjects. They
could be caused by publication bias, when small studies with statistically significant find-
ings or effect estimates in the desired direction are more likely published in the literature
than those with non-significant findings or effect estimates in the opposite direction [66,67].
Assessing small-study effects is a crucial step for validating the synthesized evidence from
a meta-analysis; if substantial small-study effects appear, the certainty of the synthesized
evidence should be rated down [3,68,69]. Common approaches to assessing small-study
effects include graphical tools, such as the funnel plot [39,40], and quantitative methods,
such as Egger’s test, Begg’s test, and skewness [70–74]. The asymmetry in a funnel plot
is an indicator of potential small-study effects. Additional contours that depict areas of
various statistical significance levels can be further added to the usual funnel plot, referred
to as the contour-enhanced funnel plot [40,75,76]. They help distinguish publication bias
from other potential factors (e.g., subgroup effects) that might cause small-study effects.

We assessed small-study effects in the meta-analyses on fever and cough. Figure 3
presents their contour-enhanced funnel plots, where the contours represent the commonly
used statistical significance levels at 0.01, 0.05, and 0.1.
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In Figure 3A, the funnel plot shows that the (log) ORs from the 11 studies on fever
were distributed asymmetrically. Smaller studies with larger standard errors tended to
have smaller ORs away from the null value 1, indicating small-study effects. The potential
missing studies at the lower right part of the funnel plot are likely located within the
white area with p-values > 0.1. Therefore, this contour-enhanced funnel plot supports the
existence of publication bias. Nevertheless, the p-value of Egger’s test was 0.275, suggesting
that publication bias was not statistically significant. Of note, if the potential missing studies
were located in areas with very small p-values, then the small-study effects may not be
explained by publication bias. In such cases, meta-analysts are encouraged to explore
the factors that might cause the funnel plot’s asymmetry, e.g., by performing subgroup
analyses to examine whether the asymmetry was attributable to heterogeneity [40,77].
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Although small-study effects were not statistically significant based on Egger’s test in
this case study, it did not mean that the assessment of small-study effects was unnecessary.
Statistical methods for detecting small-study effects usually have low powers, particularly
in meta-analyses with only a few studies. As such, the significance level for detecting
small-study effects is typically set to 0.1, higher than the most popular cutoff of 0.05 [78].
Here, meta-analysts should distinguish the p-value of tests for small-study effects from
the p-values of individual studies’ effect estimates. The significance levels depicted in the
contour-enhanced funnel plot are intended for the latter. In addition, if a meta-analysis
contains less than 10 studies, it might be inappropriate to use the funnel plot to detect
small-study effects because it is hard to distinguish chance from real asymmetry [40].

In Figure 3B, the funnel plot for the meta-analysis on cough does not show apparent
missing studies in the white area of non-significance. Therefore, it does not support the
existence of publication bias.

3.9. Considering One-Stage Methods

Conventionally, meta-analyses are performed with two-stage methods; that is, within-
study estimates are first obtained, and then the study-specific estimates are pooled together
as an overall estimate. The two-stage methods are usually simple and intuitive; the study-
specific estimates provided by them are also necessary for producing the forest plot for
visualizing a meta-analysis and the funnel plot for assessing small-study effects. Nev-
ertheless, they suffer from several limitations. First, the study-specific estimates in the
two-stage methods are typically assumed to approximately follow normal distributions.
For this purpose, certain transformations are applied to the original effect measures. For
example, the OR is typically analyzed on the logarithmic scale, and the Freeman–Tuckey
double-arcsine transformation is widely used to transform proportion estimates, as in the
original analyses by Allotey et al. [30]. The transformed estimates may approximately
follow normal distributions when the sample sizes are sufficiently large, while the ap-
proximation may be inaccurate for studies with small sample sizes [50]. In recent years,
there are also growing concerns about the appropriateness of the Freeman–Tuckey double-
arcsine transformation for meta-analyses of proportions [79–81]. Second, the variances of
the effects from individual studies need to be estimated in the two-stage methods, and
the estimated within-study variances are typically treated as fixed variables. Again, this
practice may be valid for large-sample settings, but it is questionable for studies with small
sample sizes [57]. For example, the (log) OR’s variance depends on the event counts, which
are actually random variables instead of fixed variables. The (log) OR and variance are
thus intrinsically associated, and such association could lead to non-negligible biases for
small sample sizes and/or low even rates [82–84].

With the recent development of statistical methods for meta-analysis, many software
programs have commands to pool data via one-stage methods, such as generalized linear
mixed models (GLMM) and Bayesian hierarchical models. The one-stage methods assume
exact likelihood functions for the observed data (e.g., the binomial likelihood for the event
count from a group of patients). They do not need the estimation for each individual study
and thus avoid some unrealistic assumptions made by the two-stage methods. Moreover,
these methods are widely applicable to many types of meta-analyses, including compara-
tive studies, proportions, and diagnostic tests [27,85–90]. In the following, we illustrate the
use of GLMMs and Bayesian hierarchical models with two example meta-analyses.

In the meta-analysis on cough, recall that the overall OR was 0.719 with 95% CI (0.502,
1.031) based on the original analysis (the DL estimation) by Allotey et al. [30]; it was
0.711 with 95% CI (0.476, 1.061) using the REML estimation. We re-analyzed this dataset
using the GLMM and Bayesian hierarchical models with a logit link function. For the
Bayesian models, we used the vague normal prior N(0, 1002) for the overall log OR and
the uniform prior U(0, 5) for the between-study standard deviation τ. We also considered
the informative log-normal prior LN(−2.89, 1.912) for τ2, which was derived by Turner
et al. [48] based on a large Cochrane database. The GLMM estimated the overall OR as
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0.710 with 95% CI (0.493, 1.022). The Bayesian model with U(0, 5) prior for τ produced
the estimated OR of 0.701 with 95% credible interval (CrI) (0.415, 1.143), and that with
LN(−2.89, 1.912) prior for τ2 gave 0.709 with 95% CrI (0.462, 1.047).

In the meta-analysis of the prevalence of COVID-19 in pregnant women, we re-
analyzed it using the GLMM and Bayesian model with a logit link function, in addition to
the original two-stage method used by Allotey et al. [30] (i.e., the DL estimation with the
Freeman–Tuckey double-arcsine transformation). Based on the original two-stage method,
the overall prevalence was estimated as 6.77% with 95% CI (5.28%, 8.44%). Based on the
GLMM, the estimated overall prevalence became 5.44% with 95% CI (4.09%, 7.19%). The
Bayesian model with U(0, 5) for τ produced the estimated OR of 5.44% with 95% CrI (4.04%,
7.34%). The prevalence estimates by both one-stage methods were smaller than those by
the two-stage method by over 1%.

4. Conclusions

This article provided a summary of good practices for performing a meta-analysis from
statistical perspectives. We illustrated these practices using meta-analyses published in a
recent systematic review on COVID-19 in pregnancy. We hope they may help improve the
methodological quality of future meta-analyses. For facilitating researchers to implement
the methods reviewed in this article, the Supplemental File gives all code for our analyses.

Due to the urgent need for COVID-19 research, it has been dramatically expedited
to conduct and peer-review meta-analyses. Nevertheless, it is critical to safeguard the
integrity of scientific evidence during this challenging period of accelerated publishing [14].
This article shows that some statistical methods used in the example meta-analyses may
be suboptimal. In our re-analyses with better alternatives, some meta-estimates had
noticeable changes. Also, potential small-study effects might exist. Extra attention is
needed to examine whether such effects might continue to exist in the future updates of
this living systematic review after including new studies.

This article has several limitations because we were only able to focus on select
statistical advances for meta-analysis based on a single case study on COVID-19. For
example, for assessing small-study effects or publication bias, some selection models
may be applied as sensitivity analyses to examine the robustness of synthesized results to
potential bias [91,92]. Alternative meta-analysis methods are available to offer some benefits
over the traditional fixed-effect and random-effects models under specific cases [93–95]. In
addition, the current literature has debates on the choice of effect measures, e.g., relative
risk, in meta-analyses [96,97]. This article has also not covered topics on meta-analyses
of diagnostic tests [98]. All examples are meta-analyses of aggregate data, while meta-
analyses of IPD may involve additional issues and require specific methods [99]. For a
more comprehensive review of meta-analysis methods, one may refer to the Cochrane
Handbook [100].

Systematic reviews and meta-analyses are a type of transdisciplinary research. There-
fore, in addition to many statistical considerations reviewed in this article, non-statistical
guidance is also crucial for conducting high-quality meta-research. For example, hetero-
geneity between studies may be assessed beyond the statistical perspectives [101]. To aid
the statistical assessment of small-study effects, researchers are suggested to search for
relevant unpublished studies (e.g., on preprint servers and trial registries), include them in
meta-analyses, and explore their potential differences from the published studies [100]. Of
course, because the unpublished studies are not peer-reviewed, they could be subject to a
high risk of bias. The risk of bias must be carefully appraised if incorporating such studies
in the systematic review [102].
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