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Abstract: Electronic health records (EHRs) can be very difficult to analyze since they usually contain
many missing values. To build an efficient predictive model, a complete dataset is necessary. An EHR
usually contains high-dimensional longitudinal time series data. Most commonly used imputation
methods do not consider the importance of temporal information embedded in EHR data. Besides,
most time-dependent neural networks such as recurrent neural networks (RNNs) inherently consider
the time steps to be equal, which in many cases, is not appropriate. This study presents a method
using the gated recurrent unit (GRU), neural ordinary differential equations (ODEs), and Bayesian
estimation to incorporate the temporal information and impute sporadically observed time series
measurements in high-dimensional EHR data.

Keywords: gated recurrent unit; machine learning; multivariate time series; imputation; neural ODE;
irregular time steps

1. Introduction and Background

One of the biggest challenges to work with electronic health record (EHR) data is
that there are many missing values. This issue incorporates uncertainty in the predictive
model if the missing instances are imputed. Common imputation methods usually do not
consider the temporal information, which is crucial for time series analysis. Moreover, most
time series analysis methods ignore the time gap between measurements or assume that
the time gaps are equal. In this study, we investigated time series imputation with irregular
time gaps and propose a method based on neural ordinary differential equations (ODEs),
recurrent neural networks (RNNs), and Bayesian estimation. This method offers a robust
imputation of sporadically sampled multivariate time series measurements obtained from
different patients.

Many data imputation techniques have been developed over the years. In real-
life problems, it is very common to have multiple missing attributes for a particular
dataset. In the literature, most datasets have 30% to 50% missing values, and they have
been imputed using various techniques [1]. There are mostly two techniques widely
used for data imputation. These are statistical techniques and machine-learning-based
techniques. Among the statistical techniques, expectation minimization (EM), the Gaussian
mixture model (GMM), Markov chain Monte Carlo (MCMC), naive Bayes (NB), principal
component analysis (PCA), etc., have been used frequently [1]. Among the machine-
learning-based techniques, the Gaussian process for machine learning (GPML) (see [2]),
support vector machines (SVMs) [3,4], k-nearest neighbors (k-NNs) [5], decision trees
(DTs) [6], and artificial neural networks (ANNs) [7] have been heavily used in the literature.

In recent years, longitudinal data imputation has been necessary specially in EHRs.
However, many imputation methods only consider the data without the very important
element–temporal information. However, there are many time series imputation methods
that only consider equal time steps. Our research focuses on a time series imputation
method that can deal with sporadically observed time series measurements obtained
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from EHRs. The major key components to implement this imputation method are neural
ODEs [8], which parameterize the derivative of a neural network’s hidden state. As com-
pared to the popular residual neural networks, neural ODEs have superior memory and
parameter efficiency. Neural ODEs can easily deal with continuous time series, unlike
recurrent neural networks, which require discretization. In a follow-up study, latent ODEs
were proposed for irregularly sampled (e.g., sporadic) time series [9]. This method (called
ODE-RNN) is presented as an alternative to autoregressive models. However, neural
ODEs [8] use RNNs as the recognition network to estimate the posterior probabilities.
However, that approach is more appropriate for continuous time series modeling with reg-
ularly sampled data. Therefore, the ODE-RNN [9] has been introduced as the recognition
network to deal with irregularly sampled continuous time series analysis. Combined with
neural ODEs and the GRU, a Bayesian update [10] is proposed that uses a predictive (with
observation masking) method (called the GRU-ODE-Bayes method) to include only the
available observations to update the predicted values along the multivariate time series.
However, this method does not impute the missing values; rather, it performs zero- or
mean-value padding. The GRU-ODE-Bayes method assumes that the observations are
sampled from a multidimensional stochastic process whose dynamics can be explained
by a Weiner process. The examples include the stochastic Brusselator process [11], the
double-Ornstein–Uhlenbeck (OU) stochastic differential equations [12], etc. The authors
showed that their method achieved better results than the GRU-D [13,14], minimal gated
unit or minimal GRU [15], and other popular methods. In another recent study [16], a bidi-
rectional recurrent imputation for time series (BRITS) was proposed. This algorithm uses
both a forward and backward feeding of inputs to the RNN and simultaneously imputes
the missing values. However, the BRITS does not allow the stochastic imputation of time
series data. The BRITS is composed of a recurrent component and a regression component
for imputation. The authors also presented a unidirectional approach called the RITS and
claimed that the process was slower compared to the BRITS. Among other RNN-based
models, the multidirectional RNN (M-RNN) provides good imputation results [17]. This
study aims to develop a robust multivariate stochastic imputation technique for irregular
time series that will fill this research gap.

2. Data Processing

To develop a good predictive model, a reliable database is very crucial. The data need
to be authentic and mostly accurate. Any big-data-driven research highly depends on the
quality of the data being used. In this study, a very popular dataset [13,18–20] named the
Medical Information Mart for Intensive Care (MIMIC) clinical database was explored and
analyzed. This dataset contains intensive care unit (ICU) admission records of patients
admitted to Beth Israel Deaconess Medical Center in Boston, Massachusetts, from 2001
to 2012. This database has several versions. In this study, MIMIC III Version 1.4 was
used, which is the latest. It contains de-identified electronic medical records, demographic
information, and billing information for ICU-admitted patients. Many of these records
contain timestamps of clinical events, nurse-verified physiological measurements, routine
vital signs, check-up information, etc. However, this database is only available after
completing a required course and acknowledging a data use agreement.

After accessing the electronic records from the MIMIC III clinical database, a clean
dataset needs to be formed that can be useful for analysis. As most other databases, MIMIC
III provides its users with different types of structured and unstructured data records that
must be cleaned prior to performing any data-driven analysis. Furthermore, the electronic
records sometimes have different artifacts associated with them. Data cleaning tends to
be more difficult in the case of large databases such as MIMIC III. The search algorithms
for the desired attributes need to designed in a way that they can extract the necessary
information efficiently. There are hardware and software limitations due to which it
becomes very difficult to carry out large matrix operations in traditional computers. Since
the analysis highly depends on the data quality, a proper cleaning process should be
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selected and performed carefully. There might be anomalies in the chosen dataset that
should be properly dealt with before any analysis.

2.1. Data Description

The MIMIC-III database is an information storehouse for critical care patients. There-
fore, it needs to deal with proper care and privacy. To access the data, one needs to
request access formally through the Physionet website (https://www.physionet.org) (last
accessed on 15 November 2021). Two important steps need to be followed to access the
data. The first one is to take a recognized course and comply with the Health Insurance
Portability and Accountability Act (HIPAA) requirements. The second step is to sign a
data use agreement that includes the appropriate data usage policy, security standards,
and preventing identification efforts. Once the request is submitted, the approval comes
within a week. Then, the data can be accessed from the server or can be stored in lo-
cal storage. More information can be obtained by visiting the official MIMIC website
(https://physionet.org/content/mimiciii/1.4/) (last accessed on 15 November 2021).

There are 26 tables in total in the MIMIC-III database (see Appendix A, Table A1).
In this subsection, we mainly discuss the tables that were directly used for the analysis.
Since our goal was to extract as many CHF-related variables as possible, we needed to
explore different tables and match records with mostly unique patient IDs and sometimes
with admission IDs. Different tables are linked together to compile the dataset that we
needed. The tables are described in the following paragraphs.

The “Admissions” table provides unique hospital admission information for each
patient. It reports the admission ID, ICUstay ID, date of admission, admission type,
discharge location, diagnosis, insurance, language, religion, marital status, age, ethnicity,
etc. This can be linked with other tables via the admission ID and patient ID.

The “Patients” table provides demographic information for 46,520 unique patients. It
contains the patient ID, admission ID, date of birth, date of death, gender, hospital expire
flag, etc.

The “Chartevents” table is the largest table in the entire MIMIC III database. This has
about 330,712,483 records. This table provides the patient ID, admission ID, item ID, and
the corresponding routine physiological measurements of each patient from time to time.

The “D_ICD_diagnosis” table contains unique patient IDs, unique hospital admission
IDs, and International Coding Definitions Version 9 (ICD-9) for each of the 14,567 diagnosis
categories. The code for CHF diagnosis is 4280.

The “D_items” table has 12,487 records of items used to treat different patients. Rou-
tine vital signs such as blood pressure, heart rate, white blood cell count (WBC), respiratory
rate, and other numerical variables are listed here with distinct item IDs.

2.2. Data Cleaning

Before any type of analysis, the subset of the entire database, that is of interest, needs to
be extracted. Data cleaning can be a very tedious process, especially in the case of such huge
clinical databases as MIMIC III. Figure 1 shows the data-cleaning steps. The data-cleaning
steps are quite challenging at times. At first, all patient records (56,320) were assessed.
These records mostly contain the demographic information such as age, gender, religion,
etc. There is some hospital-related information available as well, such as admission type,
discharge location, length of stay, etc. Since this study focuses on CHF (and some related
diagnoses)-diagnosed patients only, those were extracted using the ICD-9 diagnosis codes.
This totaled 13,295 patients. Among these patients, many of them had been readmitted
multiple times with the maximum number of readmissions as high as 13. If a patient
is never readmitted or followed up, we kept their admission record as is. In the case of
multiple readmitted patients, we only considered their first time readmission record and
discarded the subsequent ones. Then, all the numerical and categorical features were joined
to the patient list (total 10,027 patients) according to their unique ICU stay IDs.

https://www.physionet.org
https://physionet.org/content/mimiciii/1.4/
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Total patient records 
with CHF and related

diagnoses
(13,295)

Total Patient records 
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(43,209)

          (56,320)
Total patient records  
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(10,027)

More than two times 
readmitted

patients' records 
(1394)

Figure 1. Data-cleaning steps.

2.3. Patient Cohort Selection

As mentioned earlier, mostly CHF patients were considered for this study. Along with
CHF, the following diagnoses were also considered, as shown in Table 1.
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Table 1. All the diagnoses considered for patient cohort selection.

ICD-9 Code Diagnosis Description

4280 Congestive heart failure, unspecified
4281 Left heart failure
4289 Heart failure, unspecified
42820 Systolic heart failure, unspecified
42821 Acute systolic heart failure
42822 Chronic systolic heart failure
42823 Acute or chronic systolic heart failure
42830 Diastolic heart failure, unspecified
42831 Acute diastolic heart failure
42832 Chronic diastolic heart failure
42833 Acute or chronic diastolic heart failure
42840 Combined systolic and diastolic heart failure, unspecified
42841 Acute combined systolic and diastolic heart failure
42842 Chronic combined systolic and diastolic heart failure
42843 Acute or chronic combined systolic and diastolic heart failure

2.4. Numerical Variables

EHRs contain time series measurements of different patients. It is sometimes very
difficult to understand the contributing features of a certain outcome. Table 2 shows the
chosen predictor numerical variables [21] for this analysis. The variables were selected
based on multiple studies [22–24] and their importance to CHF readmission prediction.

Table 2. All numeric variables and their missing ratios.

Name %Miss Name %Miss

WBC 0.721 Cardiac Index 0.790
ALT 0.765 Central Venous Pressure 0.876
Arterial Base Excess 0.699 Chloride 0.720
Arterial CO2(Calc) 0.693 Heart Rate 0.555
Arterial PaCO2 0.696 Direct Bilirubin 0.954
Arterial PaO2 0.695 FiO2 Set 0.664
Arterial pH 0.683 GCS Total 0.513
BUN 0.509 Glucose 0.721
Creatinine 0.720 INR 0.512
Calcium 0.731 Potassium 0.720
Magnesium 0.724 Mean Airway Pressure 0.903
Sodium 0.720 RBC 0.591
PAO2 0.988 Respiratory Rate 0.541
PEEP Set 0.902 SaO2 0.770
Plateau Pressure 0.914 Arterial Blood Pressure Diastolic 0.845
Platelets 0.590 Temperature F 0.462
Prothrombin time 0.541 Total Bilirubin 0.712
PTT 0.543 Total Protein 0.980

2.5. Time Series Extraction

This section presents the filtering criteria and the personalized time series extraction
process from the MIMIC-III v1.4 database. As mentioned in earlier sections, there were
about 10,000 unique patients having CHF and other related diagnoses. For each of these
patients, a unique time series was extracted that contained different types of measurements
obtained for different items (e.g., heart rate, glucose, BUN, etc.). Figure 2 shows a sample
patient with different item measurements taken at irregular intervals along the horizontal
axis. Although it shows measurements beyond 48 h from discharge, this study only
considered measurements up to 48 h from discharge. It is important to note that all the item
measurements might not be available for all patients. Therefore, the time series imputation
became more challenging due to the lack of data.
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First, the patients were sorted using their unique ICU stay IDs. This ID distinguishes
every single ICU stay of a patient. There were some patients who had been readmitted to
the ICU more than once during the same hospital admission. In these cases, they usually
had a the same admission ID, but different ICU stay IDs. That is why we chose to identify
patients by their ICU stay IDs. However, their subject IDs and admission IDs are also
stored in the patient database. A search algorithm was deployed to find each patient’s
measurement during his/her unique ICU stay.

Figure 2. A sample patient time series showing heart rate and arterial blood pressure (diastolic and
systolic) measurements.

3. Methodology

This section describes and implements the multivariate irregularly sampled time
series imputation method that was based on neural ODEs, GRU, LSTM, and Bayesian
estimation. It is important to discuss the useful technical details of this method so that it can
be explained easily. The flowchart and mathematical notations are used for the explanation
as necessary. are applicable here, as well. In the following sections, the imputation problem
is introduced, and the methods for overcoming this challenge are discussed.

Any EHR database contains numerous vital measurement information for ICU patients.
Due to many physiological factors, these measurements are not taken at the same time inter-
vals. For predictive modeling and other data scientific procedures, regular intervals are usually
expected. Therefore, EHR data can be challenging due to these irregular measurements.

The problem is to develop an imputation method that can perform two challenging
tasks: capture the temporal information from irregularly sampled time series measurements
and impute time series with high missing ratios. However, the standard imputation
methods hardly consider temporal information and are mostly suitable for regular time
series. This section describes the technical and mathematical details for the multivariate
imputation method. The important components of the method—neural the ODE, GRU and
Bayesian estimation—are discussed sequentially. To summarize the steps, the algorithm is
presented in a compact version that is easier to understand. From this point, the proposed
method is called the GRU LSTM ODE BAYES Imputation (GOBI) method.
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3.1. Recurrent Neural Networks

Recurrent neural networks are a special type of artificial neural network that are
able to exhibit temporal dynamic behavior in sequence data. They can process temporal
information from the current state to the next state using hidden layers. However, the
conventional RNN suffers from the vanishing gradient problem. This means that the
weights of the neural network are more difficult to train further down the sequence because
the loss function tends to be very close to zero. To avoid this problem, mostly two types
of gated RNNs are used—long short-term memory (LSTM) and the gated recurrent unit
(GRU). These two special types of RNNs were used in this study. Defining X as the input
and ht and ht+1 as the previous and current hidden layers, the simple structure of an RNN
layer is shown in Figure 3.

Figure 3. A simple RNN layer.

3.2. Neural ODEs

Neural ODEs [8] are useful for continuous-depth neural networks. This method involves
performing a reverse-mode differentiation technique (e.g., backpropagation), which is quite
difficult to train. While solving the ODEs, the adjoint sensitivity method is used. This
approach usually takes less time and calculation effort. A scalar-valued loss function L [8] as
described in Equation (1) is minimized, whose input comes from the ODE solver.

L(h(t1)) = L
(

h(t0) +
∫ t1

t0

f (h(t), t, θ)dt
)

(1)

Here,

• h(t1) = current hidden state;
• h(t0) = initial hidden state;
• t0 = initial time;
• t1 = current time;
• θ = weight of neurons at synapses;
• f = hidden unit dynamics function.

The loss function L incorporates all the time points (e.g., states) in the time series.
The adjoint states help to calculate the gradients with respect to θ, as needed along the time
sequence. Defining the adjoint a(t) = δL

δt and taking the derivative yield [8],

da(t)
dt

= −a(t)T d f (h(t), t, θ)

dh
(2)
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Note that Equation (2) allows the computation of gradients along the time sequence.
However, the gradient of L with respect to θ is calculated by propagating backwards. This
yields (See [8])),

dL
dθ

=
∫ t0

t1

a(t)T d f (h(t), t, θ)

dθ
dt (3)

Therefore, the above two equations can be efficiently calculated by any regular auto-
differentiation packages.

If the observations yi are sampled from the realizations of a D-dimensional stochastic
process Y(t), the internal dynamics can be expressed as an unknown stochastic differential
equation (SDE) as the following:

dY(t) = µ(Y(t))dt + σ(Y(t))dW(t) (4)

Here,

• dW(t) = Weiner process;
• µ = mean of the probability density function of Y(t);
• σ = covariance of probability density function of Y(t).

Then, the distribution of Y(t) evolves according to the Fokker–Planck equation [10].

3.3. GRU and the Differential Form of Its Hidden State

The GRU is a type of RNN that requires less time and calculation effort than its coun-
terpart LSTM. However, there is no clear indication of the superiority of their performance
on real-world datasets. As reported by many authors [13,15,17], the GRU and LSTM usu-
ally perform head to head with a slight edge over each other on different datasets and in
different configurations. Figure 4 shows a standard GRU cell configuration. There are two
main gates in a GRU: reset gate and update gate. This configuration makes the GRU very
simple to train and take less time to compute all the parameters.

Figure 4. Configuration of a GRU cell.
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As seen in Figure 4, a standard GRU cell contains the following elements [10]:

rt = σ(Wrxt + Urht−1 + br) (5)

zt = σ(Wzxt + Uzht−1 + bz) (6)

gt = tanh (Whxt + Uh(rt � ht−1) + bh) (7)

Here, rt, zt, and gt denote the reset, update, and forget gate, respectively. Furthermore,
� corresponds to the elementwise product. Two matrices W ∈ IRH×D and b ∈ IRH×H

denoting the weight and bias vectors are the cell parameters. H and D are the dimensions
of the hidden process and given inputs. Therefore, the hidden state, h, of the GRU can be
updated as follows [10]:

ht = zt � ht−1 + (1− zt)� gt (8)

In order to construct a first-order differential equation similar to Equation (1), the fol-
lowing can be obtained from Equation (8):

∆ht = ht − ht−1 = zt � ht−1 + (1− zt)� gt − ht−1 = (1− zt)� (gt − ht−1) (9)

Taking the differential with respect to t, the following can be obtained readily:

dh(t)
dt

= (1− z(t))� (g(t)− h(t)) (10)

Equation (10) can be solved using any regular first-order ODE solvers such as Euler,
midpoint, Dormand–Prince (Dopri), etc.

3.4. Bayesian Estimation

Bayesian estimation allows the updating of prediction after the model is run on GRU
cells. The most important feature of Bayesian estimation is the ability to incorporate new
information as it becomes available. In this imputation method, only the available values
can be used as a source of information since the missing values play no part. After the
initial estimation from the GRU cells, a Bayesian estimation is necessary to include the
information from observed values. This helps reduce the gaps between the observed and
estimated values, which, in turn, improves the imputation performance.

In the original version, the model in [10] uses an integrated GRU cell to incorporate
the Bayesian update with observed values. However, in this study, we used an LSTM cell
to perform the Bayesian update since it provides a more accurate estimation [25]. However,
the missing values are not updated since they do not have any effect on the hidden layers.
The proposed hidden layer can be described as follows:

h(t+) = LSTM
(
h(t−), fprep(y[k], ht−)

)
(11)

Here,

• h(t+) = hidden state after Bayesian update;
• h(t−) = hidden state before Bayesian update;
• fprep = perception layer;
• y = observations;
• k = observation mask.

Figure 5 shows the Bayesian estimation effects on the prediction.
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Figure 5. Bayesian jump during the update of hidden layers.

Two loss functions are used to evaluate the updating performance as shown in Figure 5.
The first function is the negative log-likelihood, described as follows:

Losspre = −
D

∑
j=1

mj log p
(

yj|θ = fobs(h−)j

)
(12)

Here,

• D = number of samples;
• m = mask;
• yj = current sample;
• fobs = observed hidden layers.

The second function is the Kullback–Leibler (KL) divergence, which basically com-
pares two probability distributions.

Losspost =
D

∑
j=1

mjDKL
(

pBayes,j||ppost,j
)

(13)

Here,

• DKL = KL divergence;
• pBayes,j = probability distribution after update;
• ppost,j = posterior distribution of observations.

The imputed mean and variances are calculated using the following equations:

µBayes =
σ2

σ2
pre + σ2

obs
µpre +

σ2
pre

σ2
pre + σ2

obs
µobs (14)

σ2
Bayes =

σ2
pre · σ2

obs

σ2
pre + σ2

obs
(15)

Since, the algorithm has many parameters and steps, it might be difficult to understand
sometimes. Therefore, the algorithm sequences are outlined [10] in Figure 6 (λ = trade-off
parameter between post- and pre-losses) below.
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Figure 6. GOBI algorithm sequences.

4. Experiment Design

The experiments were designed according to the needs and objectives of this study.
As mentioned before, the missing ratio is very high in most of the numeric features. This
scenario is not suitable for any ML-based techniques since they require complete datasets
with much information available prior to training.

The training and testing ratio was 9:1, which means 90% of the samples were used
for training and validation, while the rest were used for testing. To validate the results,
10-times 10-fold cross-validation was used. The following hyperparameters, shown in
Table 3, were used to conduct all the experiments.

Table 3. Hyperparameters used and their values for the GOBI method.

Parameter Name Value

Hidden layer size 50
Dropout rate 0.2
Weight decay 0.001
Learning rate 0.01
Time step 0.1
Batch size 200
Epoch 200

Since this is an imputation task, the performance measures were the mean-squared er-
ror and mean absolute error. The corresponding formulae are described in the next section.
All the experiments were performed on a workstation with the specifications as shown in
Table 4.
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Table 4. Computer infrastructure.

Component Specification

Processor Intel core i7 10070 CPU @2.90 GHz
RAM 32 GB DDR4
GPU NVidia Quadro P2000 5GB
OS Windows 10 Professional

5. Results

The following results were obtained from the five folds of the dataset with 1345 samples
each. In the following Figures 7–9 the solid lines represent the predicted values, the solid
dots represent the observed values, and the dashed lines represent the confidence bounds.

Figure 7. Imputation results (heart rate).

Figure 8. Imputationresults (systolic blood pressure).



Biomedinformatics 2021, 1 178

Figure 9. Imputationresults (diastolic blood pressure).

Comparative Analysis

The proposed method was compared with some baseline methods and RNNs. The re-
sults for both training and testing are shown in Tables 5 and 6, respectively. It is clearly
seen that the GOBI method works better than most baseline and RNN-based methods. Two
metrics are reported for comparison: root-mean-squared error (RMSE) and mean absolute
error (MAE), as described by the following two equations:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (16)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (17)

Here,

• yi = true value for instance i;
• ŷi = imputed value for instance i;
• N = number of instances.

Table 5. Performance comparison of the imputation methods (training).

Type Method RMSE MAE

Baseline Mean 68.40 ± 14.90 70.50 ± 1.01
Median 68.90 ± 11.22 72.40 ± 4.22

RNN

BRITS_I 43.01 ± 7.08 43.01 ± 1.21
RITS_I 33.89 ± 4.24 33.88 ± 3.44
GRU_D 57.18 ± 6.38 57.41 ± 21.03
M_RNN 25.44 ± 3.99 20.31 ± 1.25
GOBI 24.82 ± 3.23 11.21 ± 0.22
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Table 6. Performance comparison of the imputation methods (testing).

Type Method RMSE MAE

Baseline Mean 93.12 ± 14.89 79.31 ± 5.69
Median 97.36 ± 13.37 85.40 ± 8.97

RNN

BRITS_I 44.60 ± 7.26 45.01 ± 3.12
RITS_I 36.02 ± 4.15 34.55 ± 3.84
GRU_D 59.51 ± 6.16 62.56 ± 19.65
M_RNN 26.45 ± 4.41 21.51 ± 2.78
GOBI 26.37 ± 2.87 13.21 ± 0.87

6. Conclusions

The proposed model was based on neural ODEs, RNN units, and Bayesian estimation
and is suitable for imputation tasks involving temporal information. In most real-life
scenarios, temporal information is very sensitive and determines many aspects of our
day to day lives. Therefore, it is not always right to ignore the time-sensitive information
found in EHRs or other similar databases. Furthermore, it makes more sense to have a
probabilistic imputation rather than a deterministic one since there is always some level of
uncertainty associated with the imputed data.

The novel contribution of this model is that it is tailored specifically for multivariate
irregularly sampled time series imputation. As mentioned earlier, most other imputation
methods deal with regular time series and provide deterministic imputation. Both of these
issues are addressed by the GOBI method in this study.

The performance of the GOBI method was satisfactory, as shown in the comparative
analysis section. Many state-of-the-art methods have been developed for classification
tasks, but RNN-inspired stochastic imputation is still a growing area of data scientific
research. In this study, only EHR data in the MIMIC databases were used for imputation.
However, the GOBI method works well for many other datasets, as well, and provides
fairly good estimation [10]. As seen in Table 6, the GOBI model has greater accuracy and
lower variance.

GOBI method has several advantages, as well. It takes less time to train since GRU
cells are simpler to compute and have fewer parameters. Even with very large datasets, it
works relatively faster than most RNN-based techniques [15,26]. Besides, the GOBI method
is quite accurate as compared to many algorithms currently available. Although the
performance might vary from dataset to dataset, still it should be fairly competitive overall.

The GOBI method has high potential in data science sectors. It should be very useful
for analyzing large datasets with a high amount of missing values. It might have broad im-
pacts in healthcare, manufacturing industries, process improvement, etc., because most of
these sectors typically deal with missing data or have physical constraints for time-sensitive
data collection. The GOBI method can deal with these types of problems, providing a good
solution with an acceptable error margin.

The imputation algorithm presented here is of great importance due to the increas-
ing number of missing values in EHRs. It is very common to have more than 50–60%
missing values per channel in EHR time series data. Each patient has some set of demo-
graphics, which vary greatly from one patient to the other. Therefore, it is difficult to
impute records of one patient based on another. There is hardly any way around this
since some patients might not have any measurement for a particular channel or item.
As mentioned earlier, the EHR time series data might have some underlying dynamics that
might not be approximated well by the stochastic Weiner process. This opens up a great
opportunity for further research. As for standard oscillating behaviors, there are many
well-established equations to represent the internal dynamics. As shown in many recent
articles, the simulated data for standard oscillations can be accurately estimated by the
Weiner process. However, this might not be the case for most real-life EHR time series
data. The proposed method not only imputes the time series data, but also provides an
estimation of the level of uncertainty that the imputed values represent. In the proposed
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model, the Bayesian estimation is coupled with an LSTM cell. This allows for the update to
happen only when there are available values. The missing values are then inferred from
the resulting imputed time series. The target is to predict the mean imputed values as close
as possible to the actual values. The log variance needs to be smaller as well, since higher
levels of uncertainty are much more difficult to propagate and can easily jeopardize the
entire predictive model. In most common imputation methods, the mean-squared error is
minimized. The proposed method uses two losses (pre and post) before and after Bayesian
estimation, which are useful to decide whether the new observational update reduces
the error. The two loss functions (negative log likelihood and KL divergence) are well
established and widely used in ML techniques. Considering these issues, further research
can be concentrated on developing an imputation method that could efficiently learn the
dynamics of the underlying process instead of assuming a Weiner process in every case.
This would significantly boost performance in complex EHR data.
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Appendix A. List of Tables in the MIMIC-III v1.4 Clinical Database

Table A1. All tables of MIMIC III and their total records.

Patient Tracking ICU Data

Table name Total records Table name Total records

Admissions 58,976 Chartevents 330,712,483
ICUstays 61,532 Inputevents_cv 17,527,935
Patients 46,520 Inputevents_mv 3,618,991
Callout 34,499 Datetimeevents 4,485,937
Transfers 261,897 Outputevents 4,349,218
- - Procedureevents_mv 258,066

Hospital Data Dimension Tables

Table name Total records Table name Total records

Caregivers 7567 D_CPT 134
CPTevents 573,146 D_ICD_Procedures 3882
Diagnoses_icd 651,047 D_Items 12,487
DRGcodes 125,557 D_ICD_Diagnoses 14,567
Labevents 27,854,055 D_labitems 753
Microbiologyevents 631,726
Noteevents 2,083,180
Prescriptions 4,156,450
Procedures_icd 240,095
Services 73,343

https://physionet.org/content/mimiciii/1.4/
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