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Abstract: According to the WHO, approximately 50 million people worldwide have dementia and
there are nearly 10 million new cases every year. Alzheimer’s disease is the most common form of
dementia and may contribute to 60–70% of cases. It has been proved that early diagnosis is key to
promoting early and optimal management. However, the early stage of dementia is often overlooked
and patients are typically diagnosed when the disease progresses to a more advanced stage. The
objective of this contribution is to predict Alzheimer’s early stages, not only dementia itself. To
carry out this objective, different types of SVM and CNN machine learning classifiers will be used,
as well as two different feature selection algorithms: PCA and mRMR. The different experiments
and their performance are compared when classifying patients from MRI images. The newness
of the experiments conducted in this research includes the wide range of stages that we aim to
predict, the processing of all the available information simultaneously and the Segmentation routine
implemented in SPM12 for preprocessing. We will make use of multiple slices and consider different
parts of the brain to give a more accurate response. Overall, excellent results have been obtained,
reaching a maximum F1 score of 0.9979 from the SVM and PCA classifier.

Keywords: Alzheimer’s disease; cognitive impairment; wavelet transform; multiresolution analysis;
minimum redundancy maximum relevance; support vector machine; convolutional neural networks;
transfer learning

1. Introduction

Wavelet transform [1] and its applications are a powerful tool in image processing.
Since the rise of wavelet analysis in the early 1980s, it has been shown to be useful in many
fields of applied mathematics, specifically in signal and image processing.

The recent advances in neural networks and transfer learning methods [2] have opened
the door to discussions about the goodness and supremacy of neural networks over the
traditional transforms in pattern recognition and classification.

At the same time, Alzheimer’s disease has established itself as one of the great epi-
demics of the 21st century, being the most common case of dementia. It has been proved
to present intermediate stages before the severity of the dementia becomes moderate or
serious. These stages can be noticeable and, on occasion, patients are even aware of their
own cognitive impairment. However, such symptoms can go unnoticed until the disease
presents an advanced stage. Detecting and diagnosing early stages can be the key to
provide patients with better prognosis and preventive treatments in order to improve their
quality of life.

The latest experiments were able to find a correlation between the information con-
tained in brain MRI images and the presence of dementia. These experiments made use
of a wide variety of methods and algorithms. The first investigations were based mainly
on traditional transforms [3] and VBM plus DARTEL analysis [4] techniques for feature
extraction and state of the art Support Vector Machine (SVM) classifiers. Generally, these
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experiments obtained good results (92.36% and 96.32% accuracy respectively) classifying
binary (Alzheimerś disease (AD) and control (CN)) stages.

In the last five years, more stages of the disease, including mild cognitive impairment
(MCI), have been included in the classification and neural networks have gradually as-
sumed greater importance. These classifiers normally outperformed previous accuracies, as
stated in [5] (97.50%), [6] (97.51%), or [7] (99.1%). By combining them with other techniques
such as latent transition analysis [8] it is possible to predict status changes in Alzheimer’s
disease. For this investigation, the line of research proposed by [9,10] will be followed.
In particular, we will make use of the Segmentation routine implemented in SPM12 [11,12]
for preprocessing and the most relevant volumes of the brain related to Alzheimer’s disease
discovered in [10].

This research will thoroughly analyze the full content of the MRI images and con-
trast them again the afore-mentioned experiments, aiming to predict up to six different
stages of dementia. The objective is to use the nine best slices proposed in [10] and si-
multaneously apply two different approaches as suggested in [13,14]: two-dimensional
multiresolution analysis (2-D MRA) in L2(R2), aligned with SVM and convolutional neural
network (CNN) [15,16].

Following, also, the strategy used in [10,17], the mRMR algorithm will be used to
extract the coefficients to feed the SVM classifier. Subsequently, its performance will be
contrasted with the traditional PCA algorithm.

Overall, this research aims to answer to several questions. First, whether it is possible
to predict and prevent the appearance of the Alzheimer’s disease, considering up to six
stages of dementia: cognitively normal, significant memory concern, early mild cognitive
impairment, mild cognitive impairment, late mild cognitive impairment, and Alzheimer’s
disease. Secondly, which of the aforementioned algorithms performs better after the
application of SMP12 preprocessing? Thirdly, what is the result of processing multiple
slices in conjunction instead of using single slices for classification? Lastly, how to ad-
dress the problem of memory management when using larger volumes of information for
model training.

2. Materials and Methods

One of the key points is to decide which of the following algorithms performs better
when detecting Alzheimer’s disease from MRI images: SVM or CNN. An additional exper-
iment will be conducted using transfer learning based on VGG16, a convolutional neural
network model proposed by K. Simonyan and A. Zisserman, from the University of Oxford,
in the paper “Very Deep Convolutional Networks for Large-Scale Image Recognition”.
Similar transfer learning approaches were suggested in [6]. Another key point is to learn
the best strategy to use in terms of data handling. By example, we will address the question
of whether it is better to process a single slice at a higher level of detail or to process,
simultaneously, more than one slice with at lower level thereof. Additionally, we need to
determine the classes that are of most importance. It is evident that the sooner the disease
is detected, the better the prognosis will be for the patient. It will be also relevant for us
to test the model’s performance in detecting Alzheimer’s in its early stages. Restrictions
apply to the availability of this data. Data was obtained from http://adni.loni.usc.edu
(accessed on 20 May 2020), and is available with the permission of The Alzheimer’s Disease
Neuroimaging Initiative (ADNI). The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
The complete database of ADNI including ADNI1, ADNI-GO, ADNI2 and ADNI3, are
used for this investigation. The set downloaded comprises brain images in NIfTI (Neu-
roimaging Informatics Technology Initiative) format. Corrupt and duplicated images were
deleted, resulting in a total of 6028 T1-weighted MRI images. The methodology described
in [9,10] is used for the pre-processing of the information from the sample data. This pre-

http://adni.loni.usc.edu
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processing, which requires segmentation, bias correction and spatially normalisation, has
been performed using the Segmentation routine implemented in SPM12 [11,12]. The num-
ber of samples in the data constitutes a considerable improvement to [9,10], where 400
and 242 images were obtained, respectively. The full project and code are available on
https://github.com/juliopradom/alzheimer-classifier (accessed on 6 December 2021).

2.1. Problem Exploration

As mentioned before, the set of images provided are classified into six groups:

• AD (Alzheimer Disease): the images in this group correspond to patients diagnosed
with Alzheimer.

• CN (Cognitively Normal): corresponds to healthy individuals (control).
• MCI (Mild Cognitive Impairment): causes a slight but noticeable and measurable

decline in cognitive abilities.
• EMCI (Early Mild Cognitive Impairment): an early stage of MCI with milder episodic

memory impairment.
• LMCI (Late Mild Cognitive Impairment): a more advanced stage of MCI previous

to AD.
• SMC (Significant Memory Concern): patients with SMC are characterized by self-

report significant memory concern, quantified by using the Cognitive Change Index
and the Clinical Dementia Rating (CDR) of zero. SMC participants score within the
normal range for cognition, and the informant does not equate the expressed concern
with progressive memory impairment. SMCs have been shown to be correlated with
a higher likelihood of progression [18].

With these classes, we can build a progression diagram for Alzheimer’s disease, as
shown in Figure 1.

Figure 1. Stratification of classes according to their severity. From left to right, the different stages in
Alzheimer’s disease are presented sequentially. The classes on the left correspond to early stages of
dementia, whereas the classes on the right correspond to advanced stages.

Unlike other experiments and investigations, by achieving the goals set for this classi-
fier we will not only discern between healthy patients and patients with dementia but also
provide a more accurate diagnosis about the stage of their dementia. This may be useful
to detect the disease earlier and prescribe a more effective and personalized treatment to
those individuals situated in intermediate stages.

By looking at Figure 2 we can observe the number of samples per category. LMCI,
MCI, AD and CN have approximately the same number of samples (∼1200) whereas SMC
and EMCI are clearly unbalanced. Particular attention is paid to these minority classes
given that, as commented upon at the beginning of this chapter, our specific focus is on
Alzheimer’s early stages.

Each of the samples is composed of nine different images corresponding to nine
different slices from an MRI image. Slices 55, 56, 61, 72, 82, 90, 104, 106 and 114 are
used, according to the most promising slices obtained in [10], after the application of
multi-objective genetic algorithms to find most relevant volumes of the brain related to
Alzheimer’s disease and mild cognitive impairment.

https://github.com/juliopradom/alzheimer-classifier
https://github.com/juliopradom/alzheimer-classifier
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Figure 2. Frequency distribution of classes. The classes are sorted from left to right by number
of samples.

The images have three different colour channels (RGB) and are already resized to
656× 875. As a result, every image is an array with shape (656, 875, 3). In Figure 3 shows
the nine images for patient 1 in AD.

In practice, the management of all this information is very resource-consuming. This
will be a limiting factor throughout our investigation. Smart approaches must be taken to
overcome these obstacles and will be covered in depth in the following sections.

Figure 3. Example of images for a given individual. From the top left corner to the lower right corner,
the images correspond to slices: 55, 56, 61, 72, 82, 90, 104, 106 and 114. The patient shown belongs to
category AD.
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Having analysed and described our data, two lines of research are going to be opened.
First, we are going to proceed to extract and select features with which to apply SVM.
Secondly, we will use a custom CNN and CNN with transfer learning to train our model
without further preprocessing.

Global F1 (macro) is the measurement that we will use to compare the performance
of the different algorithms. However, it is essential to remember that another relevant
indicator that we will use in practice, when facing similar scores, is the specific performance
(F1) of the algorithms identifying SMC and EMCI.

2.2. SVM Research

Building a support vector machine classifier using wavelet coefficients extracted from
our images is the first approach. By using wavelet coefficients, the identification of relevant
anomalies and slight changes within our samples will be easily detected, which is, actually,
what we are seeking to achieve in distinguishing between one class or another.

The coefficients extracted for a given patient can be used to construct a vector in a
high-dimensional space. The set of these vectors labelled with their corresponding classes
will help determine a hyperplane able to separate each group from the other. In practice,
one hyperplane will be created for every class. This research is carried out using the
scikit-learn library.

For our experiment, only the wavelet coefficients of the approximation image at level
three and four are accessed for memory reason. It is mandatory to first convert the images
from RGB space to grey so the wavelet module used can extract the coefficients using a
single channel. In particular, we will perform ten extractions; one for every slice available
and one combining all the coefficients consecutively. Extracting one slice means obtaining
the wavelet coefficients at the third level for every patient at this specific slice, which
gives a total of 6028 arrays of 10,120 coefficients each. Extracting all the coefficients means
obtaining the wavelet coefficients at the fourth level for all the available slices and combine
them, which, again, gives a total of 6028 arrays of 9 × 2867 = 25,803 coefficients each. In
Table 1 are shown some of the coefficients we could extract per image.

Table 1. Number of wavelet coefficients per image for some approximation levels. The lower the
level we access, the better the image can be reconstructed. Levels higher than five are not relevant for
this investigation and therefore are not included.

Level 5 Level 4 Level 3 Level 2 Level 1

918 2867 10,120 37,856 145,971

Nevertheless, as previously mentioned, going beyond the third level becomes com-
putationally difficult for the machine used in our research. For such purpose, mini-batch
training techniques must be used, which is beyond the objectives of this investigation.
Sensitive information loss could be a possible consequence to this limitation, which could
result in a worse F1 performance. After the coefficients are successfully extracted, it is im-
portant to note that we have arrays of 10,120 and 25,803 coefficients, respectively. In order
to generate an input small and meaningful enough to train and work with our models it
is necessary to apply feature selection. For this objective, we will perform two different
experiments using two methods: mRMR (as used in [7,10,19]) and the traditional PCA.

mRMR is an iterative algorithm that starts with an empty set S, and for each iteration
searches for an input feature p that maximizes the mutual information (MI) [20,21] with
respect to the output feature. After this, it minimizes MI with respect to the rest of input
features, that is, maximizes the relevance and minimizes the redundancy. This feature is
added to S. The algorithm finishes when all features are added. Moreover, the final ranking
is the order in which they have been added to S. On the other hand, principal component
analysis (PCA) [22] is another technique for reducing the number of variables in the sample
data. However, unlike mRMR, this algorithm does not preserve the original features, but it
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applies dimensionality reduction. The objective of PCA is to transform the original random
vector into variables called principal components. These components are all orthogonal
and ordered so that the first few explain most of the variation of the random vector. PCA is
a widely used algorithm for feature selection. Given the interest and good results [7,10,19]
provided by mRMR, this research finds it appropriate to compare how both techniques
affect the outcome of the classification.

For the first experiment, mRMR is used to select the best 100 coefficients. This al-
gorithm is extremely resource consuming and it is not possible to pass the whole set of
arrays at once. In order to overcome this issue, a recursive version of this algorithm was
designed and built. Both recursive and original versions have been tested on a small set
of 100 features, obtaining a similar set of features, as expected (maximum relevance and
minimum redundancy principle). The functioning of this recursive version is shown in
Figure 4.

Figure 4. Recursive version of mRMR algorithm. The original set is divided into multiple subsets of
1000 features, which is the maximum number of features to which mRMR is applied. This means
that, if we have N > 1000 features, we will generate (N//1000) + 1 = C subsets, where N//1000
is the integer quotient resulting from the division N/1000. The ouputs of the C subsets are joined
together to construct a new input set.

It is worth noting that the application of mRMR will give a set of existent features
as a result. Before starting the process, the data is standardized and rescaled in order for
the mean of the observed values to be 0 and the standard deviation to be 1. This can be
particularly practical in avoiding different scales between our images and to take a step
further to ensure normalization.

The same process is repeated, but using PCA this time. Contrary to mRMR, using
PCA we obtain 100 new features as a result of dimensionality reduction; that is, we keep
the information of all the original features in a smaller set. No particular considerations
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needs to be taken to perform PCA as the module used is powerful enough to be utilized
with an input of our size.

The next step is to find the best hyperparameters with which to tune our SVM model.
After applying a grid search using slice 55 on the set of hypermarameters, as shown
in Table 2, considering that C is the regularization parameter and gamma is the kernel
coefficient, the most promising hyperparameters using the output of mRMR are kernel =
rbf, C = 1000 and gamma = 10−2. Correspondingly, using the output of PCA we obtain
the parameters kernel = rbf, C = 10 and gamma = scale.

Table 2. Hyperparameter space considered for SVM. A total of 3× 4× 5 = 60 combinations are tested
when applying a grid search. This number corresponds to all the possible combinations between
kernels, C and gamma parameters.

Kernel C Gamma

linear, rbf, sigmoid 1, 10, 100, 1000 10−1, 10−2, 10−3, 10−4, scale

Following [23], when creating the SVM, the strategy to use will be one-against-one
since our kernel is based on a radial basis function (rbf). In all the experiments conducted
the set of patients is split into training and test sets. These sets will remain unchanged
to contrast the results more effectively. Specifically, the training set covers 75% (4521)
of the available samples and test set covers the rest 25% (1507), where the number of
representatives for each class follows the original distribution in both sets. In addition,
the number 104,729 is used as a random seed for shuffling. The pre-processing and
classification pipeline is summarized in Figure 5.

Figure 5. SVM diagram. The input image is converted to BGR2 grey. The wavelet coefficients are
later extracted and mRMR/PCA are used to perform feature selection. Finally, an SVM model is
trained with the selected coefficients.

2.3. CNN Research

The second part in our investigation is to train a convolutional neural network using,
directly, the images available as input. Along with a custom CNN, we will also test VGG16,
modifying the input and output layers. For both experiments, the number of epochs is
set to 500 and the images are resized to 224× 224 according to VGG16’s requirements.
The objective is to make both experiments as similar as possible.

By using CNN, the pre-processing steps covered in SVM can be skipped, since CNN
is able to learn features from the image itself. Additionally, we can keep the RGB channels
to make our input a tensor of order four. In order to be able to compare the performance of
CNN with SVM, the same training and test set are considered. To construct our networks
TensorFlow is used on a cluster containing two GPUs NVIDIA RTX 2080.

To build our CNN, we perform two experiments with two common and effective
structures consisting of the following sequence of layers:

Experiment 1:

1. One convolutional layer with 32 filters, a kernel size of (3,3) and using “relu” as
its activation function. The number of filters determines the number of kernels to
convolve with the input volume. Each of these operations produces a 2D activation
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map. Layers early in the network architecture (i.e., closer to the actual input image)
usually learn fewer convolutional filters while layers deeper in the network (i.e.,
closer to the output predictions) will learn more filters. This layer will expect an input
of size (224, 224, 3) in order to fit our images.

2. One max pooling layer (2,2) to reduce the spatial dimensions of the output volume.
3. Another similar convolutional layer, although using 64 filters this time.
4. Another max pooling layer (2,2) to reduce the spatial dimensions of the output volume

in the second convolutional layer.
5. One flattened layer to connect the multidimensional data from convolution to dense

layers.
6. Two dense layers using the “relu” (64 units) and “softmax” (6 units) activation func-

tions respectively. We use “softmax” to convert the scores to a normalized probability
distribution.

Experiment 2:

1. One convolutional layer with 16 filters, a kernel size of (3,3) and using “relu” as its
activation function.

2. One max pooling layer (2,2) to reduce the spatial dimensions of the output volume.
3. Another similar convolutional layer, but using 32 filters this time.
4. Another max pooling layer (2,2) to reduce the spatial dimensions of the output volume

in the second convolutional layer
5. A third convolutional layer but using 64 filters.
6. A third max pooling layer (2,2) to reduce the spatial dimensions of the output volume

in the third convolutional layer.
7. One flatten layer to connect the multidimensional data from convolution to dense layers.
8. Two dense layers using the “relu” (128 units) and “softmax” (6 units) activation

functions respectively. We use “softmax” to convert the scores to a normalized
probability distribution.

Both experiments will process 500 epochs. Replicating the experiments conducted in
SVM, we build a model for every slice. Again, the training set covers 75% (4521) of the
available samples and the test set covers the remaining 25% (1507), where the number of
representatives for each class follows the original distribution in both sets. In addition,
the number 104,729 is used as random seed for shuffling.

3. Results
3.1. SVM Results

Let us now begin analysing the results from the mRMR tests, in which our main
objective is to maximize F1 score. Looking at Table 3, we can observe that the results
obtained are decent. Classes in the middle are perfectly recognized and predicted, whereas
control and sick patients present an observably worse score. The experiment with the best
results is the one that used all the available coefficients at level four. This result is of interest
since it shows that processing all the information as a whole is, in principle, more effective
than using single slices for classification, even if the level of detail accessed is lower.

In Figure 6 we can see more distinctly see the different scores between slices. After this
experiment we have reached an F1 score of 0.9657. Regarding the models built using single
slices, we can see that slice 82 slightly stands out from the rest. Below we will discuss if
this trend is confirmed.

The same experiment was reproduced using PCA, as shown in Table 4. We not that
it is undeniable how well the classifier performed when using PCA for every slice. This
time the slices with the best results were slices 104 and 106. As the method performed to
extract the coefficients (PCA) transformed and resized all the available information, we
could build the following hypothesis, considering, also, the conclusions from mRMR: slice
82 is the most informative slice when looking at specific regions of the image but slices 104
and 106 are more relevant when viewing the image as a whole. Again, the experiment with
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the best outcome continues to be the all-coefficients classifier, with an outstanding F1 score,
in this case, of 0.9979.

Table 3. F1 results for SVM combined with mRMR. In the table we can see the performance of
each slice when predicting specific stages. The average score is included on the right side. The all-
coefficients classifier obtains the highest F1 score, 0.9657. The best single-slice classifier corresponds
with slice 82.

CN SMC EMCI MCI LMCI AD Average

55 0.8090 1 1 1 1 0.8148 0.9373
56 0.8007 1 1 1 1 0.8133 0.9361
61 0.8083 1 1 1 1 0.8122 0.9367
72 0.7958 1 1 1 1 0.8040 0.9333
82 0.8091 1 1 1 1 0.8180 0.9379
90 0.7917 1 1 1 1 0.7980 0.9316
104 0.7825 1 1 1 1 0.7933 0.9293
106 0.7813 1 1 1 1 0.7706 0.9253
114 0.8035 1 1 1 1 0.8101 0.9356
All 0.8909 1 1 1 1 0.9032 0.9657

Figure 6. F1 mRMR scores. Slice 116 presents the lowest F1 score as processed using SVM and
mRMR, whereas the all-coefficients classifier performs the best, with an F1 score of 0.9657.

An extra experiment was conducted, also using PCA, and was noted as “Multi-Slice”.
This test retrieves the output of every slice and selects the most common value, simulating
a decision system between different experts, as shown in Figure 7. It is not a model in and
of itself; rather, it applies the mode of the single-slice models.
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Table 4. F1 results for SVM combined with PCA. In the table we can see the performance of every slice
when predicting specific stages. The average score is included on the right side. The all-coefficients
classifier obtains the highest F1 score, 0.9979. The best single-slice classifiers correspond to slices 104
and 106.

CN SMC EMCI MCI LMCI AD Average

55 0.9912 0.9939 1 0.9984 0.9930 0.9917 0.9947
56 0.9930 0.9939 1 0.9984 0.9930 0.9933 0.9953
61 0.9947 0.9939 0.9896 0.9984 0.9903 0.9950 0.9936
72 0.9947 0.9939 0.9948 1 0.9930 0.9950 0.9952
82 0.9912 1 1 1 0.9958 0.9933 0.9967
90 0.9947 1 0.9948 1 0.9944 0.9967 0.9968
104 0.9947 1 1 0.9984 0.9958 0.9950 0.9973
106 0.9947 1 1 0.9984 0.9958 0.9950 0.9973
114 0.9947 1 0.9948 1 0.9944 0.9967 0.9968
All 0.9947 1 1 1 0.9958 0.9967 0.9979

Multi-Slice 0.9930 1 1 1 0.9958 0.9950 0.9973

Figure 7. Multi-Slice classifier functioning. The prediction of every single-slice model is retrieved for
every patient and the mode is applied. A final output is obtained, which corresponds to the most
common value between the single-slice model predictions.

However, the all-slices classifier performs better, confirming the hypothesis opened
after discussing the results from mRMR: processing all the information is more effective
than focusing on specific areas. A visual representation of the scores for the different slices
using PCA is shown in Figure 8.

Thus far, our classifier is able to recognize SMC, EMCI and MCI perfectly. We will
contrast the score obtained from the all-slices classifier against the outcome of CNN in
the following section. By using PCA we have achieved an increment of more than 3%
in F1 score, as shown in Figure 9. It is also notable that this approach provides a most
homogeneous performance for every slice.
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Figure 8. F1 PCA scores. Slice 61 presents the lowest F1 score when processed using SVM and PCA,
whereas the all-coefficients classifier performs best, with an F1 score of 0.9979.

Figure 9. F1 mRMR-PCA scores comparison.

3.2. CNN Results

The pattern observed in the previous section is repeated, using, now, CNN. Slices 104
and 106 are the most informative (although slice 72 was the most relevant in Experiment 2)
and SMC, EMCI, MCI and LMCI are nearly perfectly matched, with a noticeable but not
pronounced difficulty identifying CN and AD (See Tables 5 and 6).
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Table 5. F1 results for custom CNN, Experiment 1. In the table we can see the performance of every
slice when predicting specific stages. The average score is included on the right side. The multi-slice
classifier obtains the highest F1 score, 0.9902. The best single-slice classifier correspond to slices 104
and 106.

CN SMC EMCI MCI LMCI AD Average

55 0.9683 1 1 1 1 0.9701 0.9897
56 0.9682 1 1 1 1 0.9702 0.9897
61 0.9665 1 1 1 1 0.9685 0.9892
72 0.9652 1 1 1 1 0.9641 0.9873
82 0.9648 1 1 1 1 0.9668 0.9886
90 0.9686 1 1 1 1 0.9657 0.9879
104 0.9686 1 1 1 1 0.9698 0.9897
106 0.9700 1 1 1 1 0.9718 0.9903
114 0.9628 1 0.9984 1 1 0.9669 0.9880

Multi-Slice 0.9699 1 1 1 1 0.9709 0.9902

Table 6. F1 results for custom CNN, Experiment 2. In the table we can see how every slice performs
when predicting specific stages. The average score is included on the right side. Multi-Slice classifier
obtains the highest F1 score along with slice 72, 0.9902.

CN SMC EMCI MCI LMCI AD Average

55 0.9385 1 1 1 1 0.9418 0.9800
56 0.9370 1 1 1 1 0.9399 0.9784
61 0.9338 1 0.9984 1 1 0.9377 0.9783
72 0.9561 1 1 1 1 0.9584 0.9857
82 0.9422 1 1 1 1 0.9449 0.9812
90 0.9439 1 1 1 1 0.9467 0.9818
104 0.9537 1 1 1 1 0.9572 0.9852
106 0.9521 1 1 1 1 0.9574 0.9850
114 0.9345 1 1 1 1 0.9388 0.9789

Multi-Slice 0.9563 1 1 1 1 0.9582 0.9857

The “multi-slice” aggregator (see previous section) is also included and performs
better than considering the decision of every slice separately, reaching a maximum F1 score
of 0.9902. Note that, for CNN, it is not possible to build the all-slices classifier because
the input of our model would be too large for the machine on which this research was
carried out.

Despite the fact that the scores obtained using the custom CNN are more than ade-
quate, it still performs worse than our SVM classifier based on PCA (recognising that we
acheived an F1 of 0.9979 with this classifier)). In Figures 10 and 11 we examine the final
score for each slice and experiment.

For the last experiment, we will use the VGG16 pre-trained model with a custom
output (dense) layer using, again, “softmax” as the activation function. This model requires
a longer time to train, since the number of layers and weights are significantly higher
than in our custom CNN. Jumping directly into the results in Table 7, we can see that
the previous pattern is not repeated: slice 56 is the best classifier. This is most likely due
to easier recognition patterns present in slice 56 for VGG16 . The highest score obtained
belongs to “multi-slice” classifier as expected, with a total F1 score of 0.9620.
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Figure 10. Custom CNN F1scores from Experiment 1. Slices 104 and 106 present the highest F1 score,
although the multi-slice classifier performs the best, with an F1 score of 0.9902.

Figure 11. F1 custom CNN experiment 2 scores. Slice 72 and the multi-slice classifier present the
highest F1 score: 0.9857.

It would be interesting to compare the results obtained from VGG16 with those
outputted from other transfer learning models such as ResNet50, Inceptionv3 or EfficientNe.
Although the preprocessing and training parts differ from the experiments conducted
in [6], VGG16 can take second place between the pretrained models used in the previous
classification. Nevertheless, this extension goes beyond the objective of this investigation.
With respect to VGG16, a more pronounced difference in terms of performance is detectable
between the slices (see Figure 12).
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Table 7. F1 results for CNN using transfer learning. In the table we can see the performance of every
slice when predicting specific stages. The average score is included on the right side. The multi-slice
classifier obtains the maximum F1 score, 0.9620. It is closely followed by slice 56, which reaches an F1
score of 0.9618.

CN SMC EMCI MCI LMCI AD Average

55 0.8730 1 1 1 1 0.8773 0.9584
56 0.8839 1 1 1 1 0.8870 0.9618
61 0.8801 1 1 1 1 0.8758 0.9569
72 0.8731 1 1 1 1 0.8770 0.9583
82 0.8728 1 1 1 1 0.8808 0.9589
90 0.8667 1 0.9984 1 1 0.8752 0.9567
104 0.8785 1 0.9967 1 1 0.8826 0.9596
106 0.8662 1 1 1 1 0.8738 0.9567
114 0.8723 1 0.9984 1 1 0.8797 0.9584

Multi-Slice 0.8841 1 1 1 1 0.8873 0.9620

Figure 12. F1 TL CNN scores. Slice 56 presents the highest F1 score although the multi-slice classifier
performs the best with a F1 score of 0.9620.

Overall, the classifier performs very well. However, once we have covered all the
possible approaches, the tested transfer learning solution proves not to be the best option
between the available CNN alternatives, as shown in Figure 13.

3.3. Confusion Matrix

Finally, it is worth including the confusion matrix for the best classifier i.e., the confu-
sion matrix for the SVM all-coefficients model. As shown in Figure 14, three out of the four
wrong predictions were false LMCI negatives. This implies that the model can eventually
make a wrong prediction when dealing with patients in advanced stages of the disease.
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Figure 13. F1 tl-custom CNN scores comparison. The three CNN approaches’ results are shown
together. Experiments 1 and 2 perform better than the transfer learning model based on VGG16.
Experiment 1, in turn, stands out from Experiment 2, reaching the maximum F1 score: 0.9902.

Figure 14. SVM All-coefficients confusion matrix. Classes SMC, EMCI, MCI and LMCI have perfect
precision. Classes EMCI, MCI and SMC have perfect recall.



Biomedinformatics 2021, 1 197

It is worth noting that the accuracy score is 0.9973. This will be insightful in comparing
the proposed classifier with previous investigations.

4. Discussion and Conclusions

The development of this work was motivated not only by medical purposes but also for
the non-unified criteria regarding the usage of support vector machine and convolutional
neural networks. Progressively, medicine and artificial intelligence tend to operate together
and are proving to obtain outstanding results with respect to enhancing people’s lives.
The limits of this symbiosis are still uncertain, although it seems undeniable that, from
such combination, we are entering a new era in science, here, early in the 21st century.

Considering our results, the following conclusions can be highlighted:

• It is possible to detect the early stages in Alzheimer’s disease and this prediction
can be as precise as the prediction of dementia itself. Significant memory concern
(SMC) and early mild cognitive impairment (EMCI) have been proven to have an
effect on the brain that can be detected and measured. Patients with early symptoms
of dementia can be localized and preventive treatments can be applied.

• If the MRI images reach a high level of normalization and enough samples are ac-
cessible it is possible to build an SVM classifier able to predict Alzheimer’s stages
with an F1 score higher than 99.7%. As mention throughout the research, a key point
of this investigation is the high quality of the dataset and the segmentation, bias
correction and spatial normalisation applied by SPM12 [11,12] beforehand. The large
number of samples (6,028) used it also relevant when compared with similar inves-
tigations [10]. The results show that our model has outperformed other modern
experiments [5–7,14,24,25]. A more detailed comparison with some of the most
promising investigations conducted to date is made in Table 8.

Table 8. More detailed comparison between recent relevant investigations. Some experiments have
already passed the accuracy threshold of 0.99. The proposed method exceeds this threshold (0.997)
and includes six different stages in its classification.

Authors Imaging Stages Preprocessing Classifier Accuracy

Beheshti et al.,
2016 [4] MRI CN, AD VBM plus

DARTEL PCA + SVM 0.963

You et al., 2020 [25] EGG CN, MCI, AD ASTGCN ASTGCN 0.910

AbdulAzeem et al.,
2021 [5] MRI CN, MCI, AD

Grey scale
conversion +
Adaptative

Thresholding

CNN 0.975

Eroglu et al.,
2021 [7] MRI CN, MCI, AD CNN(TL) mRMR +

SVM 0.991

Valenzuela et al.,
2018 [10] MRI CN, MCInc,

MCIc, AD SMP12 PCA + SVM 0.944

Proposed method MRI
CN, SMC,

EMCI, MCI,
LMCI, AD

SPM12 + stan-
dardization PCA + SVM 0.997

• In MRI images, some slices are more informative than others i.e., there are parts in
the brain that contain more information and can be used more precisely to provide a
diagnosis of the patient. Of the available slices in our dataset, slice 82 demonstrated
the best results. This slice is located in the coronal plane, confirming the conclusions
exposed by Luis Balderas in his thesis [9].

• In order to give a more accurate diagnosis, it is better to process all the information
available in the brain rather than considering located regions only. Even if the dis-
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ease has a more noticeable impact on specific regions, the information distributed
throughout the brain’s mass makes a difference when seeking optimal results.

• Both SVM and CNN approached competent performances. Nevertheless, SVM stands
out above CNN. A possible explanation for this is the normalization and regularity
of the data. Since the available images are already resized, and the classifier is built
using delimited and localized variation of the imaged zones, the edge identification
power of CNN does not beat the capacity of SVM to allocate samples in Rn, n ∈ N
and group them using the partitions generated by its trained hyperplane.

• The Mallat algorithm, revealed in [26], can be used to access the wavelet coefficients
at deeper levels of the approximation image, LL. These coefficients are still very
informative, exposing the power of the wavelet transform even in today’s image
classification tasks. Using the wavelet coefficients from the approximation image
at level four gave an outstanding F1 score of 0.9979. This classifier, which used all
the available coefficients from the set of slices, performed better than slice-isolated
classifiers accessing wavelet coefficients at level three.

• PCA performs better than regular feature selection algorithms when facing image
classification problems where data has certain continuity properties. Features are
highly correlated with each other and present small variations. Applying feature
selection could lead to missing wider anomalies that would otherwise be detected
using a dimensionality reduction system.

Disease’s diagnosis using MRI is an open and extensive line of research. To continue
and improve the steps followed in this investigation, I suggest these possible lines:

• It would be possible to access a higher level of detail either by using a machine with
better specifications or performing mini-batch training techniques. This approach
could lead to obtaining a more informative training dataset. Examples of this include
using wavelet coefficients at lower levels or training a CNN classifier using all the
available images as input.

• Investigate whether accessing different types of wavelet coefficients (diagonal, hori-
zontal or vertical) can lead to a better outcome in F1 score or not.

• Research on the structure of CNN models to develop smarter and more suitable
networks using different distribution and types of convolutional layers.

• Develop new paradigms of research to process 3D images and investigate the possible
use and applications of the 3D wavelet transform.
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Abbreviations
The following abbreviations are used in this manuscript:

CN Cognitively Normal
MCI Mild Cognitive Impairment
EMCI Early Mild Cognitive Impairment
LMCI Late Mild Cognitive IMpairment
SMC Significant Memory Concern
AD Alzheimerś disease
MRA Multiresolution Analysis
mRMR Minimum Redundancy Maximum Relevance
SVM Support Vector Machine
CNN Convolutional Neural Network
TL Transfer Learning
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