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Abstract: Typhoid fever caused by the bacteria Salmonella typhi gained resistance through multidrug-
resistant S. typhi strains. One of the reasons behind β-lactam antibiotic resistance is -lactamase.
L, D-Transpeptidases is responsible for typhoid fever as it is involved in toxin release that results in
typhoid fever in humans. A molecular modeling study of these targeted proteins was carried out by
various methods, such as homology modeling, active site prediction, prediction of disease-causing
regions, and by analyzing the potential inhibitory activities of curcumin analogs by targeting these pro-
teins to overcome the antibiotic resistance. The five potent drug candidate compounds were identified
to be natural ligands that can inhibit those enzymes compared to controls in our research. The binding
affinity of both the Go-Y032 and NSC-43319 were found against β-lactamase was −7.8 Kcal/mol in
AutoDock, whereas, in SwissDock, the binding energy was −8.15 and −8.04 Kcal/mol, respectively.
On the other hand, the Cyclovalone and NSC-43319 had an equal energy of −7.60 Kcal/mol in
AutoDock, whereas −7.90 and −8.01 Kcal/mol in SwissDock against L, D-Transpeptidases. After the
identification of proteins, the determination of primary and secondary structures, as well as the gene
producing area and homology modeling, was accomplished. The screened drug candidates were
further evaluated in ADMET, and pharmacological properties along with positive drug-likeness prop-
erties were observed for these ligand molecules. However, further in vitro and in vivo experiments
are required to validate these in silico data to develop novel therapeutics against antibiotic resistance.

Keywords: typhoid fever; Salmonella typhi; β-lactam antibiotics; multidrug-resistant; curcumin
analogues

1. Introduction

Typhoid is a usual illness in economically handicapped countries where public health
settings are very poor. A globally estimated 12–27 million people get stricken with typhoid
fever each year, whereas the overall yearly estimated incidence lies between 292 and
395 cases per 100,000 people in Bangladesh. This infection-causing agent is an anaerobic
Gram-negative rod, namely Salmonella enterica serotype Typhi (S. typhi), a highly conserved
serovar subspecies of S. enterica, which is transmitted by the fecal-oral route and can infect
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the intestinal tract and blood [1–5]. S. typhi can provoke many health issues, such as
fever, abdominal discomfort, and several gastrointestinal complications, such as nausea,
vomiting, constipation, diarrhea, etc. The first approved antibiotics for the prevention of
typhoid fever were chloramphenicol, ampicillin and cotrimoxazole [6], which have already
started showing resistance and evolved multidrug resistance (MDR) S. Typhi strains over
the last two decades. Due to the ever-increasing pattern of MDR in many parts of the world,
combating typhoid is becoming more difficult, creating a major public health concern
around the world [7].

In the early 1970s, the first MDR S. typhi strains displaying concurrent resistance to the
first-line antibiotics, such as ampicillin, chloramphenicol and co-trimoxazole, were demon-
strated, followed by the emergence of ciprofloxacin-resistant strains in the 1990s [8,9]. Cur-
rently, the latter is observed in more than 90% of clinical isolates from endemic areas [10–12].
A 15-year (1993–2013) genome-wide study on S. typhi conducted in Bangladesh using 536
medical isolates reported that these bacterial strains show resistance to ampicillin (amp),
co-trimoxazole (sxt), chloramphenicol (chl), ciprofloxacin (cip), and ceftriaxone (cro) where
37.69% strains displayed co-occurring resistance towards amp, sxt, chl, and cip followed by
only cip-R (R = resistant) strains to comprise 31.53% of the total. Some of the resistance genes
detected in the isolates of that study were blaTEM-1B in 50.28% of amp-R, qnrS1 in 10.2%
of cip-R, and tet (A, B) in 9.46% and 8.53% tet-R (tet = tetracycline) strains, respectively [13].
The presence of extended-spectrum β-lactamase (ESBL) resistance Salmonella prevalence
in poultry sourced recently from super shops of five divisional megacities of Bangladesh
implies its possible human transmission through contaminated foods of poultry origin
and the potential health risk of the people [14,15]. Additionally, as recorded in various
parts of the world, S. typhi is now increasingly developing resistance to ciprofloxacin and
fluoroquinolone and has emerged as a new threat to the treatment of typhoid fever [16–24].

S. typhi acquires a ciprofloxacin-resistance (cip-R) property through the point muta-
tions in quinolone resistance-determining regions (QRDR) with several positions corre-
sponding to the genes, topoisomerase IV (parC and parE) and DNA gyrase (gyrA and gyrB)
of S. typhi [25–28], whereas the acquisition of the blaTEM gene is responsible for the resis-
tance property of S. typhi against β-lactam antibiotics through encoding the β-lactamase
enzyme that hydrolyzes the peptide bond of the four-membered β-lactam ring and thus
prevents β-lactam antibiotics from exerting their effect [29]. Moreover, derivatives of TEM,
along with those of SHV- and CTX-M-type β-lactamase genes, comprise the family called
extended-spectrum β-lactamases (ESBLs), which leads to the development of multidrug-
resistant S. typhi, limiting the current treatment practices and thus posing an alarming
situation in public health [30].

Typhoid toxin is a prominent feature of S. typhi that contributes potential virulence to
the bacterial infection causing typhoid fever by exclusively targeting the immune system
and central nervous system of the host. The presence of one type of sialic acid is necessary
for its binding to the host, which is abundantly available in humans. Thus, S. typhi
cannot cause typhoid in hosts other than humans [31]. The export of the toxin to the
outer membrane of the bacteria begins with the secretion of the individual subunits to the
periplasm via Sec machinery and their assembly into the holotoxin complex. This holotoxin
is then translocated across the PG (peptidoglycan) layer from the cis side to the trans side by
the action of a special type of muramidase, TtsA, which is located at the bacterial poles and
requires the PG editing by the L, D-Transpeptidases, namely YcbB, for its activity. After
being translocated to the trans side of the PG layer, it becomes compartmentalized in an
S. typhi-containing vacuole, from where its eventual release takes place upon exposure to
the antimicrobial peptide or bile salts, and in this way, the transmission continues from one
infected cell to the other [32].

The function of L, D-Transpeptidases, YcbB, which is exclusively present in the bac-
terium S. typhi, is well-understood in the edition of PG. Glycan strands are the building
blocks of the bacterial PG that are composed of N-acetylglucosamine (GlcNac) and N-
acetylmuramic acid (MurNac) [33–35]. These building blocks make the PG by being
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connected by small peptides. Here, the enzyme L, D-Transpeptidases plays its role in
introducing cross-links within L- and D-amino acids that comprise the peptides (Figure 1).
This PG remodeling by L, D-Transpeptidases is necessary for TtsA to position the typhoid
toxin for its proper release [32]. Here, L, D-Transpeptidases can be a major target for
in silico studies as it plays a vital role in the secretion of typhoid toxin, and there is no
effective drug available to inhibit it without exhibiting any side effects. For example,
drug carbapenem and copper can inactivate L, D-Transpeptidases, yet they are associated
with diarrhea, nausea, vomiting, skin rash, low blood pressure, anemia, heart problems,
etc. [36]. Moreover, several antibiotics are working alone or coupled with β-lactamase
inhibitors (Avibactam, Clavulanic acid (clavulanate), Relebactam, Sulbactum, Tozobactum,
etc.), which have many adverse effects such as gastrointestinal complications, impairment
of nervous system, hematological effects, and dermatological abnormalities, including
Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug-induced eosinophilia,
etc. [37–43].

Figure 1. A toxin produced from cell-secreted into periplasm through SEC machinery, then these
toxin subunits assemble into holotoxin-translocated into trans side of bacteria mediated by TtsA.
Peptidoglycan remodeling occurs through L, D-Transpeptidases, YcbB, enriched in the bacterial poles.

Curcumin, the main bioactive component of turmeric (Curcuma longa L.), has been
shown to be a powerful antioxidant, anti-inflammatory, antibacterial, antifungal, and antivi-
ral agent in many studies [44]. Curcumin has been shown to be antibacterial against Staphy-
lococcus aureus (S. aureus). Curcumin has significantly more effective antibacterial properties
when combined with other antibacterial drugs, as revealed by in vitro experiments [45].
Curcumin inhibits bacterial growth due to its structural properties and the production
of anti-oxidative chemicals. Through the bacterial quorum sensing regulatory system,
curcumin can decrease bacterial virulence factors, reduce bacterial biofilm formation, and
restrict bacterial adherence to host receptors [46]. Curcumin’s potential antibacterial action
makes it a viable option for enhancing the inhibitory impact of current antimicrobial drugs
through synergism [47]. It decreased Salmonella enterica serovar Typhimurium’s motility by
reducing the length of the flagellar filament (from 8 m to 5 m) and lowering its density (4
or 5 flagella/bacterium instead of 8 or 9 flagella/bacterium). Curcumin therapy reduced
the proportion of flagellated bacteria from 84 percent to 59 percent [48].

As curcumin has antibacterial properties, including antioxidant and anti-inflammatory
properties, we selected 70 curcumin analogues as ligands in this study. The schematic
representation of the methodology applied in the present study is displayed in Figure 2.
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Figure 2. Methodology/Overall study.

2. Materials and Methods
2.1. Drug-Likeness Features Interpretation

About 70 curcumin molecules were selected as ligands from literature to target
the proteins β-lactamase and L, D-Transpeptidases of S. typhi. Each of the molecules
was assessed for Lipinski’s rule of five or not [49,50]. Molinspiration Cheminformatics
server (https://www.molinspi-ration.com/cgi-bin/properties accessed on 8 October 2020)
was applied to experiment various drug-like parameters of the ligand molecules [51,52]
(Table S2). Molinspiration allows for the prediction of significant molecular parameters
(logP, polar surface area, number of hydrogen bond donors and acceptors, and so on), as
well as the prediction of bioactivity scores for the most relevant therapeutic targets (GPCR
ligands, kinase inhibitors, ion channel modulators, nuclear receptors). Compounds that
did not comply with the rule were excluded from further study.

2.1.1. Protein Preparation for Docking
Sequence Retrieval

The complete protein sequences of β-lactamase and L, D-Transpeptidases were re-
trieved from NCBI (https://www.ncbi.nlm.nih.gov/ accessed on 12 October 2020) in the
standard FASTA format.

Physiochemical Property Identification

The physical and chemical parameters of the proteins, including molecular weight
(MW), theoretical pI, amino acid composition, estimated half-life, instability index, aliphatic
index, etc., were computed using the ProtParam tool of ExPasy server as it evaluates

https://www.molinspi-ration.com/cgi-bin/properties
https://www.ncbi.nlm.nih.gov/
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physicochemical data (molecular weight, theoretical pI, amino acid composition, atomic
composition, extinction coefficient, estimated half-life, instability index, aliphatic index,
and grand average of hydropathicity (GRAVY)) from a protein sequence. (http://web.
expasy.org/program/ accessed on 12 October 2020) [53].

Secondary and Tertiary Structure Prediction

The online tool SOPMA [54] (https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html
accessed on 15 October 2020) was applied for the secondary structure prediction of the
proteins. Homology Modeling was performed in Swiss-Model, as its workspace is a Web-
based modeling expert system that is integrated. We search a library of experimental protein
architectures for acceptable templates for a specified target protein. A three-dimensional
model of the target protein is constructed based on a sequence alignment between the target
protein and the template structure [55–59] (https://swissmodel.expasy.org/, accessed on
18 October 2020) to construct the tertiary structures of the target proteins using the three-
dimensional structure of a related protein as a template. Homology modeling was also
done by Phyre2. It is a web-based collection of tools for predicting and analyzing protein
structure, function, and mutations. Phyre2’s goal is to provide biologists with a simple and
intuitive interface to cutting-edge protein bioinformatics tools. Phyre2, which builds 3D
models, predicts ligand binding sites and analyzes the influence of amino acid changes
(e.g., no synonymous SNPs (nsSNPs)) for a user’s protein sequence using advanced distant
homology detection algorithms [60].

Disordered Regions Prediction

Disordered regions present in protein molecules remain unstable in the native state.
To find out the disordered regions in proteins for which they lack a fixed tertiary structure,
the Protein Disorder prediction System (PrDOS) server [61] (http://prdos.hgc.jp/cgi-bin/
top.cgi, accessed on 18 October 2020) was exploited. This server predicts the disordered
regions based on both local amino acid sequence and the template or homologous proteins
through the SVM algorithm and PSI-BLAST, respectively. The prediction method consists
of two predictors: one based on local amino acid sequence information and the other on
template proteins. For each residue, the server aggregates the findings of the two predictors
and delivers a two-state prediction (order/disorder) and a disorder probability.

Validation of Tertiary Protein Model

Model validation was carried out in PROCHECK [62,63] (http://www.ebi.ac.uk/
thornton-srv/software/PROCHECK/, accessed on 20 December 2021), which assesses the
stereo-chemical quality of a protein structure, i.e., how normal or unusual the pattern of
the protein residues is, compared with a fined-tuned, high-resolution structure of a protein.
PROCHECK evaluates the stereochemical quality of a protein structure by generating
a series of PostScript graphs that analyze its overall and residue-by-residue geometry.
It contains PROCHECK-NMR, which is used to check the quality of structures solved
by NMR.

Active Site Prediction

For the prediction of active sites in the proteins where ligands will likely bind, two
servers CASTP (Computed Atlas of Surface Topography of proteins) [64] (http://sts.bioe.
uic.edu/castp/ accessed on 20 October 2020) and COACH [65,66] (http://zhanglab.ccmb.
med.umich.edu/COACH/ accessed on 22 October 2020) were utilized. CASTP implements
the theoretical and algorithmic results of computational geometry to predict the ligand-
binding sites. It has several advantages: (1) pockets and cavities are recognized analytically,
(2) the boundary between the bulk solvent and the pocket is accurately specified, and (3)
all derived parameters are rotationally invariant, do not need discretization, and do not
make use of dot surface or grid points. On the contrary, the COACH server applies two
comparative methods, TM-SITE and S-SITE, to identify active sites in the protein.

http://web.expasy.org/program/
http://web.expasy.org/program/
https://npsa-prabi.ibcp.fr/NPSA/npsa_sopma.html
https://swissmodel.expasy.org/
http://prdos.hgc.jp/cgi-bin/top.cgi
http://prdos.hgc.jp/cgi-bin/top.cgi
http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
http://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
http://sts.bioe.uic.edu/castp/
http://sts.bioe.uic.edu/castp/
http://zhanglab.ccmb.med.umich.edu/COACH/
http://zhanglab.ccmb.med.umich.edu/COACH/
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2.1.2. Ligand and Protein Preparation for Docking

The ligand molecules were minimized in the Avogadro software using the mmff94
force field. Then, the protein structure was minimized in YASARA software using the
AMBER14 force field. The docking program was carried out in the AutoDock Vina program.
The ligands that will give the best results will be docked again using the SwissDock server.
We used two servers to check the validity and to build a strong hypothesis. AutoDock
Vina, a novel molecular docking and virtual screening application, has been introduced.
Vina’s local optimization process employs a powerful gradient optimization algorithm. The
gradient computation essentially provides the optimization algorithm with a “feeling of
direction” from a single evaluation. Vina may speed up processing by making use of many
CPUs or CPU cores by employing multithreading. SwissDock is a webserver dedicated to
doing protein-ligand docking simulations in an easy and beautiful manner. SwissDock is
protein-ligand docking software with a simple and integrated interface that is based on
EADock DSS.

AutoDock Vina PDB file of protein was converted into a pdbqt file using the Auto
Dock Vina tool. Then, every selected ligand file was converted to a PDB file using pymol
because the AutoDock tool can only recognize the PDB format. Then, the PDB file of the
ligand was converted into a pdbqt file, which is the criterion for the AutoDock run. After
docking, we visualized the docked file using pymol.

SwissDock: At first, we set up the protein PDB file manipulating PDB code, which was
retrieved from Uniprot or RCSB PDB. We specified chain A in β-lactamase. Then, ligands
were selected from the ZINC database, but those that were not present in this database
were uploaded in Mol2 format. The server provides very fast, fast, and accurate results.

2.2. ADME/T Prediction

ADME/T describes the Absorption, Distribution, Metabolism, Excretion and Toxicity
of a drug-like substance. These properties account for the success of a drug in clinical trials.
Therefore, in silico ADME/T profile examination of the candidate drugs is a prerequisite
for the fruitful measure of drug designing expenditure [67,68]. The best 8 ligands (based on
the docking score) were utilized to speculate their drug-like potential by observing phar-
macokinetic and pharmacodynamics features. ADME/T profile of all the chosen ligands
were calculated utilizing admetSAR 2.0 (http://lmmd.ecust.edu.cn/admetsar2/ accessed
on 23 October 2020) and pkCSM (http://biosig.unimelb.edu.au/pkcsm/ accessed on 23
October 2020) server [69,70]. admetSAR presents an easy-to-use interface for searching
for ADME/T (Absorption, Distribution, Metabolism, Excretion, and Toxicity) attributes
profiling by name, CASRN, and similarity search. With QSAR models, admetSAR can
predict around 50 ADMET endpoints. The pkCSM signatures were effectively employed to
create predictive regression and classification models across five different pharmacokinetic
property classes.

Validation of Tertiary Protein Model

ERRAT software was used to validate the protein model. ERRAT is a software that
verifies crystallographically determined protein structures.

2.3. Pharmacological and Biological Activity Prediction

The elected ligands were employed to determine their pharmacological and biological
activities accurately by using Prediction of Activity Spectra of Substances (PASS) Online
(http://www.pharmaexpert.ru/passonline/ accessed on 26 October 2020) and Molinspira-
tion Cheminformatics server [71]. These methods are used in conjunction with recognized
compounds present in the database, depending on the structure-activity relationship (SAR).
PASS Online predicts about 4000 different types of biological activity, such as pharmacolog-
ical effects, mechanisms of action, toxic and unfavorable effects, interactions with metabolic
enzymes and transporters, gene expression influence, and so on. Molinspiration Chemin-
formatics is also useful software to predict pharmacological and biological activities.

http://lmmd.ecust.edu.cn/admetsar2/
http://biosig.unimelb.edu.au/pkcsm/
http://www.pharmaexpert.ru/passonline/
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2.4. Pred. P450 Site of Metabolism Iction

In silico methods can contribute significantly to the prediction of drug metabolism
sites focusing on the experimental view of the drug designing process. By conducting
bioassay, these sites impart the knowledge of the molecules’ metabolic susceptibility and
their fate inside the body [72]. RS-WebPredictor (http://reccr.chem.rpi.edu/Software/
RS-WebPredictor/ accessed on 1 November 2020), an online server, was used to predict
the best sites of drug metabolism mediated by CYP2C9, CYP2D6, and CYP3A4, three
promiscuous isoforms of Cytochrome P450 (CYP) family. Predictions may be made for the
promiscuous CYP isozymes 2C9, 2D6, and 3A4, as well as CYPs 1A2, 2A6, 2B6, 2C8, 2C19,
and 2E1. The RS-WebPredictor service is the first publicly available server that predicts the
regioselectivity of the last six isozymes.

3. Results
3.1. Drug-Likeness Features Interpretation

Among 70 types of ligands, all the compounds except DM1 were compatible with the
drug-likeness features. Most of the selected compounds did not display any violations
to Lipinski’s rules, which indicated the pharmacokinetic conformity of these compounds.
Hence, all these compounds were taken into account for the next phases of the study
(Tables S1 and S2).

3.2. Protein Preparation for Docking
3.2.1. Sequence Salvation

Two protein sequences of β-lactamase (EC 3.5.2.6) (Uniprot ID P62593; PDB ID 1ZG4)
and L, D-Transpeptidases (Uniprot ID P22525; PDB ID 6NTW) were retrieved from NCBI
(https://www.ncbi.nlm.nih.gov/ accessed on 12 October 2020) in standard FASTA format.

3.2.2. Physiochemical Property Identification

Using the ProtParam tool of the ExPasy server, the physical and chemical parameters
of the proteins were analyzed. β-lactamases is 286 amino acids long, weighted at 31515.20
grams, and has an instability index of 40.74. L, D-Transpeptidases is 615 amino acids long,
67812.49 (gm) weighted, with an instability index value of 43.79. The Instability Index is a
metric for determining whether a protein will remain stable in a test tube. Table 1 shows
the physicochemical properties of these two proteins.

Table 1. The physiochemical properties of β-lactamase and L, D-Transpeptidases.

Parameter
Values

β-lactamases L, D-Transpeptidases

Number of Amino Acid 286 615
Molecular Weight (gm) 31,515.20 67,812.49

Theoretical PI 5.69 8.63
Total number of negatively

residues (Asp + Glu) 36 55

Total number of negatively
residues (Arg + Lys) 30 59

Instability index 40.74 43.79
Aliphatic index 93.53 86.98

GRAVY −0.109 −0.274

3.2.3. Secondary and Tertiary Structure Prediction

The SOPMA tool was used to predict the secondary structures of these two proteins.
The values of alpha helix were 49.30% and 39.35% for β-lactamase and L, D-Transpeptidases,
respectfully. The value of the extended strand was also greater for β-lactamase (12.94%)
compared with the L, D-Transpeptidases (11.54%). L, D-Transpeptidases (43.58%) exceeds

http://reccr.chem.rpi.edu/Software/RS-WebPredictor/
http://reccr.chem.rpi.edu/Software/RS-WebPredictor/
https://www.ncbi.nlm.nih.gov/
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the β-lactamase (29.37%) in the case of a random coil. The values of 310 helix, pi helix, beta
bridge, bend region, and ambiguous status were 0.00% for both proteins (Table 2).

Table 2. The secondary structures of the proteins: β-lactamase and L, D-Transpeptidases.

Parameters
Values

β-lactamases L, D-Transpeptidases

Alpha helix 49.30% 39.35%
310 helix 0.00% 0.00%
Pi helix 0.00% 0.00%

Beta bridge 0.00% 0.00%
Extended strand 12.94% 11.54%

Beta turn 8.39% 5.53%
Bend region 0.00% 0.00%
Random coil 29.37% 43.58%

Ambiguous status 0.00% 0.00%
Other status 0.00% 0.00%

The three-dimensional structures of β-lactamase and L, D-Transpeptidases were pre-
dicted in Swiss-Model web tools. The biounit oligo state of both proteins was a monomer.
The template displayed 0.61 sequence similarities, coverage score of 1.0, and 24–286 range
for β-lactamase, whereas L, D-transpeptidases showed 0.62 sequence similarity, coverage
score of 0.95, and 37–615 range (Table 3). In Swiss-Model, two models for β-lactamase and
three models for L, D-Transpeptidases were predicted based on the top 31 and 50 templates,
respectively. On the contrary, the top 20 models were predicted by Phyre 2 for both proteins
each. The best fit built by the two servers for β-lactamase had a confidence score of 100
when modeling 263 amino acid residues at positions 24–286, and for L, D-transpeptidases,
it modelled 505 residues at positions 37–615 with a confidence score of 100.

Table 3. The homology modeling parameters for β-lactamase and L, D-Transpeptidases.

Parameters β-lactamase L, D-Transpeptidases

Biounit Oligo State Monomer Monomer
QSQE 0.00 0.00

Method X-ray, 1.55 A◦ X-ray, 2.76 A◦

Sequence Similarity 0.61 0.62
Coverage 1.00 0.95

Range 24–286 37–615
Residues 263 505

3.2.4. Validation of Tertiary Protein Model

In ERRAT, the overall quality factor of β-lactamase and L, D-Transpeptidases was is
97.2549 and 84.1141, respectively. The two proteins also passed the verified 3D in their
respective prediction results. The β-lactamase (EC 3.5.2.6) has an 11% disease-causing
region, and its active sites are acyl ester intermediate (position 70) and proton acceptor
(position 168). The Ramachandran plot analysis showed that both proteins delineated more
than 90% of the amino acid residues in the most favored regions. The number of non-
glycine and non-proline residues is 228 among 263 residues. Twenty-one glycine residues
and 12 proline residues are present (Ramachandran plot), and 93.4% of residues are in the
favored region. The L, D-Transpeptidases is 615 amino acids long, and its molecular weight
is 67812.49. The active site of this protein stays in the 528 position. Here, 91.8% residues are
in the favored region with 427 residues excluding glycine and proline, 8 terminal residues
other than Gly and Pro, 31 glycine (represented as a triangle), and 3 proline residues (Table 4
and Figures 3 and 4).
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Table 4. The quality of the hypothetical model protein.

Parameters Factors β-Lactamase L, D-Transpeptidases

ERRAT Overall Quality Factor 97.2549 84.1141

Verified 3D Pass 98.48% of the residues have
averaged 3D-1D score ≥ 0.2

92.28% of the residues have
averaged 3D-1D score ≥ 0.2

Ramachandran plot

Residues in most favored region 93.4% 91.8%
Number of end-residues

(excl. Gly and Pro) 2 8

Number of Glycine residues 21 31
Number of Proline residues 12 39

3.2.5. Active Site Prediction

Using CASTP (Computed Atlas of Surface Topography of proteins) and COACH
servers, the active sites of β-lactamase and L, D-Transpeptidases were predicted
(Figures 3F and 4F).

3.2.6. Molecular Docking

The best five ligands were selected based on docking experiments among 70 ligands.
Go-Y032, NSC-43319, Cyclovalone, Salsalate, and Cyclocurcumin showed the best docking
results against the β-lactamase (1ZG4) enzyme (Tables 5 and 6 and Figure 5), and NSC-
43319, Cyclovalone, Cyclocurcumin, Difluorinated curcumin, and Go-Y032 showed the
best docking results against the L, D-Transpeptidases (6NTW) enzyme (Table 5, Table 6
and Figure 5). Two controls were selected for each of the enzymes. Clavulanic acid and
Tazobactum were docked against β-lactamase as they are existing drugs. These existing
drugs showed low affinity to other ligands. For L, D-Transpeptidases, Carbapenem and
Cephalosporin were selected as controls. These controls were also showed lower affinity.

Table 5. Docking results of β-lactamase.

Serial No Ligand PubChem CID Affinity
(kcal/mol)

1 (8)-Shogaol CID_6442560 −5.5
2 Desmethoxycurcumin CID_5469424 −6.5
3 Tetrahydro curcumin CID_56965746 −6.1
4 6-Dehydrogingerdione CID_22321203 −6.6
5 Difluorinated curcumin CID_54597187 −7.3
6 EAC CID_8868 −4.7
8 Chalcone CID_637760 −6.9
9 Cyclovalone CID_1550234 −7.6

10 Curcumin PE CID_5281767 −7.0
11 Salsalate CID_5161 −7.7
12 Go-Y016 CID_1550385 −6.2
13 Petasiphenol CID_6438779 −7.7
14 Benzyl ferulate CID_7766335 −6.3
15 Calebin A CID_637429 −6.6
16 ACMC-1AEIO CID_2889 −6.9
17 MFCD00012210 CID_14121 −5.7
18 Khi-201 CID_99844 −6.7
19 Go-Y032 CID_1714173 −7.8
20 3,3′-dimethoxystilbene-4,4′-diol CID_5280698 −6.4
21 AO-002 CID_5318278 −5.6
22 phenylethyl-trans-isoferulate CID_5468215 −6.6
23 NSC-43319 CID_5470829 −7.8
24 3,4-dimethoxy-4′-hydroxychalcone CID_5930244 −6.1
25 PHSK CID_6123890 −6.6
26 Go-Y022 CID_6474893 −6.5
27 BRD-89483 CID_6477637 −7.2
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Table 5. Cont.

Serial No Ligand PubChem CID Affinity
(kcal/mol)

28 3,3′-dimethoxy-cis-stilbene-4,4′-diol CID_9548762 −7.6
29 CHEMBL482607 CID_10904292 −6.4
30 ZINC100190381 CID_11895692 −6.7
31 SCHEMBL18672270 CID_16087306 −5.8
32 EI-135 CID_16760039 −6.2
33 3,4′-Dimethoxystilbene-4-ol CID_23652110 −6.1
34 BDBM149243 CID_44538441 −6.8
35 Go-Y078 CID_46231908 −6.3
36 CHEMBL3940632 CID_68556085 −6.6
37 CHEMBL494826 CID_71717791 −6.5
38 SCHEMBL1374497 CID_86590085 −6.6
39 CHEMBL3290186 CID_90644814 −6.9
40 BDBM145855 CID_91809442 −6.6
41 BDBM145853 CID_91809620 −6.6

42 1,5-Bis(4-hydroxy-3-methoxyphenyl)-
1,4-pentadien-3-one CID_131752986 −6.0

43 Coniferyl ferulate CID_6441913 −6.4
44 Curcumin sulfate CID_66645351 −7.1
45 Dihydrocurcumin CID_10429233 −6.6
46 Dimethoxycurcumin CID_9952605 −6.3
47 Dimethylcurcumin CID_6477182 −6.3
48 Ethyl curcumin CID_11474949 −6.6
49 Griffithane D CID_56597215 −6.4
50 Monodemethylcurcumin CID_5469426 −6.7
51 Phenylethyl 3-methylcaffeate CID_5284444 −6.3
52 p-Hydroxyphenethyl trans-ferulate CID_637308 −6.8
53 Piperkadsin A CID_11717379 −6.2
54 Shogaol CID_5281794 −5.2
55 Tetrahydrocurcumin CID_124072 −6.6
56 Tetrahydrodemethoxydiferuloylmethane CID_9906039 −6.1
57 Tetramethylcurcumin CID_11487078 −6.9
58 Wallichinine CID_5315280 −6.3
59 6-paradol CID_94378 −5.7
60 Bisdemethoxycurcumin CID_5315472 −6.7
61 Curcumin CID_969516 −6.6
62 Cyclocurcumin CID_69879809 −7.9
63 Dehydrozingerone CID_5354238 −5.6
64 Dibenzoylmethane CID_8433 −7.0
65 6-Gingerol CID_442793 −5.1
66 Isoeugenol CID_853433 −5.6
67 Yakuchinone A CID_133145 −6.3
68 Yakuchinone B CID_6440365 −6.6
69 Clavulanic Acid CID_5280980 −6.0
70 Tazobactum CID_23663400 −7.5

Bold text indicates the best docking scores.
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Table 6. Docking Results of L, D-Transpeptidases.

Serial No Ligand PubChem CID Affinity
(kcal/mol)

1 (8)-Shogaol CID_6442560 −5.3
2 Desmethoxycurcumin CID_5469424 −6.8
3 Tetrahydro curcumin CID_56965746 −5.7
4 6-Dehydrogingerdione CID_22321203 −5.7
5 Difluorinated curcumin CID_54597187 −8.2
6 EAC CID_8868 −4.2
8 Chalcone CID_637760 −6.2
9 Cyclovalone CID_1550234 −7.6

10 Curcumin PE CID_5281767 −7.2
11 Salsalate CID_5161 −6.7
12 Go-Y016 CID_1550385 −5.8
13 Petasiphenol CID_6438779 −6.5
14 Benzyl ferulate CID_7766335 −6.8
15 Calebin A CID_637429 −6.1
16 ACMC-1AEIO CID_2889 −6.7
17 MFCD00012210 CID_14121 −5.9
18 Khi-201 CID_99844 -6.3
19 Go-Y032 CID_1714173 −7.5
20 3,3′-dimethoxystilbene-4,4′-diol CID_5280698 −6.7
21 AO-002 CID_5318278 −5.7
22 phenylethyl-trans-isoferulate CID_5468215 −6.2
23 NSC-43319 CID_5470829 −7.6
24 3,4-dimethoxy-4′-hydroxychalcone CID_5930244 −6.6
25 PHSK CID_6123890 −6.4
26 Go-Y022 CID_6474893 −6.7
27 BRD-89483 CID_6477637 −6.9
28 3,3′-dimethoxy-cis-stilbene-4,4′-diol CID_9548762 −6.4
29 CHEMBL482607 CID_10904292 −7.1
30 ZINC100190381 CID_11895692 −6.1
32 EI-135 CID_16760039 −6.6
33 3,4′-Dimethoxystilbene-4-ol CID_23652110 −6.5
34 BDBM149243 CID_44538441 −7.0
35 Go-Y078 CID_46231908 −6.3
36 CHEMBL3940632 CID_68556085 −6.6
37 CHEMBL494826 CID_71717791 −6.4
38 SCHEMBL1374497 CID_86590085 −6.5
39 CHEMBL3290186 CID_90644814 −6.9
40 BDBM145855 CID_91809442 −6.5
41 BDBM145853 CID_91809620 −6.3

42 1,5-Bis(4-hydroxy-3-methoxyphenyl)-
1,4-pentadien-3-one CID_131752986 −6.3

43 Coniferyl ferulate CID_6441913 −6.3
44 Curcumin sulfate CID_66645351 −7.2
45 Dihydrocurcumin CID_10429233 −5.8
46 Dimethoxycurcumin CID_9952605 −6.1
47 Dimethylcurcumin CID_6477182 −7.0
48 Ethyl curcumin CID_11474949 −6.1
49 Griffithane D CID_56597215 −6.6
50 Monodemethylcurcumin CID_5469426 −7.8
51 Phenylethyl 3-methylcaffeate CID_5284444 −6.0
52 p-Hydroxyphenethyl trans-ferulate CID_637308 −6.3
53 Piperkadsin A CID_11717379 −6.6
54 Shogaol CID_5281794 −5.6
55 Tetrahydrocurcumin CID_124072 −5.7
56 Tetrahydrodemethoxydiferuloylmethane CID_9906039 −5.5
57 Tetramethylcurcumin CID_11487078 −7.2
58 Wallichinine CID_5315280 −6.2
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Table 6. Cont.

Serial No Ligand PubChem CID Affinity
(kcal/mol)

59 6-paradoL CID_94378 −6.0
60 Bisdemethoxycurcumin CID_5315472 −7.7
61 Curcumin CID_969516 −7.0
62 Cyclocurcumin CID_69879809 −8.3
63 Dehydrozingerone CID_5354238 −6.0
64 Dibenzoylmethane CID_8433 −6.6
65 6-Gingerol CID_442793 −5.9
66 Isoeugenol CID_853433 −5.7
67 Yakuchinone A CID_133145 −5.7
68 Yakuchinone B CID_6440365 −6.8
69 Carbapenem CID_5280980 −4.3
70 Cephalosporin CID_ 25058126 −6.8

Bold text indicates the best docking scores.

3.2.7. ADME/T Prognosis

ADME/T profiling was carried out for the ligands that gave the best docking scores
in the molecular docking study (Table S6) and control group (Tables S3 and S4). Intestinal
absorption and oral bioavailability were high for all of the ligands. Caco-2 permeability
was high for the ligands Go-Y032 and NSC-43319, while the remaining ligand showed
low Caco-2 permeability. Furthermore, NSC-43319 and Cyclovalone were predicted as
substrates of P-glycoproteins, while the remaining was non-substrates of membrane P-
glycoproteins. All of the ligands were able to enter the blood–brain barrier, excluding
Cyclocurcumin. All of them exhibited substrate specificity of CYP3A4 except Cyclovalone.
The NSC-43319, Salsalate, and Cyclovalone showed no specificity as substrates of CYP3C9.
All of them were negative for AMES toxicity, and compounds demonstrated the inhibitions
of the Human ether-a-go-go related gene (hERG) channel and also a less toxic profile.

Figure 5. Cont.
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Figure 5. Molecular docking experiments by targeting β-lactamase and L, D-Transpeptidases. Hy-
drogen bonds are displayed as green balls and sticks, hydrophobic bonds (Pi-Pi/Pi-sigma/amide-Pi
interaction) are displayed as violet balls and sticks, hydrophobic bonds (Pi-alkyl/alkyl interaction
stacking) are displayed as pink balls and sticks, hydrophobic (Pi-sulfur) are displayed as gold balls
and sticks, and carbon–hydrogen bonds are displayed as white balls and sticks.

3.3. Prediction of Pharmacological and Biological Activity

The screened ligands were inspected for the pharmacology-related study (Table S5)
involving their accordance with Antibacterial, Bacterial Efflux Pump Inhibitor, Antibi-
otic Anthracycline-like activity, β-lactamase Inhibitor, Anti-mycobacterial and antibiotic
activities. Here, Cyclovalone showed all of these pharmacological activities, whereas
Go-Y032 was observed to have all of these properties except Antibiotic activity. The NSC-
43319 showed antibacterial, bacterial efflux pump inhibitor, β-lactamase inhibitor, and
anti-mycobacterial activities. In this study, Go-Y032, NSC-43319, and Cyclovalone were
found as the best-performing ligands (Table 7). Thereafter, these five ligands were ana-
lyzed to observe whether they function against G protein-coupled receptor (GPCR) ligand,
protein kinase, ion channels, enzyme protease, nuclear receptor ligand, etc., (Table S6).



Biomedinformatics 2022, 2 93

Table 7. Best-performing ligands after ADME/T, pharmacological, and biological activities predic-
tion.

Compound Name IUPAC Name Chemical
Formula 2D Structure

Go-Y032 (2E,6E)-2,6-bis[(3,4-
dimethoxyphenyl)methylidene]cyclohexan-1-one C24H26O5

NSC-43319 (2E,5E)-2,5-bis[(4-hydroxy-3-
methoxyphenyl)methylidene]cyclopentan-1-one C21H20O5

Cyclovalone (2E,6E)-2,6-bis[(4-hydroxy-3-
methoxyphenyl)methylidene]cyclohexan-1-one C22H22O5

Difluorinated Curcumin
(1E,6E)-4-[(3,4-difluorophenyl)methylidene]-1,7-
bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-

3,5-dione
C28H22F2O6

Salsalate 2-(2-hydroxybenzoyl)oxybenzoic acid C14H10O5

Cyclocurcumin
2-(4-hydroxy-3-methoxyphenyl)-6-[(E)-2-(4-

hydroxy-3-methoxyphenyl)ethenyl]-2,3-
dihydropyran-4-one

C21H20O6

3.4. Prediction of P450-Mediated Sites of Metabolism (SOMs)

The most potential ligands were investigated for the prediction of their possible sites
of metabolism (SOMs) by three main Cytochrome P450 (CYP) isozymes, i.e., 3A4, 2C9, and
2D6, respectively (Table 8). For CYP2D6 and CYP2C9 isoforms, Go-Y032, and for CYP3A4
and CYP2C9 isoforms, NSC-43319 have shown identical metabolism sites. However, for all
of the isozymes, cyclovalone exhibited different metabolism sites.
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Table 8. Results of P450 sites of metabolism prediction. (Best three vulnerable atoms are marked in
encircled number.)

Enzyme Go-Y032 NSC-43319 Cyclovalone Cyclocurcumin Difluorinated
Curcumin Salsalate

CYP3A4

CYP2D6

CYP2C9

4. Discussion

Molecular docking is the most significant approach in in silico drug designing. It
assesses the binding affinity of a protein–ligand complex in the form of binding energy
using computer algorithms. The lower the binding energy, the higher the affinity of
the ligand bound to the target [73]. Five ligands gave the best free binding energies in
the docking experiment conducted by AutoDock Vina and SwissDock, which included
Go-Y032, NSC-43319 with β-lactamase enzyme, and NSC-43319, Cyclovalone with L, D-
Transpeptidases (Tables 5 and 6). The docking results were compared with controls. For
the β-lactamase enzyme, the docking results with other ligands were compared with
Clavulanic acid and Tazobactum (Table 9). Clavulanic acid and tazobactam are all plasmid-
mediated β-lactamase inhibitors. Several studies have concluded that Clavulanic acid
inhibits extended-spectrum TEM and SHV β-lactamases. They expressed lower affinity in
our study compared to other ligands. Several studies reported that β-lactam antibiotics
could work against L, D-Transpeptidases. Carbapenem and Cephalosporin are antibiotics
in the beta-lactam class that kill bacteria by attaching to penicillin-binding proteins and
blocking bacterial cell wall formation. As these are existing drugs, we compared their
activities with our selected ligands. These controls were showed very low binding affinities
in docking. Therefore, the ligands we selected have a better chance of working against
those enzymes or as antibacterial drugs.
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Table 9. Docking result of the best-performing ligands.

Enzyme Ligands AutoDock SwissDock
Result (kcal/mol) Result (kcal/mol)

β-lactamase

Go-Y032 −7.8 −8.15
NSC-43319 −7.8 −8.04

Cyclovalone −7.6 −7.51
Salsalate −7.7 −7.56

Cyclocurcumin −7.9 −7.66

L, D-Transpeptidases

Cyclovalone −7.6 −7.90
NSC-43319 −7.6 −8.01

Cyclocurcumin −8.3 −7.55
Difluorinated curcumin −8.2 −7.80

Go-Y032 −7.5 −8.02

After docking, the ligands were introduced to ADME/T prediction tools admetSAR 2.0
and pkCSM software for in silico prediction of ADME/T properties. This time-saving and
cost-effective approach helps establish a candidate molecule as a promising drug through
in vitro experiments [74,75]. A leading concern for drugs that mainly target the central
nervous system (CNS) is that they need to be able to permeate across the blood–brain
barrier. The most common route for drug delivery is the oral delivery system, through
which the delivered drug enters into the intestine; hence, an investigated drug needs to be
highly absorbed in the intestine. Cell membrane proteins, such as P-glycoproteins, facilitate
the movement of many drugs through the cell membrane. Caco2 permeability of a drug
reflects the permeability across the intestinal lining of humans, as this tissue is widely
used in in vitro drug permeability studies due to its small intestinal mucosa-like behavior
when cultured [75–77]. The Cytochrome P450 enzyme family focuses on the regulation of
drug interaction, biotransformation, and their elimination outside the body. Acute toxicity,
delayed removal, and eventual drug compound failure within the human body result from
these enzymes’ inhibitory activity of the drugs [78–80]. The purpose of in silico AMES
toxicity test is to determine the toxicity and mutagenicity of the chemicals [81,82]. Voltage-
gated potassium ion channels, namely hERG channels, are involved in the transport of
potassium ions through the cell membrane, which may be subjected to off-target drug
interaction resulting in inhibition. Therefore, proper screening is necessary to see whether
the investigated drugs have inhibitory activity on these transporters [83]. Renal organic
cation transporter 2 (OCT2) plays a major role in the removal of drugs and xenobiotics
via the kidney. It is considered that the substrates of this transporter protein are quickly
excreted by urine [84]. In the ADME/T test, all the selected ligands showed almost similar
properties (Table S6).

Afterwards, the pharmacological and biological activities of the ligands were carried
out in the PASS online server and Molinspiration Cheminformatics server, respectively.
Pharmacological activity (PASS prediction) is determined in terms of the likelihood of activ-
ity (Pa) and the likelihood of inactivity (Pi) of a drug, and the result of the prediction ranges
between 0 and 1. The pharmacological activity of the drug is deemed possible if Pa > Pi [85].
The probability of anti-mycobacterial activity (Pa) for NSC-43319 and Cyclovalone was
between 0.5–0.7, while for all ligands, Pa of all activities was <0.5, implying the unlikeliness
of their activities [86]. However, Cyclovalone, Go-Y032, and NSC-43319 showed more
satisfactory outcomes than others (Tables S5 and S6). Assessing biological activities against
the most influential drug targets in the human body, such as G protein-coupled receptors
(GPCRs), ion channels, enzymes, nuclear receptors, etc., is crucial because, when coupled
with them, a drug mediates its therapeutic activity inside the body [87]. Probability scores
for Petasiphenol representing activity against the targets were comparatively significant
(Table S5).

Finally, the ligands were assessed in the RS-WebPredictor server to predict the probable
sites where their metabolism will be likely to occur. Almost similar metabolism sites
were reported for Go-Y032, NSC-43319, Cyclovalone, Difluorinated curcumin, which
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exhibited multiple sites of metabolism except for Cyclocurcumin and Salsalate. These
two compounds showed few sites of metabolism compared to others (Table 8). After
a successive screening of all potent ligands, this study suggests Go-Y032, Cyclovalone,
NSC-43319, Difluorinated curcumin, Salsalate, and Cyclocurcumin as the best inhibitors
of the enzymes β-lactamase and L, D-Transpeptidases, respectively, while NSC-43319,
Cyclovalone, Cyclocurcumin, and Go-Y032 are recommended for both. These compounds
may not express better performances at all screening tests. As our study was based on
a computational approach, further in vitro analysis is needed to prove their activities.
These compounds may give better performance in an in vitro approach than the controls
we chose.

5. Conclusions

This study aimed to develop curcumin derivatives as potential drug candidates against
S. typhi causing typhoid fever. The target proteins included two crucial proteins of this bac-
terium, β-lactamase and L, D-Transpeptidases, which are involved in acquiring antibiotic-
resistance properties and toxin secretion, respectively. Although several antibiotics and
β-lactam inhibitors are available to treat this fatal illness, none is effective enough to avoid
side effects that eventually result in adverse complications. After surpassing multiple stages
in assessing drug-like properties, among 70 ligands, three, including Go-Y032, Cyclovalone,
and NSC-43319, were reported as the best-performing ligands. Further investigations based
on in vivo and in vitro experiments are needed to ascertain the use of these ligands as
drugs to treat S. typhi infection. Additionally, the other four ligands providing a satisfactory
docking performance are also recommended for further wet laboratory investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedinformatics2010005/s1, Table S1: The selected ligands; Table S2: Drug likeliness
properties of the ligands; Table S3: ADME/T result of controls; Table S4: ADME/T prediction result;
Table S5: Pharmacological activities; Table S6: Biological activities.
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