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Abstract: Polysomnography is the gold-standard method for measuring sleep but is inconvenient
and limited to a laboratory or a hospital setting. As a result, the vast majority of patients do
not receive a proper diagnosis. In an attempt to solve this issue, sleep experts are continually
looking for unobtrusive and affordable alternatives that can provide longitudinal sleep tracking.
Collecting longitudinal data on sleep can accelerate epidemiological studies exploring the effect of
sleep on health and disease. These alternatives can be in the form of wearables (e.g., actigraphs) or
nonwearable (e.g., under-mattress sleep trackers). To this end, this paper aims to review the several
attempts made by researchers toward unobtrusive sleep monitoring, specifically sleep cycle. We
have performed a literature search between 2016 and 2021 and the following databases were used for
retrieving related articles to unobtrusive sleep cycle monitoring: IEEE, Google Scholar, Journal of
Clinical Sleep Medicine (JCSM), and PubMed Central (PMC). Following our survey, although existing
devices showed promising results, most of the studies are restricted to a small sample of healthy
individuals. Therefore, a broader scope of participants should be taken into consideration during
future proposals and assessments of sleep cycle tracking systems. This is because factors such as
gender, age, profession, and social class can largely affect sleep quality. Furthermore, a combination
of sensors, e.g., smartwatches and under-mattress sleep trackers, are necessary to achieve reliable
results. That is, wearables and nonwearable devices are complementary to each other, and so both
are needed to boost the field of at-home sleep monitoring.

Keywords: ballistocardiography; sleep cycles; contactless monitoring; home monitoring

1. Introduction

Sleep is important for the physical and mental well-being of an individual. The
quantity and quality of sleep are generally associated with chronic diseases and health risks
such as diabetes, cardiovascular diseases, renal failure, anxiety, and depression [1,2]. The
fast pace of modern society and the rapid increase in the aging population have contributed
to the population of people being affected by sleep disorders. The Centers for Disease
Control and Prevention (CDC) reported that a third of the United States population does
not get enough sleep [1]. A similar statistic was reported by the Canadian Men’s Health
Foundation (2016) stating that 30% of Canadian men are sleep deprived. This is reflective
of the global populace as sleep disorders are rapidly becoming a global concern, leading to
a range of societal problems [3]. Sleep monitoring is important and could be a lifesaver for
people with undiagnosed sleep disorders [4,5]. A major motivation for sleep monitoring is
the effect it has on health and well-being [6]. However, the process requires trained sleep
technicians to perform polysomnography (PSG).

The PSG is the medical gold standard for sleep studies. It uses various intrusive sensors
to record multiple physiological signals during sleep, namely electroencephalogram (EEG),
electrooculogram (EOG), electromyogram (EMG), electrocardiogram (ECG), body position,
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oronasal airflow, photoplethysmogram, abdomen, and thorax respiratory efforts, and others
(Figure 1).
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Figure 1. An illustration showing the several sensors attached to a monitored individual during an 
overnight PSG study. 

It is a fairly inconvenient, time-consuming, and expensive technique, used only clin-
ically, and cannot be used for longitudinal sleep tracking [7,8]. The PSG protocol can itself 
affect the quality of sleep because of unfamiliarity with the environment and the multiple 
attachments used in the study. The results from the study (sleep score) include sleep onset 
latency, sleep efficiency, and sleep stages. The structure of sleep includes various stages 
characterized by specific physiological changes. These stages are Wake, Non-Rapid Eye 
Movements (NREM), and Rapid Eye Movement (REM), i.e., Wake (“wakefulness before 
sleep”), NREM1 or N1 (“very light sleep”), NREM2 or N2 (“light sleep” defined by EEG 
recordings), NREM3 or N3 (“deep sleep”), and REM (“dream state”) [9]. The transition 
from one stage to the next is described as the sleep cycle. 

Due to the complexity of PSG, other methods have been proposed as alternatives. 
Actigraphy (ACT) and photoplethysmography (PPG) are two solutions that enable long-
term monitoring and produce a valid assessment of sleep/wake behavior. Metrics derived 
from longitudinal sleep tracking can help detect and manage various diseases, e.g., cardi-
orespiratory disorders and dementia [10]. That is, the collection of longitudinal sleep data 
on a large scale can boost epidemiological studies that examine the influence of sleep on 
health and disease [11]. There are also less cumbersome approaches to sleep monitoring 
owing to the advancement, adoption, and integration of technology into healthcare in the 
form of non-contact systems, wearables, and mobile systems [11–15]. These systems cap-
italize on the strong correlation between bio-vital signs and sleep. 

Researchers have been focusing on creating non-contact sleep tracking methods (e.g., 
under-mattress sleep trackers shown in Figure 2) that can achieve closer outcomes to PSG 
[16]. These systems can potentially be used for sleep-quality monitoring. Examples in-
clude systems working on the principle of ballistocardiography (BCG) (Sadek et al. [17]), 
strain gauge (Lima et al. [18]), seismometer (Li et al., 2018), ultrasonic (Hsu et al., 2017; 
Tran et al., 2019), ultra-wideband system (Kang et al., 2020), RF signals (Liu et al., [4]), 
fiber optics (Koyama et al., [19]), and smart textiles (Zhou et al., [20]). 

Figure 1. An illustration showing the several sensors attached to a monitored individual during an
overnight PSG study.

It is a fairly inconvenient, time-consuming, and expensive technique, used only clini-
cally, and cannot be used for longitudinal sleep tracking [7,8]. The PSG protocol can itself
affect the quality of sleep because of unfamiliarity with the environment and the multiple
attachments used in the study. The results from the study (sleep score) include sleep onset
latency, sleep efficiency, and sleep stages. The structure of sleep includes various stages
characterized by specific physiological changes. These stages are Wake, Non-Rapid Eye
Movements (NREM), and Rapid Eye Movement (REM), i.e., Wake (“wakefulness before
sleep”), NREM1 or N1 (“very light sleep”), NREM2 or N2 (“light sleep” defined by EEG
recordings), NREM3 or N3 (“deep sleep”), and REM (“dream state”) [9]. The transition
from one stage to the next is described as the sleep cycle.

Due to the complexity of PSG, other methods have been proposed as alternatives.
Actigraphy (ACT) and photoplethysmography (PPG) are two solutions that enable long-
term monitoring and produce a valid assessment of sleep/wake behavior. Metrics derived
from longitudinal sleep tracking can help detect and manage various diseases, e.g., car-
diorespiratory disorders and dementia [10]. That is, the collection of longitudinal sleep
data on a large scale can boost epidemiological studies that examine the influence of sleep
on health and disease [11]. There are also less cumbersome approaches to sleep monitoring
owing to the advancement, adoption, and integration of technology into healthcare in
the form of non-contact systems, wearables, and mobile systems [11–15]. These systems
capitalize on the strong correlation between bio-vital signs and sleep.

Researchers have been focusing on creating non-contact sleep tracking methods (e.g.,
under-mattress sleep trackers shown in Figure 2) that can achieve closer outcomes to
PSG [16]. These systems can potentially be used for sleep-quality monitoring. Examples
include systems working on the principle of ballistocardiography (BCG) (Sadek et al. [17]),
strain gauge (Lima et al. [18]), seismometer (Li et al., 2018), ultrasonic (Hsu et al., 2017;
Tran et al., 2019), ultra-wideband system (Kang et al., 2020), RF signals (Liu et al. [4]), fiber
optics (Koyama et al. [19]), and smart textiles (Zhou et al. [20]).
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Figure 2. An illustration showing the positing a contactless sensor under the mattress of a moni-
tored individual. 

To this end, several devices and algorithms have been suggested, presented, and im-
plemented, but fewer for sleep-cycle monitoring which is an important aspect of sleep. As 
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trusive sensors. The rest of the paper is organized as follows. Sections 2 and 3 presents the 
methodology used in the literature selection. Discussion and opinions are presented in 
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Figure 2. An illustration showing the positing a contactless sensor under the mattress of a
monitored individual.

To this end, several devices and algorithms have been suggested, presented, and
implemented, but fewer for sleep-cycle monitoring which is an important aspect of sleep.
As a result, this paper aims to review existing works on sleep-cycle monitoring using
unobtrusive sensors. The rest of the paper is organized as follows. Sections 2 and 3 presents
the methodology used in the literature selection. Discussion and opinions are presented in
Section 4. Lastly, the paper is concluded in Section 5.

2. Methodology

For this review, the literature search was performed using a systematic computer-
ized approach: IEEE, Google Scholar, Journal of Clinical Sleep Medicine (JCSM), and
PubMed Central (PMC). The keywords used to retrieve publications were chosen based on
common terms used in the field, from the topic under review, and database suggestions
(Appendix A). Due to the number of results from the search on Google scholar (2810),
sleep-cycle monitoring using contactless sensors research cannot be exhaustively reviewed.
Therefore, only studies between 2016 and 2021 (1730) were considered. The titles and
abstracts of the articles were screened, and references from relevant articles were scanned
for other relevant publications. Articles included in the review were read and evaluated.
Other conditions for inclusion were implemented tools, presentation of a method to mea-
sure sleep stage, studies published in a scientific journal or a scientific conference, studies
with participants or clinical population, and studies with validation. A table showing the
overview of the 14 reviewed publications is presented in Table 1.

Table 1. Brief description of the literature covered in the review.

Study Objective Mode of
Monitoring Subjects Validation

Method Evaluation/Result

Nam et al.
(2016) [21]

Monitoring sleep
quality using
vital signs.

Tri-Axial
Accelerometer
and Pressure
Sensor

10
Validated with
PSG and
video camera

	 The results showed that
the proposed method can
measure vital signs affecting
sleep quality.
	 The estimators of the sleep
quality equation were
consistent with
reference signals.

Nguyen et al.
(2016) [22]

Presenting a
lightweight and
inexpensive wearable
sensing system.

LIBS 8 Validated
with PSG

	 The system produced
comparable accuracy with
PSG for sleep
stages classification.
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Table 1. Cont.

Study Objective Mode of
Monitoring Subjects Validation

Method Evaluation/Result

Gu et al.
(2016) [23]

Detecting transition
between sleep stages
for sleep quality
monitoring and
intelligent wake-up call.

Mobile
service–Sleep
Hunter

15

Validated with ex-
isting actigraphy-
based products,
Zeo and
Jawbone Up

	 Testing the data over one
month provided that the
detection accuracy of Sleep
Hunter was 64.55%.

Tal et al.
(2017) [24]

Validating the efficacy of
the system for detecting
sleep/wake state and
sleep parameters against
PSG. Testing if the
system can detect sleep
architecture in various
sleeping conditions.

EarlySense
system made up
of piezoelectric
sensor and
a mobile
application

63 Validated
with PSG

	 Relative to PSG, the
system showed sleep
detection sensitivity,
specificity, and accuracy of
92.5%, 80.4%, and 90.5%,
respectively.

Guettari et al.
(2017) [25]

Detecting the presence
of a person in bed and
producing an estimation
of the sleep quality.

Thermopile
sensor 13 Validated

with PSG

	 The obtained evaluation
results have shown 87% of
good classifications with
95% confidence intervals for
recognition of the three
deducted stages.

Seba et al.
(2017) [26]

Validating the use of a
thermal radiation sensor
as a sleep analysis
sensor. Analyzing
physical activity and
thermal radiation
during sleep.

Thermopile
sensor, thermal
camera,
accelerometer,
iButton

1

Connected to an
acetimeter
consisting of an
inertial unit fixed
on the wrist of
the patient

	 The study validated the
efficacy of using
temperature sensors for the
extraction of skin
temperature, actimetry, and
the presence, absence, and
position of a patient in a
bed.

Zambotti et al.
(2017) [27]

Comparing the output
of a multi-sensor sleep
tracker (ŌURA ring) to
PSG for measuring sleep
and sleep phases.

ŌURA ring 41 Validated
with PSG

	 The ŌURA ring showed
good agreement with the
PSG measurements of total
sleep time, sleep onset
latency, and wake after sleep
onset.

Zambotti et al.
(2018) [28]

Comparing the
performance of a
consumer multi-sensory
wristband (Fitbit Charge
2) in measuring sleep
stage classification
versus PSG.

Fitbit Charge 2 44 Validated
with PSG

	 Fitbit achieved 82%
accuracy in sleep cycle
classification. It
overestimated total sleep
time and “light sleep” but it
underestimated sleep onset
latency and “deep sleep”.

Pallesen et al.
(2018) [29]

Validating the impulse
radio ultra-wideband
pulse-doppler radar
technology against PSG
for sleep assessment.

Novelda XeThru
radar 12 Validated

with PSG

	 The mean values obtained
for accuracy, sensitivity,
specificity, and Cohen kappa
were 0.931, 0.961, 0.695, and
0.670, respectively.
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Table 1. Cont.

Study Objective Mode of
Monitoring Subjects Validation

Method Evaluation/Result

Tuominen et al.
(2019) [30]

Validating the accuracy
of a BCG Beddit Sleep
Tracker (BST) for sleep
monitoring.

Beddit Sleep
Tracker 10

Validated through
comparison
with PSG

	 BST was able to identify
sleep onset latency with
some accuracy. However, it
underestimated wake after
sleep onset and
overestimated total sleep
time and sleep efficiency.
	 BST did not distinguish
between NREM stages and
did not detect the REM
stage.

Kalkbrenner
et al. (2019) [31]

Assessing a novel type-4
monitoring system for
automated sleep staging.

Type-4
monitoring
system

53 Validated
with PSG

	 The system provided
satisfactory results for
three-stage sleep
classification with an
accuracy of 76.3% and
Cohen’s kappa of 0.42.

Lauteslager
et al. (2020) [32]

Assessing the
performance of a
radar-based system for
sleep staging
performance.

Circadia
Contactless
Breathing
Monitor
(model C100)

9 Validated
with PSG

	 The system produced an
overall accuracy of 66.7%.

Zhang et al.
(2021) [33]

Present the model,
design, and
implementation of
SMARS, a sleep
monitoring system
based on ambient radio
signals.

Ambient radio
signals 6

Validated with
PSG and Four
state-of-the-art
RF-based
respiratory
monitoring
systems

	 Accuracy of 88.4% for
three-stage classification,
coverage of up 8–10 m, and
detection rate of 80%.

Yu et al.
(2021) [15]

Presenting a Wi-Fi-Sleep,
a sleep stage monitoring
system to monitor and
classify sleep.

Wi-Fi
transceivers 12

Ground truth was
obtained from PSG.
The performance
was Validated with
SMARS and
RF-Sleep

	 Wi-Fi-Sleep showed 81.8%
accuracy for four-stage sleep
classification.

3. Literature Review

Nam et al. [21], proposed a system based on a tri-axial accelerometer and a pressure
sensor to quantify sleep quality. The system was able to monitor the sleeping position, non-
REM sleep time, movement, heart-rate variability (HRV), and variations in the breathing
amplitude (i.e., an estimate of the presence and number of apneic episodes). The sleeping
posture was determined using a wearable sensing belt integrating the tri-axial accelerometer.
The wake–sleep period was determined via respiratory signals obtained through the bed
pressure sensor. Ten volunteers (nine males and one female) participated in the experiments,
and the system was validated against the PSG and a digital video camera. The authors
managed to determine sleep quality based on three parameters (i.e., non-REM sleep time,
the number of apneic episodes, and the total duration of the subject’s dominant sleeping
pose). At last, the estimated sleep quality was found to be consistent with reference devices.

Nguyen et al. [22] presented a prototype of their Light-weight In-ear BioSensing (LIBS)
system that can be used for staging a whole-night sleep study. The system was placed
inside the ear canal to continuously record electroencephalogram (EEG), electrooculogram
(EOG), and electromyogram (EMG) signals representing electrical activities of the human
brain, eyes, and muscles. The overlapping features (i.e., temporal, spectral, and non-linear)
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of the signals were separated by a non-negative matrix factorization (NMF)-based model
to match the reference signals obtained from PSG. LIBS was tested on eight participants
(three females and five males) and PSG recordings were acquired in parallel. On average,
the system achieved 95% accuracy for sleep-stage classification. The classification accuracy
was 87% for NREM1, 89% for NREM2, and 78.31% for REM. Besides, the sensitivity was
80% and 83% for NREM1 and REM, respectively. Considering how the system was worn,
the users took a survey, and it was concluded that 85.8% agreed that LIBS did not disturb
their sleep.

A mobile service (i.e., Sleep Hunter) for sleep quality monitoring and smart wake-up
calls that detect transitions between sleep phases was introduced by Gu et al. [23]. For
sleep-stage detection, Sleep Hunter employed a statistical model denoted as the linear-
chain conditional random field (CRF). It used sensors installed in smartphones to monitor
body movements, acoustic events, ambient lighting conditions, sleep length, and personal
factors. At various stages of sleep, a smartphone placed next to the pillow will detect body
movements such as rollover, leg stretching, and leg jerking. Sleep data were collected from
45 volunteers to train the CRF model, and the system was tested on 15 participants (eight
males and seven females) for a month. Sleep Hunter was compared to other actigraphy-
based technologies, Zeo and Jawbone Up, to validate its performance. The detection
accuracy in a three-stage classification was 64.55%. The system was also capable of provid-
ing smart wake-up services based on sleep stage detection. The user can set a one-hour
time frame when they want to be woken up, and the device will wake them up if it detects
a light sleep stage within that time frame; otherwise, it will wake them up at the end of
the hour.

Tal et al. [24] conducted experiments to validate a contact-free monitoring system
(EarlySense) made up of a piezoelectric sensor and a mobile application. The goals of
the study were to verify the accuracy of the system in assessing sleep/wake state and
sleep parameters as compared to PSG, as well as to see if the system can detect sleep
architecture in different sleeping situations, such as when another person is in bed. The
pressure-based device was placed under the mattress around the chest region to measure
the respiratory rate, heart rate, and sleep stage. The results obtained from 63 (45 males
and 18 females) participants produced comparable results with PSG for the total sleep
time (TST), wake, REM, and non-REM. EarlySense produced 96.1% and 93.3% accuracy of
continuous measurement of heart rate (HR) and respiratory rate (RR). The sleep detection
sensitivity, specificity, and accuracy were 92.5%, 80.4%, and 90.5%, respectively.

The research by Guettari et al. [25] was aimed at detecting the presence of patients
in bed and estimating their sleep quality. A thermopile sensor producing thermal signals
was fixed on the wall to achieve this goal. The Symbolic Aggregate Approximation (SAX)
method was implemented in thermal signal segmentation processing. The SAX method
created each segment by first segmenting the mid-variance and then determining its sleep
phase. The system extracted the length of each thermal data segment, the variance of each
segment’s thermal segment, and the level of each segment. The Kohonen self-organized
map (SOM) was used to classify the signal segments into three sleep phases: deep sleep
(R, N3), light sleep (N1, N2), and wake phase (W). The number of phases was fewer than
professional systems, but the system was efficient for long-term monitoring. Further work
is being carried out to improve the classification. Based on the 13 patients (nine males and
four females) who took part in the study, the obtained classification results showed an
accuracy of 87% with 95% confidence intervals for the recognition of the three sleep stages.

A new approach for sleep analysis was developed and presented by Seba et al. [26]. In
this approach, sleep activity was classified into three stages based on thermal signature:
waking, relaxed sleep, and restless sleep. This device, which was based on temperature
monitoring (both patient and ambient), was integrated into the framework of the Smart-
EEG project by the SYEL—SYstèmes ELectroniques team. The system was made up of
a thermopile sensor TMP007, a thermal camera, an accelerometer, and an iButton. The
thermal camera was placed on the wall, the thermopile sensor was placed on a frame above
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the subject, and the iButton was worn on the wrist. The sensor was used to determine
the temperature of the upper “bed + patient” region. Images from the thermal camera
in medical format gave information that could be analyzed by experts to understand
postural changes and changes in temperature measurement relating to the upper part of
the “bed + patient” and the ambient environment. An inertial unit was used to obtain
wrist acceleration in three axes to evaluate the responses of the thermopile sensor. iButtons
were used to autonomously test the temperatures of the wrist, distal, and proximal skin. It
was observed that there was a relationship between the day/night alternation, wake/sleep
alternation, and high and low temperature. The temperature of the body drops during
sleep and rises during the day, while skin temperature rises during sleep and falls during
waking hours. The classification for calm and restless sleep was carried out using the
acceleration module. In sum, this study validated several studies linking body temperature
to sleep.

De Zambotti et al. [27] carried out a comparison of a multi-sensor sleep tracker (ŌURA
ring) with PSG in terms of measuring sleep and sleep phases. ŌURA ring is capable of
detecting the pulse rate, variation in inter-beat-intervals (IBIs), and pulse amplitude from
the finger optical pulse waveform. It also measures motion and body temperature and with
machine learning methods, it can calculate and classify sleep into stages. The study was
aimed at validating the accuracy of these functionalities. Sleep data were collected from
the 41 participants (28 males and 13 females) recruited for the exercise by both the ring and
PSG. The ŌURA ring showed good agreement with the PSG measurements in terms of
TST, SOL, WASO, and light sleep (N1 + N2). However, the ring overestimated REM and
underestimated “deep sleep” (N3). Epoch-by-epoch (EBE) analysis showed that it had a
high sensitivity for detecting sleep (95.5%), 65% for detecting light sleep, 51% for detecting
deep sleep, and 61% for detecting REM sleep, but low specificity in wake detection (48%).
Furthermore, the accuracies of classifying PSG-defined TST ranges of (<6 h, 6–7 h, >7 h)
were 90.9%, 81.3%, and 92.9%, respectively.

In another validation study by de Zambotti et al. [28], the authors assessed the perfor-
mance of a consumer multi-sensory wristband (Fitbit Charge 2) for sleep-stage classification
versus PSG. The Fitbit device can monitor time spent awake, light sleep, deep sleep, and
REM sleep, in addition to sleep/wake states. Forty-four subjects (18 males and 26 females)
participated in the study, during which participants wore a Fitbit on their wrist while
undergoing PSG. The data captured from the systems were compared using t-tests, Bland–
Altman plots, and epoch-by-epoch (EBE) analysis. The result from Bland–Altman plots
showed that Fitbit overestimated TST and “light sleep” (N1 + N2) while it underestimated
SOL and deep sleep (N3). There were, however, no significant differences in the recordings
for the wake after sleep onset and time spent in REM sleep. Based on the EBE analysis,
Fitbit had accuracies of 96% in detecting sleep (sensitivity), 61% in detecting PSG wake
(specificity), 81% in detecting “light sleep”, 49% in detecting “deep sleep” and 74% in
detecting REM sleep. Overall, Fitbit achieved 82% accuracy in sleep cycle classification.

Pallesen et al. [29] conducted a pilot study to validate IR-UWB pulse-doppler radar
technology against polysomnography (PSG) for sleep assessment. UWB technology uses
short-range radio waves with very low energy levels. This technology is based on the idea
that body, limbs, and breathing motions trigger shifts in the frequency (Doppler shift) of
radio waves. Twelve volunteers (six males and six females) were assessed overnight by a
Novelda XeThru radar and PSG. Comparisons between bedtime and wake-up time were
made using the respiratory signal. The result of the study showed the mean differences
between the radar parameters and PSG estimates for SOL, WASO, and TST. The mean
values obtained for accuracy, sensitivity, specificity, and Cohen kappa were 93.1%, 96.1%,
69.5% and 67%, respectively. The findings indicated that IR-UWB radar could be an
alternative objective measure to actigraphy. The ability to assess movements from several
parts of the body simultaneously, such as movement from the extremities and respiration
movements, which both shift significantly during sleep, is an obvious advantage over
actigraphy. It was also indicated that the presence of more than one person in the bed will
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affect the reading, as the system was unable to differentiate between movements caused by
different individuals.

A validation study was carried out by Tuominen et al. [30] to assess the accuracy of the
BCG Beddit Sleep Tracker (BST) for monitoring sleep. Ten participants (five males and five
females) were recruited for the test and data from PSG, BST, and other technologies were
collected for two nights. Analysis showed that BST was able to identify SOL. However, the
system underestimated wake after sleep onset and overestimated TST and sleep efficiency.
There was also a poor outcome for sleep classification as BST failed to differentiate between
NREM stages and did not detect the REM stage. It was concluded that further research and
development work in sleep tracking devices is still required, as well as more validation
studies for other emerging technologies.

Kalkbrenner et al. [31] presented the assessment of their novel type-4 sleep moni-
tor. The study was aimed at classifying sleep stages based on tracheal body sound and
actigraphy. The tracheal body sound was used to extract cardiorespiratory signals which
are commonly used for sleep assessment, while the IMU was used to extract movement
features such as sleeping position and movement. The system was made up of a body
sound microphone attached to the suprasternal notch (near the trachea) and the IMU
and other peripherals (battery and Bluetooth gateway) were attached using an abdominal
belt. A linear discriminant classifier was used for the sleep stage automation. Data were
obtained from 53 subjects (33 males and 20 females) for validation purposes. Sleep/wake
classification yielded 96.9% accuracy and 0.69 Cohen’s Kappa, Wake/REM/NREM classifi-
cation resulted in 76.3% accuracy and 0.42 Kappa, and Wake/REM/light sleep/deep sleep
classification produced 56.5% accuracy and 0.36 Kappa.

The study by Lauteslager et al. [32] was aimed at assessing the capability of the
radar-based Circadia Contactless Breathing Monitor (model C100) and proprietary Sleep
Analysis Algorithm for sleep-stage classification. The system predicts bed occupancy, sleep
stages, and derives standardized sleep metrics using its analysis algorithm and pulsed ultra-
wideband radar. Sleep stage classification was carried out on the dataset obtained using the
C100 device and PSG. For nine participants (six males and three females) in 17 nights, an
epoch-by-epoch recall was 75.0%, 59.9%, 74.8%, and 57.1%, for deep sleep, light sleep, REM,
and wake, respectively. The overall accuracy was 66.7%. A group from the University of
Fribourg in Switzerland performed an independent validation and the recall was 70.7%,
52.5%, 83.0%, and 55.3% for deep sleep, light sleep, REM, and wake, respectively, with an
overall accuracy of 62.7% using data obtained from 24 participants. A direct comparison
with a Fitbit device and Philips Actiwatch showed that the C100 outperforms them in
estimating TST, SOL, WASO, REM Sleep, Deep Sleep, and REM Latency.

The purpose of the study by Zhang et al. [33] was to exploit Ambient Radio Signals for
recognizing sleep stages and assessing sleep quality. The study presented the model, design,
and implementation of SMARS, a system that uses tiny changes in breathing patterns to
measure the quality of sleep. The system was built on a single RF link and has a coverage
of up to 10 m to monitor breathing. It was designed using off-the-shelf devices. The
system consists of a Tx equipped with two antennas that by default transmits standard
Wi-Fi packets at a rate of 30 Hz, and an Rx with three antennas that capture Channel
State Information (CSI) of every packet it received from the Tx. It combines instantaneous
breathing rate estimation and sleep monitoring. CSI is a statistical model on the motion
that was developed to take into account both reflection and scattering multipath indoors.
For fast estimation, a statistical approach that examines the autocorrelation function of
CSI power response was adopted. SMARS was deployed in six homes and sleep data of
32 nights (about 234 h) were collected in total. Tx and Rx were placed on opposite sides of
the bed during data collection. For comparison, PSG data of six participants (five males
and one female) were collected to establish ground truth. Additionally, an open dataset on
four state-of-the-art RF-based respiratory monitoring systems containing 160 h of overnight
sleep data was used for validation. In terms of sleep stage recognition accuracy of SMARS
compared to commercial products EMFIT and ResMed, SMARS achieved accuracies of
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87%, 89%, and 87% for the wake, NREM, and REM detection, respectively. This was better
than EMFIT with 77%, 75%, and 46%, and ResMed with 53%, 87%, and 79% accuracies.
Additionally, SMARS has a wide coverage as it achieves a detection rate above 90% when
the subject is 8 m away and 88.7% and 65% at 9 and 10 m, respectively. SMARS is a
promising system for remote sleep monitoring. The system provided a good estimation of
sleep stages compared with PSG based on the results. SMARS has served as a benchmark
of comparison for other sleep monitoring devices such as Wi-Fi-Sleep by Yu et al. [15].

Inspired by recent advancements in Wi-Fi-based sensing, Yu et al. [15] presented a
system to monitor and classify sleep. Wi-Fi-Sleep is based on Wi-Fi transceivers and a deep
learning method. The system extracts accurate respiration and body movement and can
classify sleep into four stages. The Channel State Information ratio was used to eliminate
blind spots for improved detection. The effectiveness of the system was evaluated by
experimenting with 12 subjects over 19 nights, a process in which it achieved an accuracy
of 81.8% for four-stage sleep classification. The ground truth was obtained from PSG and
the performance was compared with SMARS and RF-Sleep. The accuracy of the four-stage
sleep classification for the other two devices is 79.8% and 69.4%, respectively.

4. Discussion and Viewpoints

In the literature, it can be noted that there is an increasing interest in sleep monitoring
(in particular, sleep cycles) using unobtrusive sensors. Due to the unsuitability of PSG for
in-home monitoring, researchers have developed and are developing various unobtrusive
systems as alternatives, leveraging on recent technological advancements. Generally,
proposed sleep monitoring methods are based on one or a combination of the following:
respiratory cycle, cardiac cycle, body movement [34]. We also observed that the majority
of the proposed systems are limited to three-stage sleep classification [34]. Although the
results from the abovementioned studies are encouraging in terms of accuracy, commercial
devices cannot produce identical results to PSG. It makes sense because EEG-based systems
are the most accurate for detecting all the stages of sleep [35].

That said, the ease and relative performance of actigraphy-based devices for sleep
and sleep-cycle monitoring has given rise to numerous wearable devices and smartphone-
based technologies. Actigraphy devices enable the user to wear dedicated sensors to
help track vital signs and movements while sleeping. This review shows that the use
of wearable devices for sleep-cycle monitoring is feasible but inaccurate compared to
the gold standard PSG [30,36,37]. This is because even in healthy adults accelerometry
has high sensitivity but low specificity for sleep detection. These devices often tend to
underestimate or overestimate some key parameters such as TST, sleep efficiency, wake,
or the transition between the sleep stages [30,36,37]. Patients with sleep disorders, or
those who are chronically sleep-deprived, are more likely to suffer from fragmented sleep
and reduced ability to understand their functional impairment. Therefore, wearing sleep
trackers with incorrect readings could have adverse effects on these patients. This happens
because most patients do not realize that the claims of these devices typically outweigh
the science to support them as devices to measure and improve sleep. As a result, the
importance of precise measurements cannot be overstated [36].

A recent study by Chinoy et al. [38] has shown that off-the-shelf sleep trackers (i.e.,
Fatigue Science Readiband, Fitbit Alta HR, EarlySense Live, ResMed S+, SleepScore Max)
provided mixed results for sleep stage classification and the trackers tended to perform
worse on nights with poorer/disrupted sleep. Similarly, Roomkham et al. [39] have come to
the same conclusion that further studies are needed to assess the longer-term performance
of sleep trackers, namely, the Apple Watch in natural conditions, and against PSG in clinical
settings. Furthermore, Kholghi et al. [40] concluded that EMFIT QS failed to distinguish
sleep stages against PSG and additional development is needed before using EMIFT QS in
clinical settings. Moreover, studies have shown that although smartphone-based sensing
systems are simpler and less expensive, they correlate poorly with the PSG [41].
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Frankly, it is impractical to compare or generalize the accuracy across sleep track-
ers, specifically for under-mattress sleep trackers. This inconsistency occurs because the
morphological characteristics of acquired BCG signals are device dependent. Besides, the
signals can be different between and within subjects [37,42]. As a result, there is a need for
a comprehensive and open dataset of BCG signals that will enable researchers to utilize
them in their environments and improve the field into an accepted technique suitable for
clinical studies [34]. To date, there is only one publicly available dataset of BCG signals;
the purpose of the dataset was to assess the ability of the BCG to monitor changes in
cardiovascular function [43].

Inventors have proposed, produced, and presented several methods (models and
devices) for sleep monitoring by acquiring physiological data unobtrusively. However, the
efficacy of a few systems was clinically validated. Experiment-wise, most of the studies are
limited to a small sample of healthy individuals [39]. Thus, a broader scope of participants
should be taken into consideration during future proposals and assessments of sleep-cycle
tracking systems. This is because factors such as gender, age, profession, and social class
affect the quality of sleep (Cappuccio et al. [44]).

Despite the above criticism, commercial sleep trackers can provide continuous and
long-term monitoring of patients’ sleep quality for days and weeks, which is impossible
in hospitals. In other words, they can be used as predictive screening methods before
performing the sleep studies [34]. For example, Sadek et al. [45] have shown the efficiency
of an under-mattress sleep tracker for long-term monitoring of specific sleep parameters,
namely, wake-up time, bedtime, and time in bed. These parameters were trended over
time, and the authors were able to detect anomalies and notify corresponding caregivers.

Typically, under-mattress-based sensors can monitor the sleep quality of patients
without interfering with their daily activities. However, this may not always be the case
for wearable sensors considering vulnerable populations with behavioral symptoms. To
explain, if the sensor is not waterproof, it has to be removed before showering. In addition,
if the sensor has a short battery life, it needs to be removed frequently for charging. These
situations will undoubtedly distract patients and similarly disrupt the data collection [46,47].
The choice between wearable and non-wearable sensors should be based on the medical
conditions of each patient group. Hence, there will always be a trade-off between data
continuity and patient comfort [46]. Following our discussion, we conclude the paper in
the next section.

5. Conclusions

This review gives an overview of the current state and performance of sleep-cycle
monitoring using contactless sensors. The review features the importance of sleep, a
discussion of sleep monitoring and polysomnography, a review of existing works in sleep
cycle monitoring, a discussion of the takes from the review, and highlights potential
concepts that could be explored. With the rising interest in sleep monitoring generally and
the clinical need for sleep cycle monitoring, there is an opportunity for researchers and
commercial organizations to produce systems that will provide reliable and valid sleep
information. Sleep monitoring is a very critical medical issue that could avert negative
consequences on the life of individuals. It could potentially reduce the volume of fatigue-
related work injuries, health issues, underperformance, road accidents, and aid health
workers in managing sleep disorder patients. The performance and features of the systems
examined in this review are encouraging. They could be set up for remote sleep-cycle
monitoring and long-term studies, and they are easy to use. Unlike the gold standard-PSG,
they are unobtrusive and contactless.
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Appendix A

Table A1. The keywords and phrases used to retrieve the publications related to contactless monitor-
ing of sleep cycles.
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