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Abstract: The use of artificial intelligence (AI) systems in biomedical and clinical settings can disrupt
the traditional doctor–patient relationship, which is based on trust and transparency in medical
advice and therapeutic decisions. When the diagnosis or selection of a therapy is no longer made
solely by the physician, but to a significant extent by a machine using algorithms, decisions become
nontransparent. Skill learning is the most common application of machine learning algorithms in
clinical decision making. These are a class of very general algorithms (artificial neural networks,
classifiers, etc.), which are tuned based on examples to optimize the classification of new, unseen
cases. It is pointless to ask for an explanation for a decision. A detailed understanding of the
mathematical details of an AI algorithm may be possible for experts in statistics or computer science.
However, when it comes to the fate of human beings, this “developer’s explanation” is not sufficient.
The concept of explainable AI (XAI) as a solution to this problem is attracting increasing scientific
and regulatory interest. This review focuses on the requirement that XAIs must be able to explain in
detail the decisions made by the AI to the experts in the field.

Keywords: data science; artificial intelligence; machine learning; patient–doctor relationship;
digital medicine

1. Introduction

The terms artificial intelligence and machine learning are sometimes used interchange-
ably, although this is incorrect. In fact, artificial intelligence is a branch of computer science
that deals with the automation of human activities that are normally considered intelligent
human behavior [1]. These activities include understanding human language, represent-
ing and using knowledge, reasoning, planning, problem solving, and risk assessment,
including guessing and learning from experience. Machine learning is currently by far the
most popular method used in artificial intelligence and can be referred to in two different
forms [2]: first, approaches in which a class of very general algorithms (artificial neural
networks, classifiers, predictors, associative memories, etc.) are tuned based on examples
to optimize the prediction or classification of new, unseen cases. This is skill learning.
Second, methods that recognize structures, such as subgroups, in the data and describe
these structures in such a way that such a description (knowledge) can be used to correctly
classify new cases and can be understood by humans. This is the deduction of knowledge
from data [3,4].

The growing importance of artificial intelligence or machine learning algorithms in
biomedical research is reflected in their increasing influence on clinical decision-making
processes. This, in turn, has a direct impact on medical practice and communication
between physicians and patients. The traditional doctor–patient relationship is based
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on personal trust and transparency of medical advice and therapeutic decisions. If the
diagnosis or the selection of the most promising therapy is no longer made solely by the
physician, but to a considerable extent by a machine with learning algorithms and artificial
intelligence, the decisions become nontransparent. Physicians cannot be assumed to have
the computer science skills necessary to understand the decision-making process of an
algorithm and should be able to communicate this process in all relevant details to their
patients in an understandable way.

The European Union (EU) has recognized the problem that algorithm-based medical
decision making poses to the information rights of affected patients and has published
a landmark paper highlighting the need for explanations of computerized decisions so
that they can be communicated to affected patients in an understandable manner [5].
The solution is found in the concept of explainable AI (XAI), which is attracting increasing
scientific interest [6]. This is consistent with the U.S. military’s efforts to obtain explainable
models that make decisions made by autonomous systems transparent (https://www.
darpa.mil/program/explainable-artificial-intelligence [7], accessed on 15 December 2021).
Without a deep understanding, machine learning relies on trial and error and has been
compared to medieval alchemists [8]. Along the same line of reasoning, this review focuses
on the requirement for XAI to be able to explain in detail the decisions made by an AI in a
biomedical setting to the expert in the domain, e.g., the physician in the case of AI-based
clinical decisions related to diagnosis, treatment, or prognosis of a disease.

2. An Example Case of XAI versus Standard AI

A common clinical situation is the communication of a diagnosis by the physician
to the patient. The diagnosis is made on the basis of sound decision criteria, such as the
presence of pathognomonic signs or the excess of a laboratory value over the generally
accepted limit for healthy individuals. For example, the diagnosis of lymphoma can be
made by observing specific cell types in a patient’s blood sample. With increasing automa-
tion, the assessment of the many cell subpopulations in a sample is increasingly performed
by algorithms, including the analysis of microscopic images for cell type separation and
counting [9].

A typical but small data set, freely available with the R library “opdisDownsampling”
(https://cran.r-project.org/package=opdisDownsampling [10], accessed on 15 Decem-
ber 2021), consists of d = 6 cytological markers measured by fluorescence-activated cell
sorting (FACS) in a total of n = 111,686 cells obtained from 100 patients with chronic lym-
phocytic leukemia and 100 healthy controls, using the seed value of seed = 42, which
is reported here for reproducibility of the results with the referenced R libraries and ex-
ample data included there. After class-proportional downsampling to 3000 instances
to speed up subsequent computations, the data space consisting of data space D ={
(xi, yi)

∣∣ xi,d∈ RX, yi∈Y{1, 2}, i = 1 . . . n
}

with input space X consisting of vectors xi =
<xi,1,. . . xi,d> with d = 6 different cytological markers and the output classes yi consisting
of the diagnoses of healthy versus diseased, two different algorithms were trained to map
the cell marker pattern xi to the diagnosis classes yi, i.e., to automatically perform the
diagnosis of leukemia. Since the present analyses were intended for the demonstration of
an introductory example and not to discuss techniques of classifier training and tuning,
the interactive R data mining tool rattle (https://cran.r-project.org/package=rattle [11,12],
accessed on 15 December 2021) was used with the default parameter setting. The reasons
for the choice of implementation details were explained in the cited publications and are
not challenged here.

Thus, the downsampled data set was split into training/test/validation subsets sized
70%/15%/15% of the total data set as advised in “rattle”. Using the seed of 42, a standard
classification and regression tree (CART) [13] and a support vector machine (SVM) [14] were
trained by calling the respective R libraries “rpart” (https://cran.r-project.org/package=
rpart [15], accessed on 15 December 2021) and “kernlab” (https://cran.r-project.org/
package=kernlab [16], accessed on 15 December 2021). The algorithms were trained
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and tuned on the training and test data sets, and the accuracy of class assignment was
assessed in the validation subsample by calculating accuracy and the area under the
receiver operator characteristic (AUC-ROC). The default settings of “rattle” do not include
cross-validation or repeated calculations; this was considered sufficient for the present
exemplary demonstration purpose and therefore was not changed or refined. For the
same reason, no grid search for hyperparameter tuning and similar standard classifier
tuning procedures were performed. The two algorithms provided a nearly similar accuracy
of assigning a cell sample to “healthy” or “diseased” of 0.7711 for CART (“rpart”) and
0.7689 for the SVM (“ksvm”). The AUC-ROC values were also nearly identical (Figure 1A).
However, the transparency of the class assignment decision was completely different for
the two algorithms, as explained below.

Figure 1. Classification performance of two different types of classifiers, comprising hierarchical
decision rules implanted as classification and regression trees (“rpart”) and hyperplanes as used in
support vector machines “ksvm”. Panel (A): Receiver operator characteristic of the two classifiers for
the classification of cell samples as obtained from healthy subjects (class #1) or subjects with leukemia
(class #2). The figure corresponds to the original output of the “rattle” R package with the curve for
rpart (= CART) composed of only 3 points since a single decision rule was used in just one iteration for
the present demonstration purpose. (B): Decision rule by which the hierarchical classifier made the
assignment to class #1 or #2. (C): Schematic drawing of an SVM decision hyperplane between healthy
and diseased samples. For illustrative purposes, the number of data points is reduced to n = 200,
and the figure is purely schematic, without performing real calculations and SVM training. In contrast
to panels A and B, which show results of computations, this is a schematic drawing. The plots were
created using the R software package (version 4.1.2 for Linux; https://CRAN.R-project.org/ [17])
and the R library “rattle” (https://cran.r-project.org/package=rattle [11,12], and the vector drawing
software “Inkscape” (https://inkscape.org/de/ [18], all accessed on 15 December 2021).

CART delivers a single simple rule as explanation for the decision, namely that the
sample belongs to the disease if the expression of the CD19 marker has a value of 2.9 or
more; otherwise, it is from a healthy subject (Figure 1B). This can be communicated to the
physician, who understands the role of CD19. Such a biomedical expert will know that the
expression level of CD19 on cell surfaces plays an important role for the functioning of B
cells [19]. With this information, transparency is transferred from the field of informatics
back to medicine, where the physician has to explain the meaning of CD19 to the patient,
while the decision-making process of the algorithm is made transparent to both the physi-
cian and the patient. Thus, transparency of XAI does not necessarily mean transparency for
the patient, but emphasizes the compressibility of a biomedical decision based on machine
learning first for the (biomedical) field expert, who then takes over the establishment of
comprehensibility for the layperson.

SVM are machine learned classifiers, which use kernel functions to assign data to given
classes [14]. Kernel functions represent distances from a hyperplane in a space, where the
original data are mapped to. This decision space is typically much higher in dimension (up
to infinity) than the feature space of the data. This may have the result that the classification
is easier in that space. However, a representation of the decision surface in the data’s
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space is typically torn and may contain holes and bumps, i.e., senseless [20]. The SVM
explanation of why a patient receives a diagnosis of leukemia based on his/her blood
sample would be that because the patient’s blood sample (thick green dot in (Figure 1C)
contains cell marker patterns that place it on the “sick” side of the decision surface (black
line in Figure 1C), which separates healthy and sick cells in a unintelligible projection of
marker expressions (Dim1/Dim2 in Figure 1C) .

3. Historical Origins of the Need for Explainable AI
3.1. Knowledge Representation in Expert Systems

Explainable AI is not a new field [21]. AI systems were extensively researched in
1980/1990. These systems were based on a precise and formal representation of human
knowledge using predicate logics, graphs, e.g., directed acyclic graphs (DAG), and a type
of approximate reasoning, such as Bayes [22], fuzzy reasoning, and Dempster–Shafer
theory [23]. For example, one of the world’s highly successful systems of these knowledge-
based systems is the GeneOntology knowledge base [24].

However, a serious bottleneck of these systems is that the AI needs a knowledge repre-
sentation created by hand before it can start working. Algorithms that can learn to appear
to act intelligently seemed to be a solution to this problem. However, most of the machine
learning models in use today are neither knowledge based nor knowledge producing.
From the perspective of knowledge-based AI, these systems sacrifice understandability
and explainability in favor of performance. A better name for most machine learning
systems and many “AI” systems would, therefore, be artificial skills-based systems (AS),
which is elaborated in the next chapter.

3.2. Knowledge-Based Systems

A transparent decision based on AI could ideally be achieved when a sound scientific
theory is available as a basis for how the underlying ML system works. Then, the trustwor-
thy system can draw logical inferences based on this theory to reach its conclusions. This is
like knowing Kepler’s laws for predicting the positions of planets in astronomy. In systems
based on sound scientific theory, the scope and accuracy of a prediction can be estimated.
In addition, a rationale (explanation) for the result can be given [25]. In astronomy, for ex-
ample, Kepler’s three laws can be derived from Newton’s law of gravity. From these laws,
it can be deduced why a particular planet is in a particular position.

3.3. Skill-Based Systems

Machine learning systems are often used for tasks where a scientific theory is not
given or even known. For example, machine learning systems are developed to diagnose
patients based on various measurements of gene expression, even when the exact molecular
processes involved in the disease are only partially known or understood. In such situations,
the machine learning literature is content to measure the “quality” of a diagnostic system by
measuring the accuracy of its predictions on a limited data set that was not used during the
development (training, learning, adaptation, and tuning) of the system, i.e., the so-called
“test data” [26,27]. That is, the algorithm is trained on a carefully selected training and test
data set to develop the ability to perform a specific task, such as making a clinical diagnosis.
In this way, the ability to generalize to new, unknown cases is evaluated. In this approach,
confidence is determined by a measure of performance on unseen data. However, in most
cases, these “unseen” data were already available when the model was developed.

The limitations of skill-based ML systems are obvious: for data that are very similar in
structure to the training data, the system will perform well. For data that have a different
structure, the skill-based ML system will fail, and may not even recognize that such data do
not fall within the algorithm’s skill domain. In astronomy, this is like the epicycle model of
planetary motion. It can be thought of as an empirical Fourier analysis of planetary motion,
with a series of larger and smaller circles superimposed [28]. For small periods of time and
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under “normal” circumstances, the epicycle model can predict the position of a planet to
some accuracy [29]. However, it is not known when the prediction is correct or incorrect.

For skill-based ML systems, it is pointless to ask for an explanation for a decision.
Systems of the “associative memory” type, for example, store all cases and their diagnoses
in a memory (database). The diagnosis of a new case is determined by searching for the
most similar cases and assigning the majority of the diagnoses of the most similar case.
An example of this type of algorithm is the k-nearest neighbor classification algorithm [30].
Attempts to analyze skill-based algorithms in detail only lead to an understanding of the
mathematical model used in such a system. For example, patient A’s diagnosis is D because
A is most similar to patient X, who had a diagnosis of D in the past. Moreover, fairness
and nondiscrimination against minorities, as well as other ethical requirements, such as
not harming people, cannot be guaranteed or enforced in skill-based systems (see https://
digital-strategy.ec.europa.eu/en/library/communication-artificial-intelligence-europe, ac-
cessed on 15 December 2021).

4. Transition from AI to XAI in Biomedical Data Science
4.1. Methods to Identify the Decision Processes of Subsymbolic “Black-Box” Algorithms

The main types of classifiers used in machine learning are symbolic [31] or sub-
symbolic [32] classifiers. For symbolic classifiers, the decision of how a classification is
arrived at can be interpreted by a domain expert as a combination of conditions on the
features. For example, a symbolic classifier may consist of a set of rules that are hierarchical
in a decision tree or non-hierarchical. This is consistent with what is currently required for
an XAI. In contrast, subsymbolic algorithms do not make transparent the exact criteria used
to assign a subject to a particular class, e.g., healthy or sick. An example of subsymbolic
classifiers are random forest classifiers [33,34], which are based on a number of different,
uncorrelated and simple decision trees. Class assignment is done by majority voting on
many well-behaved trees.

However, this research focuses on combining the advantages of both types of clas-
sifiers, i.e., the high performance of the subsymbolic algorithms and the transparency
and, hence, trustworthiness of the symbolic classifiers. It is readily possible to narrow
down the number and type of features of the subject on which the decision is based and
to rank their importance, but the exact process remains a black box. Further analysis is
needed to uncover the exact decision process. For example, one method developed for
random forests is to analyze representative trees in the forest [35] (Figure 2). The result
is a small selection of well-functioning prototypic trees out of a total of 1500 trees in the
random forest on which possible decision processes can be traced. An alternative method
for extracting non-hierarchical decision rules from the decision process in random forests,
and also in other subsymbolic classifiers, is the so-called LIME method (local interpretable
model-agnostic explanations) [36]. This learns an interpretable model locally around the
single prediction of a trained AI, e.g., a random forest. This is achieved by changing the
assignment rules for a single data instance, e.g., a single patient, by changing the feature
values and then observing the resulting impact on the classification. The result of LIME is
a set of rules representing the contribution of each feature to a prediction for a single data
instance, which is a form of local interpretability.

https://digital-strategy.ec.europa.eu/en/library/communication-artificial-intelligence-europe
https://digital-strategy.ec.europa.eu/en/library/communication-artificial-intelligence-europe
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Figure 2. Example of an attempt to make subsymbolic classifiers transparent in terms of the decision
structure along which class assignment occurs by extracting well-behaved and representative trees
from a random forest classifier. A subsymbolic random forest classifier with a size of 1500 trees
was created that contained up to d = 3 pain-related variables by setting hyperparameters, using
the R library “randomForest” (https://cran.r-project.org/package=randomForest [26], accessed on
15 December 2021). The pain-related variables are from [37] and consist of thresholds for different
stimuli recorded in quantitative sensory tests in a study of experimentally induced pain in humans,
namely, pain thresholds for noxious heat and cold. The variables used included heat pain thresholds
(HPT) and cold pain thresholds (CPT). The pain data included the z-transformed pain thresholds
for heat or cold stimuli recorded under control conditions and after UV-B irradiation, and the UV-B
effects recorded as the difference between the z-transformed thresholds (zHPTbaseline, zHPTUVB,
zCPTbaseline, zCPTUVB, UVBEffHeat, and UVBEffcold) acquired from 84 healthy subjects. Analysis of
representative trees in the forest resulted in the four trees shown in panel C. This analysis used
the trained random forest and the data to run predictions while identifying representative trees
based on the d2 metric [35] using the Euclidean distance. The result was trees number 732, 905,
913 and 1070 of the 1500 trees in the forest. These calculations and plots were performed using
the R libraries ”reprtree” (https://github.com/araastat/reprtree/blob/master/R/ReprTree.R [38],
accessed on 15 December 2021) and “ggraph” (https://cran.r-project.org/package=ggraph [39],
accessed on 15 December 2021). The figure shows the representative trees, with the class assignments
as colored leaves at the respective bottoms. The figure was created using the R software package
(version 4.1.2 for Linux; https://CRAN.R-project.org/ [17]) and the R package “ggplot2” (https:
//cran.r-project.org/package=ggplot2 [40], all accessed on 15 December 2021).

https://cran.r-project.org/package=randomForest
https://github.com/araastat/reprtree/blob/master/R/ReprTree.R
https://cran.r-project.org/package=ggraph
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
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4.2. XAI Designed for Non-Developers

The detailed understanding of the mathematical details of an AI algorithm may be
possible for experts in statistics or computer science. However, when it comes to the fate
of humans, this “developer’s explanation” is not enough. For example, the World Bank
requires of AI systems for credit scoring “the ability of humans to interpret, understand,
explain, and justify decisions made with methods that use a large number of variables” [41].
Ultimately, a human must be able to take responsibility for the consequences of an AI
system’s decision.

Linear models, especially structurally simple ones, are assumed to be understood
by mathematicians, statisticians, or computer scientists (i.e., the developers). However,
these models are limited in what they can do. The development of “parallel distributed
processing” models has attempted to overcome the limitations of linear systems [42].
Such models consist of a very large number of nonlinear functions, often referred to as
neural networks or forests of decision trees. By adjusting many parameters (e.g., “synaptic
weights”), such a model can “learn” to reproduce given input–output situations. Due to the
large number of interacting elementary processes (neurons), understanding the details of
such a system in finite time is neither intended nor possible. Such systems are referred to as
“black boxes”. The comprehensibility of the system is sacrificed in favor of efficiency and
simplicity of development. For example, it took many hundreds of man years of acoustic
and statistical specialists to develop the first speech recognition program [43]. Modern
so-called deep learning neural networks require only computational power to optimize
a standard algorithm to achieve even better quality [44]. The comprehensibility of such
systems was traded for the capability (accuracy) of their performance [41].

XAI requires knowledge discovery methods that are machine-usable and explainable
to a domain expert or even a layperson. The most precise definitions of XAI [6] go back
to research on knowledge-based AI [45,46]. A truly explainable AI (XAI) system is one
that draws its conclusions based on a model that is understood and accepted in depth by a
human expert in the field in which the XAI is used (domain expert). This understanding and
acceptance of the AI inference model must be such that the expert is willing to ultimately
assume legal responsibility for the AI’s decisions. Such XAI systems cannot rely on their
skills alone. Instead, they must make their decisions using scientific logical reasoning
based on recognized expertise. XAI systems must be able to explain each decision and
its derivations in a way that can be understood and comprehended by the domain expert
(domain intelligibility).

Consequently, XAI systems must be based on (machine-processable) knowledge ori-
ented to human language (symbolic systems). The so-called “expert” or “knowledge-based”
systems [47] fulfill this requirement. They are typically based on a representation of the
concepts, facts, rules, relationships, and theories in a given domain [48]. The GeneOntology
knowledge base [24] is an example of such a knowledge representation in the field of
cell biology and genetics. An XAI system arrives at conclusions (decisions/diagnoses)
by applying formal methods of scientific reasoning, e.g., predicate calculus [49]. There
are machine learning AI systems that use this type of reasoning, i.e., the individual de-
cision steps are provided directly by so-called “symbolic” machine learning methods
that base the class assignment of a case on a set of hierarchically or non-hierarchically
organized rules [50–53]. Examples include hierarchical classification and regression trees
(CART [13]) or non-hierarchical repeated incremental clipping for error reduction (RIP-
PER [54]). Among the symbolic tree-based algorithms, the so-called “Fast and Frugal Trees”
(FFTs [55,56]) provide particularly simple decision trees, usually consisting of 1 to 5 pieces
of information, which makes them particularly suitable for biomedical problems, as they
mimic the processes of making a clinical diagnosis [57].

However, one important requirement for machine-learned AI systems is often over-
looked: the comprehensibility of the knowledge used in the system to a domain expert.
An important requirement for comprehensibility is simplicity. Machine-learned symbolic
systems often lack this property. For example, decision trees may consist of hundreds
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of conditions. Identical subtrees may be used repeatedly in different branches of such a
decision tree (Figure 2). It is acceptable for a computer algorithm to base a decision on
hundreds of conditions. Humans, on the other hand, have a limited capacity in terms
of the complexity and redundancy of models or explanations. According to Miller’s law,
the typical limit of human information processing capacity is 7 ± 2 elements [58]. XAI
explanations must, therefore, be as simple as possible (Occam’s razor) and use abstractions
(generalizations) from example situations.

5. Main Biomedical Goals of XAI

Approaches to explain the decisions of deep learning algorithms for biomedical tasks
have their main focus on visualizing the elements that contributed to each decision [59].
For example, one of these methods is interactive heat maps [60]. There are several ways in
which such mechanical explanations can highlight which input is relevant to an output
obtained, using gradients as a multivariable generalization of the byproduct, where the
neural network is viewed as a function and the explanation is based on the gradient of the
function available from the backpropagation algorithm [59,61]. The volume of studies on
machine learning interpretability methods in recent years demonstrates the growing inter-
est in this research area. However, despite the rapid growth, the goal of understandability
for experts (statisticians) is sacrificed for the understandability for professionals [62].

An attempt was made to define the position of XAI in the biomedical context in
general. The main goal of achieving explainability and traceability of machine-learning-
based decisions is inherent, and a further breakdown was proposed based on a study of the
terms frequently used in the XAI context [6]. Accordingly, XAI should serve the following
goals, namely (i) trustworthiness, (ii) causality, (iii) transferability, (iv) informativeness, (v)
trust, (vi) fairness, (vii) accessibility, (viii) interactivity, and (ix) privacy awareness.

5.1. Trustworthiness

Machine learning (ML) methods for classification tasks decide which class (e.g., a clin-
ical diagnosis) is appropriate for a given case. When a person’s fate depends on the
outcome of such a decision made by an algorithm, the trustworthiness of the ML system is
of particular importance.

The term trustworthy AI is increasingly used as an alternative to the term XAI in
clinical research and AI-assisted decision making when the concept of XAI is used in
the context of patient–physician interaction. The idea behind trustworthiness of an AI
is to gain the trust of individuals or organizations in the AI model by explaining the
characteristics and reasons for the AI output, which helps to achieve the full potential of
the AI. For example, if neither physicians nor patients trust an AI-based recommendation
for a clinical diagnosis, it is unlikely that any of them will follow the recommendation [63].
A solution is provided by the above-mentioned LIME method. A recent example of its
use was the transparent assignment to specific pain phenotype clusters based on random
forest [37]. However, in the same report, it was also shown that the LIME method is not
perfect, and rules can only be expected for a subset of the instances in the data set.

5.2. Further and Related Goals of AI in Biomedicine

The following explanations and examples attempt to capture more of the main goals
identified in [6], with a focus on biomedical research and, in particular, clinical decision
making based on AI or machine-learned algorithms (Figure 3).
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Figure 3. Schematic representation of achieving trustworthy AI in biomedicine, including clinical
decision making, and the requirements for such XAI in this environment. The left part shows paths
to trustworthy AI. The AI-based decisions can be implemented as symbolic algorithms, which often
use rules or small rule sets for classification, or a sub-symbolic and often more powerful type of
machine learning algorithm is used, to which further methods are subsequently applied, such as
local interpretable model-agnostic explanations (LIME [36]) to extract comprehensible rules for
class assignment. The right part shows the main objectives assigned to an XAI in the biomedical
and clinical context, as proposed in [6], with the main goal of making AI-based clinical decisions
trustworthy by being comprehensible to both the physician and the patient. The figure was created
using Microsoft PowerPointr 365 (Redmond, WA, USA) on Microsoft Windows 11 running in a
virtual machine powered by VirtualBox 6.1 (Oracle Corporation, Austin, TX, USA) on a computer
running Ubuntu Linux 20.04.03 LTS 64-bit (Canonical, London, UK).

5.2.1. Transparency

Transparency is also grouped under the terms black box to white box, intrinsic ex-
planations, understandability, or comprehensibility. All of these terms refer to a precise
description of the mathematical/statistical/algorithmic details of how the AI model works
internally [6]. This type of explanation may be understandable to statisticians, mathemati-
cians, and/or computer scientists. However, it is usually useless to the physician or the
patient. In banking, for example, the “transparency” of an AI deciding whether a customer
is eligible for a loan is based on the equation ln

(
p(x)

1−p(x)

)
= β0 + β1x1 [64]. The success of

today’s “subsymbolic” AI is based on trading the understandability of the model for its
performance in terms of the accuracy of the AI’s predictions or class assignments, as de-
scribed in more detail below in the History section. Such models, e.g., artificial neural
networks (ANN [65]) or random forests [33,34], use a large number of nonlinear functions
as neurons or decision trees coupled by thousands of coupling factors, such as synapses
and weights, respectively, which in deep learning can be organized in many layers. Thanks
to the power of modern computers, up to current PCs, the many thousands or millions of
internal parameters can be optimized for these models so that those functions can be ap-
proximated that map the high-dimensional multivariate input data to multivalued outputs,
such as different diagnostic classes. In this way, the individual elements (neurons, trees)
can be accurately described, but the resulting collective behavior of the system cannot be
understood. This can be compared to the impossibility of explaining thoughts or ideas by
the firing of neurons in the brain. In systems theory, this is considered one of the central
properties of emergent systems [66–68].

5.2.2. Comprehensibility

Being also referred to as interpretability, the comprehensibility of an explanation
means the provision of a causal and logical deduction of the results (decisions) from the
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given facts (input data) using the terms, formulations and methods of decision making in
the respective subject area. Comprehensible explanations are formulated using deductive
logic, considering approximations (fuzziness) and risks. This is the very meaning of explain-
ability of an AI [6] and is used as explainable AI (XAI) in the rest of this paper. A common
definition of XAI is that it is AI in which the results and the derivation of the solution can
be explained in a way that is understandable to humans. The term “explainable” is often
used and defined very differently by researchers, as there is no concrete mathematical
definition [69]. Most importantly, the human who needs to understand the AI’s decision is
controversial: is it the patient, the doctor, or a computer scientist or statistician? Another
problem is the interchangeable misuse of interpretability and explainability in the literature,
as there are significant differences between these concepts, but in all existing definitions,
the term “understandability” emerges as the most essential concept in XAI [6].

However, there is a consensus that XAI must ensure that computational decisions are
transparent so that they can be communicated to affected patients in an understandable
way when it comes to biomedical and especially clinical decisions. In this regard, the goal of
XAI research is to define the specific interests, goals, expectations, needs, and requirements
for artificial systems and to drive their implementation.

5.2.3. Informativeness

The informativeness of AI is required, for example, in clinical decision support systems
that assist physicians in diagnostic or therapeutic tasks. Such systems are based on AI
and are increasingly used in clinical practice, with a current focus on medical imaging.
Alzheimer’s disease can be diagnosed from magnetic resonance images by training deep
neural networks to identify abnormal brain regions [70]. Similarly, deep neural networks
were introduced in clinical imaging to facilitate decision making using these data [71].
However, while the results of these analyses appear reasonable to a medical expert because
they are consistent with medical knowledge and, as such, could be communicated to
the patient, the exact mechanisms of how a diagnosis is made for a particular patient
remain vague. Deep neural networks are subsymbolic classifiers in the above sense, as are
random forests, whose hundreds or thousands of decision trees also cannot be grasped in
full detail by the physician and communicated in an understandable way to the patient.
Informativeness aims at simpler models of what an AI does internally such that this
abstraction provides more information to a user [6].

5.2.4. Accessibility

Accessibility can mean involving end users in the process of improving and devel-
oping an AI algorithm, as previously suggested [6]. Furthermore, accessibility can be
considered the ability to make machine-learning-based decisions without deep program-
ming and AI knowledge. This can be done via interactive pre-packaged software, such as
the R package “rattle” used in the second chapter of this report or other interactive tools
such as the R libraries “AdaptGauss” https://cran.r-project.org/package=AdaptGauss,
which provides interactive fitting of Gaussian mixture models [72], “pguIMP” for pre-
processing biomedical laboratory data sets, including imputations of missing values by
machine learning (https://cran.r-project.org/package=pguIMP [73], all accessed on 15
December 2021), and many others that would require separate review exceeding the
present scope.

However, accessibility can also be understood in terms of intellectual accessibility. This
goal is often realized in symbolic forms of AI, often in simple machine learning algorithms
that take the form of hierarchical or non-hierarchical rules. A symbolic rule-based classifier
that included 21 individual or aggregate parameters, including demographic characteristics,
psychological, and pain-related parameters recorded early after breast cancer surgery,
predicted the subsequent development of persistent pain with a cross-validated accuracy of
86% and a negative predictive value of about 95% when most non-hierarchical rules were
used [74]. Another example from pain research is how subsymbolic AI can be subjected

https://cran.r-project. org/package=AdaptGauss
https://cran.r-project.org/package=pguIMP
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to further analysis to extract the individual decision process for each case, or how it can
be complemented by symbolic AI that provides understandable explanations for group
assignment, although the exact decision process may differ from that of subsymbolic
AI [37]. This has been elaborated in more detail in a visual analysis system for multi-
model comparison of predictions for clinical data [75]. The system allows comparison and
evaluation of different AI models based on their interpretable information, with the goal of
assisting clinicians in decision making. The different models are compared in terms of the
predictive criteria used, and the consistency of their application is evaluated.

5.2.5. Transferability

Transferability was cited as the second most common reason for using XAI in re-
search [76]. Transferability means that explaining how an AI model works serves to better
understand the underlying problem so that the solution can be more easily applied to a dif-
ferent application or problem. In the breast cancer cohort mentioned above [74], the initial
set of rules for predicting pain persistence included information collected from patients
through repeated use of comprehensive psychological questionnaires. Once this proved
informative, supervised machine learning could be used to reduce the questionnaires to
items relevant to the pain context. This was accomplished by creating a shorter form of
questionnaires that contained only seven items, representing 10% of the original psycho-
logical questions, but yielded the same predictive performance for pain persistence as the
full questionnaires [77]. Certainly, this short questionnaire is much easier for clinicians and
patients to understand than the more general full questionnaires.

6. Concerted AI Interpretation between Informatics and Biomedical Domain Experts

Computer science is described as a rapidly growing multidisciplinary field that uses
advanced computing capabilities to understand and solve complex problems [78]. It
inherently requires collaboration that involves sharing and collaboration on information
and methods between professionals of different domains, such as physicians and machine
learning experts [79]. This sets XAI, i.e., explaining AI to non-mathematicians, into the
center of the classifier development workflow rather than placing it at its end. Concerted
model building, involving a variety of experts from different fields, is necessary to identify
and eliminate machine learning pitfalls, such as confounding variables and surrogate
markers, commonly referred to as data-leaking covariates. An example of this is the
identification of a protective effect of the 5-HT3 serotonin receptor antagonist ondansetron,
an antiemetic routinely used to treat nausea and vomiting, against hospitalization-related
venous thromboembolism [79]. Whereas an initial classifier achieved a ROC-AUC for
risk prediction of 0.92, after a concerted effort by biomedical and computer scientists to
exclude data-leaking covariates such as specific pharmacological prophylaxis or treatment
of thromboembolism, the ROC-AUC decreased to 0.87, which seems to more realistically
capture the benefit of ondansetron in this context. A purely statistical approach without
consulting biomedical expertise may not be sufficient here, as it has been emphasized that it
is often difficult to distinguish between confounding and mediating variables in statistical
analyses [80]. It appears that expertise is required to deal with confounding variables so
that an expert can decide which variable can potentially be considered a confounding
variable (rather than a mediating variable) or a surrogate marker [81]. As stated elsewhere,
prediction only requires correlation, but understanding requires significant knowledge
underlying the causal mechanisms [79,82]. Other problems in machine learning model
building include the shortage of data points relative to the number of available variables
to select from and sparse data sets where many of the labels are missing. Again, one
way to address these shortcomings is proposed to consist of the involvement of domain
human experts in various steps of data set construction, model training and evaluation
and, in particular, the integration of prior medical knowledge [83]. An example for these
effects is the identification of olfactory effects of various drugs from a data set with many
candidate drugs applied to a limited number of patients, which has also been assessed
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by both biomedical and computer science experts [84]. It is noteworthy that this report is
also the result of a collaborative project between authors whose original fields of study are
medicine/data science, biology, or computer science.

7. XAI in Biomedical Publishing

Artificial intelligence and its most popular application, machine learning, increasingly
permeate many areas of daily life and science, including biomedical research. An auto-
mated search of the PubMed database on 25 September 2021, using the R library “RISmed”
(https://cran.r-project.org/package=RISmed [85], accessed on 15 December 2021) yielded
166,938 hits with the search terms (“machine-learning OR artificial intelligence OR explain-
able artificial intelligence”) and 138,556 hits with the search terms (“artificial intelligence OR
explainable artificial intelligence”). When excluding reviews by adding “NOT review[PT]”
to the search terms, 153,868 and 127,438 hits were obtained, respectively. The earliest hit
using the MeSH term “artificial intelligence” was a 1951 report on a neurological research
robot [86]. Publications per year were infrequent until the 1980s and did not exceed 100 per
year until 1986 (Figure 4A). Since then, publication activity has accelerated and reached a
temporary peak in 2020, when the above searches, which included all types of publications,
yielded 25,622 and 19,302 hits, respectively.

In biomedical research, the concept of XAI was only recently mentioned in publi-
cations. XAI accounts for only a small portion of the hits in the second search above.
An automated search of the PubMed database as above, using only the term (“explainable
artificial intelligence”), yielded 340 hits on 25 September 2021, with the earliest publication
dating from 1990 [87]. However, XAI is increasingly included in publications, and most
publications are from the last three years, with 113 articles from 2020 and 172 articles
already from 2021 (Figure 4B), which fits well with the publication dates of the seminal
articles mentioned in the above chapters on concepts of AI and XAI.

Figure 4. Stacked bar chart of publications listed in PubMed per year, with particular emphasis on
publications found with the search term ((“machine-learning OR artificial intelligence OR explainable
artificial intelligence”) NOT (review[PT])), with the proportion of publications found with the search
term (“explainable artificial intelligence” NOT (review[PT])) separated as blue parts of each bar.
(A) Publications per year were infrequent until the 1980s and did not exceed 100 per year until
1986. (B) Enlarged view of the latter search, i.e., for “XAI” only. The figure was created using the R
software package (version 4.1.2 for Linux; http://CRAN.R-project.org/ [17]) and the library “ggplot2”
(https://cran.r-project.org/package=ggplot2 [40], all accessed on 15 December 2021).

https://cran.r-project.org/package=RISmed
http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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8. Discussion

The purpose of artificial skill-based (AS) algorithms is to use examples to learn how
to classify (diagnose) cases in such a way that this can be generalized to unseen cases. This
is akin to teaching a child to ride a bicycle in a parking lot with the expectation that he
or she will later be able to ride on the street. This is ideal for application areas such as
drug repurposing or protein secondary or tertiary structure prediction (for a summary,
see, for example, [88]). Deep learning neural networks are the prototypical example
of this type of AI. Skill-based algorithms can surpass the current state of the art in in
patient categorization. However, they do so by intentionally sacrificing explainability.
For those application domains that target performance, this may be appropriate, e.g., for
purely technical applications such as AI-based detection and separation of cell types, which
are often implemented in close proximity to the laboratory equipment used to collect or
generate these biomedical data. The literature does not cover this aspect of different types
of application domains: aiming for skill and performance versus aiming at knowledge
and explainability.

However, where the decisions made by AI are relevant to people’s lives, knowledge-
based AI should be used. For this type of application, the AI’s decisions must be under-
standable to the medical or other professional, and the application of AI methods in the
medical field should be limited to user-understandable systems. These are models that
provide a causal and logical derivation of their decisions from the given multivariate data
using the terms, formulations, and methods of medical decision making. This means that
such systems should use a formal, i.e., understandable to humans (subject matter experts),
knowledge representation. This is the viewpoint taken here for XAI. So-called white-box
explanations, which provide intrinsic explanations, are left to mathematicians, statisticians,
or computer scientists who deal with the internal workings of the models. XAI should focus
on ensuring that computational decisions are made transparently and in a form that can be
communicated to medical staff and patients in an understandable way. This approach is
likely to accelerate the adoption of XAI in biomedical research and subsequently in clinical
practice. This type of XAI can be implemented in a variety of ways, such as transforming
subsymbolic AI into symbolic systems using knowledge discovery methods. XAI is an
active research topic in computer science. Because of their direct impact on the realization
of patients’ right to informational self-determination, their results have a direct impact on
biomedical research and clinical practice and are rapidly being transferred from the field of
theoretical computer science to practical applications in clinical work.

The present XAI approach may differ from alternative approaches in that we explicitly
define XAI as an algorithm that makes the decision as to why a particular individual
should be assigned to a particular class (diagnosis) in a manner that is accurate and
logically comprehensible to those involved. The steps of the decision-making process
should be accessible and understandable at least to the expert in the field, who can then
explain these rules to the affected individual. Ultimately, it should also be possible for the
person affected to directly understand the decisions made by the system. This explicitly
goes beyond making the decision-making process understandable to the data scientist who
knows, for example, the mathematical background of a regression-based classifier. This
background, expressed in equations, can hardly help most patients understand why an
algorithm assigned them a particular diagnosis. It also goes beyond the mere plausibility
of the features used to make the decision, which may allow a vague association with
the classification but not the precise reasons for an individual. It also goes beyond the
claim that it is sufficient for an XAI to meaningfully connect the input space, i.e., the
available biomedical information, with the output space (clinical diagnosis). In contrast,
the exact decision-making process must be made transparent to a medical professional for
an algorithm to qualify as an XAI. As outlined above, XAI enables humans to get “into the
loop” of machine learned systems, for example, to decide which variables can potentially
be considered “surrogate markers”. Such markers are effective in predicting the diagnosis
because their values are a consequence of the diagnosis. Such XAI can than contribute to (i)
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the understanding of the mechanisms of a particular disease and (ii) building trust that the
results found by machine learning are not spurious [82].

9. Concluding Remarks

Although the present report emphasized the need for comprehensibility of AI-based
biomedical decisions, it should not be ignored that it falls short to require interpretability
only from statisticians involved in the medical decision-making process. Biomedical terms
and methods may be similarly incomprehensible to a nonbiomedical expert as AI-specific
terms and methods often are to the biomedical expert. Although the medical environment
is the medical expert’s home professional field, with the increasing use of AI in the field, it is
not enough to ask incoming disciplines to explain their methods without viewing this task
as reciprocal, including the need for both informaticians and medical professionals to learn
about each other’s disciplines. It is, therefore, the joint responsibility of biomedical and
informatics experts to establish a common basis of terms and concepts for discussion, which
each expert can then explain to the other expert and both experts to the patient. To return
to the introductory example, CD19 is probably as unfamiliar to a computer science expert
as SVM is to a medical professional. Both have the task of making themselves understood
by the other expert and passing on their mutual understanding to the patient.
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27. Hryniewska, W.; Bombiński, P.; Szatkowski, P.; Tomaszewska, P.; Przelaskowski, A.; Biecek, P. Checklist for responsible deep

learning modeling of medical images based on COVID-19 detection studies. Pattern Recognit. 2021, 118, 108035. [CrossRef]
28. Murschel, A. The Structure and Function of Ptolemy’s Physical Hypotheses of Planetary Motion. J. Hist. Astron. 1995, 26, 33–61.

[CrossRef]
29. Hanson, N.R. The Mathematical Power of Epicyclical Astronomy. Isis 1960, 51, 150–158. [CrossRef]
30. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theor. 1967, 13, 21–27. [CrossRef]
31. Newell, A.; Simon, H.A. Computer science as empirical inquiry: Symbols and search. Commun. ACM 1976, 19, 113–126.

[CrossRef]
32. Smolensky, P. On the proper treatment of connectionism. Behav. Brain Sci. 2010, 11, 1–23. [CrossRef]
33. Ho, T.K. Random Decision Forests. In ICDAR ’95: Proceedings of the Third International Conference on Document Analysis and

Recognition; IEEE Computer Society: Washington, DC, USA, August 1995; Volume 1, p. 278.
34. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
35. Banerjee, M.; Ding, Y.; Noone, A.M. Identifying representative trees from ensembles. Stat. Med. 2012, 31, 1601–1616. [CrossRef]
36. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17
August 2016; pp. 1135–1144. [CrossRef]

37. Lötsch, J.; Malkusch, S. Interpretation of cluster structures in pain-related phenotype data using explainable artificial intelligence
(XAI). Eur. J. Pain 2021, 25, 442–465. [CrossRef]

38. Dasgupta, A. Reprtree: Representative Trees from Ensembles. 2014. Available online: https://github.com/araastat/reprtree/
blob/master/R/ReprTree.R (accessed on 15 December 2021).

39. Pedersen, T.L. Ggraph: An Implementation of Grammar of Graphics for Graphs and Networks; R package version 2.0.5; 2021. Available
online: https://cran.r-project.org/package=ggraph (accessed on 15 December 2021).

40. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
41. Knutson, M.L. Credit Scoring Approaches Guidelines-Final-Web; The World Bank Group: Washington, DC, USA, 2020. Available online: https:

//thedocs.worldbank.org/en/doc/935891585869698451-0130022020/original/CREDITSCORINGAPPROACHESGUIDELINESFINALWEB.
pdf (accessed on 15 December 2021).

42. Rumelhart, D.E.; McClelland, J.L. Parallel Distributed Processing: Explorations in the Microstructure of Cognition; MIT Press:
Cambridge, MA, USA, 1986; Volume 1.

43. Huang, X.; Baker, J.; Reddy, R. A Historical Perspective of Speech Recognition. Commun. ACM 2014, 57, 94–103. [CrossRef]
44. Li, J.; Lavrukhin, V.; Ginsburg, B.; Leary, R.; Kuchaiev, O.; Cohen, J.M.; Nguyen, H.; Gadde, R.T. Jasper: An End-to-End

Convolutional Neural Acoustic Model. arXiv 2019, arXiv:1904.03288.
45. Michalski, R.S. A theory and methodology of inductive learning. In Machine Learning; Michalski, R.S., Carbonell, J.G.,

Mitchell, T.M., Eds.; Morgan Kaufmann: San Francisco, CA, USA, 1983; pp. 83–134. [CrossRef]
46. Craven, M.W.; Shavlik, J.W. Extracting Comprehensible Models from Trained Neural Networks; Computer Sciences Department,

University of Wisconsin-Madison: Madison, WI, USA, 1996.
47. Yanase, J.; Triantaphyllou, E. The seven key challenges for the future of computer-aided diagnosis in medicine. Int. J. Med. Inf.

2019, 129, 413–422. [CrossRef] [PubMed]
48. Ultsch, A.; Kleine, T.; Korus, D.; Farsch, S.; Guimaraes, G.; Pietzuch, W.; Simon, J. Evaluation of Automatic and Manual

Knowledge Acquisition for Cerebrospinal Fluid (CSF) Diagnosis. In Artificial Intelligence in Medicine; Keravnou, E., Garbay, C.,
Baud, R., Wyatt, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 1211. [CrossRef]

49. Hodges, W. Classical Logic I: First Order Logic. In The Blackwell Guide to Philosophical Logic; Wiley-Blackwell: Hoboken, NJ, USA,
2001.

https://inkscape.org
http://dx.doi.org/10.1016/0008-8749(89)90385-7
http://dx.doi.org/10.1007/978-3-319-99740-7_21
http://dx.doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1017/CBO9781139174817
http://dx.doi.org/10.1016/j.patcog.2021.108035
http://dx.doi.org/10.1177/002182869502600102
http://dx.doi.org/10.1086/348869
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1145/360018.360022
http://dx.doi.org/10.1017/S0140525X00052432
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1002/sim.4492
http://dx.doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1002/ejp.1683
https://github.com/araastat/reprtree/blob/master/R/ReprTree.R
https://github.com/araastat/reprtree/blob/master/R/ReprTree.R
https://cran.r-project.org/package=ggraph
https://thedocs.worldbank.org/en/doc/935891585869698451-0130022020/original/CREDITSCORINGAPPROACHESGUIDELINESFINALWEB.pdf
https://thedocs.worldbank.org/en/doc/935891585869698451-0130022020/original/CREDITSCORINGAPPROACHESGUIDELINESFINALWEB.pdf
https://thedocs.worldbank.org/en/doc/935891585869698451-0130022020/original/CREDITSCORINGAPPROACHESGUIDELINESFINALWEB.pdf
http://dx.doi.org/10.1145/2500887
http://dx.doi.org/10.1016/B978-0-08-051054-5.50008-X
http://dx.doi.org/10.1016/j.ijmedinf.2019.06.017
http://www.ncbi.nlm.nih.gov/pubmed/31445285
http://dx.doi.org/10.1007/BFb0029429


Biomedinformatics 2022, 2 16

50. Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
51. Loh, W.Y.; Vanichsetakul, N. Tree-Structured Classification via Generalized Discriminant Analysis. J. Am. Stat. Assoc. 1988,

83, 715–725. [CrossRef]
52. Loh, W.Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 2011, 1, 14–23. [CrossRef]
53. Loh, W.Y. Fifty Years of Classification and Regression Trees. Int. Stat. Rev. 2014, 82, 329–348. [CrossRef]
54. Cohen, W.W. Fast Effective Rule Induction. In Proceedings of the 12th International Conference on Machine Learning, Tahoe

City, CA, USA, 9–12 July 1995; Morgan Kaufmann: Burlington, MA, USA, 1995; pp. 115–123.
55. Gigerenzer, G.; Todd, P.M. Fast and frugal heuristics: The adaptive toolbox. In Simple Heuristics That Make Us Smart; Evolution

and Cognition; Oxford University Press: New York, NY, USA, 1999; pp. 3–34.
56. Martignon, L.; Katsikopoulos, K.V.; Woike, J.K. Categorization with limited resources: A family of simple heuristics. J. Math.

Psychol. 2008, 52, 352–361. [CrossRef]
57. Marewski, J.N.; Gigerenzer, G. Heuristic decision making in medicine. Dialogues Clin. Neurosci. 2012, 14, 77–89. [PubMed]
58. Miller, G.A. The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychol. Rev.

1956, 63, 81–97. [CrossRef]
59. Holzinger, A. Explainable AI and Multi-Modal Causability in Medicine. i-com 2020, 19, 171–179. [CrossRef]
60. Bach, S.; Binder, A.; Müller, K.R.; Samek, W. Controlling Explanatory Heatmap Resolution and Semantics via Decomposition

Depth. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28
September 2016.

61. Montavon, G. Gradient-Based vs. Propagation-Based Explanations: An Axiomatic Comparison; Springer: Cham, Switzerland, 2019; pp.
253–265. [CrossRef]

62. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods.
Entropy 2020, 23, 18. [CrossRef]

63. Thiebes, S.; Lins, S.; Sunyaev, A. Trustworthy artificial intelligence. Electron. Mark. 2021, 31, 447–464. [CrossRef]
64. Skantzos, N.; Castelein, N. Credit Scoring—Case Study in Data Analytics; Deloitte Touche Tohmatsu Limited: London, UK, 2016.
65. Rosenblatt, F. The perceptron: A probabilist@articleic model for information storage and organization in the brain. Psychol. Rev.

1958, 65, 386–408. [CrossRef]
66. Ultsch, A. Emergence in Self-Organizing Feature Maps. In Proceedings of the International Workshop on Self-Organizing

Maps (WSOM ’07), Bielefield, Germany, 3–6 September 2007; Ritter, H., Haschke, R., Eds.; Neuroinformatics Group, Bielefeld
University: Bielefeld, Germany, 2007.

67. Kringel, D.; Ultsch, A.; Zimmermann, M.; Jansen, J.P.; Ilias, W.; Freynhagen, R.; Griessinger, N.; Kopf, A.; Stein, C.;
Doehring, A.; et al. Emergent biomarker derived from next-generation sequencing to identify pain patients requiring
uncommonly high opioid doses. Pharmacogenomics J. 2017, 17, 419–426. [CrossRef] [PubMed]

68. Stephan, A. Emergenz: Von der Unvorhersagbarkeit zur Selbstorganisation. 4. Auflage; Brill | Mentis: Leiden, The Netherlands, 2020.
[CrossRef]

69. Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining Explanations: An Overview of Interpretability
of Machine Learnin. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA), Turin, Italy, 1–4 October 2018.

70. Lee, E.; Choi, J.S.; Kim, M.; Suk, H.I. Toward an interpretable Alzheimer’s disease diagnostic model with regional abnormality
representation via deep learning. Neuroimage 2019, 202, 116113. [CrossRef]

71. Papadimitroulas, P.; Brocki, L.; Christopher Chung, N.; Marchadour, W.; Vermet, F.; Gaubert, L.; Eleftheriadis, V.; Plachouris, D.;
Visvikis, D.; Kagadis, G.C.; et al. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability
and data harmonization. Phys. Med. 2021, 83, 108–121. [CrossRef]

72. Ultsch, A.; Thrun, M.C.; Hansen-Goos, O.; Lötsch, J. Identification of Molecular Fingerprints in Human Heat Pain Thresholds by
Use of an Interactive Mixture Model R Toolbox (AdaptGauss). Int. J. Mol. Sci. 2015, 16, 25897–25911. [CrossRef] [PubMed]

73. Malkusch, S.; Hahnefeld, L.; Gurke, R.; Lötsch, J. Visually guided preprocessing of bioanalytical laboratory data using an
interactive R notebook (pguIMP). CPT Pharmacometrics Syst. Pharmacol. 2021, 10, 1371–1381. [CrossRef] [PubMed]

74. Lötsch, J.; Sipilä, R.; Tasmuth, T.; Kringel, D.; Estlander, A.M.; Meretoja, T.; Kalso, E.; Ultsch, A. Machine-learning-derived
classifier predicts absence of persistent pain after breast cancer surgery with high accuracy. Breast Cancer Res Treat. 2018,
171, 399–411. [CrossRef] [PubMed]

75. Li, Y.; Fujiwara, T.; Choi, Y.K.; Kim, K.K.; Ma, K.L. A visual analytics system for multi-model comparison on clinical data
predictions. Vis. Inform. 2020, 4, 122–131. [CrossRef]

76. Liao, Q.V.; Gruen, D.; Miller, S. Questioning the AI: Informing Design Practices for Explainable AI User Experiences. In Proceed-
ings of the 2020 CHI Conference on Human Factors in Computing Systems, New York, NY, USA, 25–30 April 2020.

77. Lötsch, J.; Sipilä, R.; Dimova, V.; Kalso, E. Machine-learned selection of psychological questionnaire items relevant to the
development of persistent pain after breast cancer surgery. Br. J. Anaesth. 2018, 121, 1123–1132. [CrossRef]

78. Benioff, M.R.; Lazowska, E.D.; Bajcsy, R.; Beese, J.C.; Celis, P.; Evans, P.T.; Yang, G. Report to the President: Computational Science:
Ensuring America’s Competitiveness; President’s Information Technology Advisory Committee: Washington, DC, USA, 2005.

http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1080/01621459.1988.10478652
http://dx.doi.org/10.1002/widm.8
http://dx.doi.org/10.1111/insr.12016
http://dx.doi.org/10.1016/j.jmp.2008.04.003
http://www.ncbi.nlm.nih.gov/pubmed/22577307
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.1515/icom-2020-0024
http://dx.doi.org/10.1007/978-3-030-28954-6_13
http://dx.doi.org/10.3390/e23010018
http://dx.doi.org/10.1007/s12525-020-00441-4
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1038/tpj.2016.28
http://www.ncbi.nlm.nih.gov/pubmed/27139154
http://dx.doi.org/10.30965/9783969750216
http://dx.doi.org/10.1016/j.neuroimage.2019.116113
http://dx.doi.org/10.1016/j.ejmp.2021.03.009
http://dx.doi.org/10.3390/ijms161025897
http://www.ncbi.nlm.nih.gov/pubmed/26516852
http://dx.doi.org/10.1002/psp4.12704
http://www.ncbi.nlm.nih.gov/pubmed/34598320
http://dx.doi.org/10.1007/s10549-018-4841-8
http://www.ncbi.nlm.nih.gov/pubmed/29876695
http://dx.doi.org/10.1016/j.visinf.2020.04.005
http://dx.doi.org/10.1016/j.bja.2018.06.007


Biomedinformatics 2022, 2 17

79. Datta, A.; Matlock, M.K.; Le Dang, N.; Moulin, T.; Woeltje, K.F.; Yanik, E.L.; Joshua Swamidass, S. ‘Black Box’ to ‘Conversational’
Machine Learning: Ondansetron Reduces Risk of Hospital-Acquired Venous Thromboembolism. IEEE J. Biomed. Health Inf. 2021,
25, 2204–2214. [CrossRef]

80. Bhattacharya, J.; Vogt, W.B. Do Instrumental Variables Belong in Propensity Scores? Int. J. Stat. Econ. 2012, 9, A12. [CrossRef]
81. VanderWeele, T.J. Principles of confounder selection. Eur. J. Epidemiol. 2019, 34, 211–219. [CrossRef]
82. Datta, A.; Flynn, N.R.; Barnette, D.A.; Woeltje, K.F.; Miller, G.P.; Swamidass, S.J. Machine learning liver-injuring drug interactions

with non-steroidal anti-inflammatory drugs (NSAIDs) from a retrospective electronic health record (EHR) cohort. PLoS Comput.
Biol. 2021, 17, e1009053. [CrossRef] [PubMed]

83. Holzinger, A. Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Inf. 2016,
3, 119–131. [CrossRef] [PubMed]

84. Lötsch, J.; Daiker, H.; Hähner, A.; Ultsch, A.; Hummel, T. Drug-target based cross-sectional analysis of olfactory drug effects. Eur.
J. Clin. Pharmacol. 2015, 71, 461–471. [CrossRef] [PubMed]

85. Kovalchik, S. RISmed: Download Content from NCBI Databases; R Package Version 2.3.0; 2021. Available online: https://cran.r-
project.org/package=RISmed (accessed on 15 December 2021).

86. Fletcher, K.H. Matter with a mind; a neurological research robot. Research 1951, 4, 305–307. [PubMed]
87. Lanzola, G.; Stefanelli, M.; Barosi, G.; Magnani, L. NEOANEMIA: A knowledge-based system emulating diagnostic reasoning.

Comput. Biomed. Res. 1990, 23, 560–582. [CrossRef]
88. Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.;

Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15,
20170387. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JBHI.2020.3033405
http://dx.doi.org/10.3386/t0343
http://dx.doi.org/10.1007/s10654-019-00494-6
http://dx.doi.org/10.1371/journal.pcbi.1009053
http://www.ncbi.nlm.nih.gov/pubmed/34228716
http://dx.doi.org/10.1007/s40708-016-0042-6
http://www.ncbi.nlm.nih.gov/pubmed/27747607
http://dx.doi.org/10.1007/s00228-015-1814-2
http://www.ncbi.nlm.nih.gov/pubmed/25666029
https://cran.r-project.org/package=RISmed
https://cran.r-project.org/package=RISmed
http://www.ncbi.nlm.nih.gov/pubmed/14854275
http://dx.doi.org/10.1016/0010-4809(90)90041-A
http://dx.doi.org/10.1098/rsif.2017.0387
http://www.ncbi.nlm.nih.gov/pubmed/29618526

	Introduction
	An Example Case of XAI versus Standard AI
	Historical Origins of the Need for Explainable AI
	Knowledge Representation in Expert Systems
	Knowledge-Based Systems
	Skill-Based Systems

	Transition from AI to XAI in Biomedical Data Science
	Methods to Identify the Decision Processes of Subsymbolic ``Black-Box'' Algorithms
	XAI Designed for Non-Developers

	Main Biomedical Goals of XAI
	Trustworthiness
	Further and Related Goals of AI in Biomedicine
	Transparency
	Comprehensibility
	Informativeness
	Accessibility
	Transferability


	Concerted AI Interpretation between Informatics and Biomedical Domain Experts
	XAI in Biomedical Publishing
	Discussion
	Concluding Remarks
	References

