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Abstract: Background: The application of machine learning (ML) tools (MLTs) to support clinical
trials outputs in evidence-based health informatics can be an effective, useful, feasible, and acceptable
way to advance medical research and provide precision medicine. Methods: In this study, the
author used the rapid review approach and snowballing methods. The review was conducted
in the following databases: PubMed, Scopus, COCHRANE LIBRARY, clinicaltrials.gov, Semantic
Scholar, and the first six pages of Google Scholar from the 10 July–15 August 2022 period. Results:
Here, 49 articles met the required criteria and were included in this review. Accordingly, 32 MLTs
and platforms were identified in this study that applied the automatic extraction of knowledge
from clinical trial outputs. Specifically, the initial use of automated tools resulted in modest to
satisfactory time savings compared with the manual management. In addition, the evaluation of
performance, functionality, usability, user interface, and system requirements also yielded positive
results. Moreover, the evaluation of some tools in terms of acceptance, feasibility, precision, accuracy,
efficiency, efficacy, and reliability was also positive. Conclusions: In summary, design based on the
application of clinical trial results in ML is a promising approach to apply more reliable solutions.
Future studies are needed to propose common standards for the assessment of MLTs and to clinically
validate the performance in specific healthcare and technical domains.

Keywords: machine learning; evidence-based health informatics; clinical trials; RCT; automated
screening; artificial intelligence; automation; machine learning tools

1. Introduction

Evidence-based health informatics (EBHI) can be defined as the conscious, explicit,
and judicious use of current best evidence to support a health care decision that employs
information technologies (ITs) [1]. Towards this direction, clinical trials are considered as a
well-established experimental clinical tool suitable not only to evaluate the effectiveness
of interventions, but also to support the conduct of an adequately designed systematic
review [2]. Furthermore, meta-analysis is a systematic approach for understanding a
phenomenon by analyzing the results of many previously published clinical trials [3].
Meta-analysis applied to clinical trials is a central method for quality evidence generation.
In particular, meta-analysis is gaining speedy momentum in the growing world of quanti-
tative information [4]. Thus, both EBHI and clinical trials are currently at the forefront of
supporting clinicians in clinical decision making.

Precedence Research announced that the global clinical trials market size was val-
ued at USD 51.05 billion in 2021, and is forecast to hit USD 84.43 billion by 2030 with a
registered compound annual growth rate (CAGR) of 5.7% during the forecast period of
2022 to 2030 (https://www.precedenceresearch.com/clinical-trials-market, accessed on 10
August 2022).
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At the same time, the increasing volume of patient admissions due to the increase in
various chronic diseases and the rapidly increasing aging population worldwide is fueling
the growth of artificial intelligence (AI) in the healthcare market.

Related research by Precedence announced that the size of the global AI in the health-
care market was estimated at USD 11.06 billion in 2021, and is expected to exceed approxi-
mately USD 187.95 billion by 2030, growing at a CAGR of 37% during the forecast period of
2022 to 2030 (https://www.precedenceresearch.com/artificial-intelligence-in-healthcare-
market, accessed on 10 August 2022). The clinical trials segment generated revenue of over
24.2% in 2021 and dominated the global healthcare AI market.

However, even if we consider the field of research, we find that during this time
period, according to the search engine semantic scholar, defining the search key “health”,
6,060,000 articles are circulating on the internet, of which 749,050 are reviews and 5290 are
clinical studies (Figure 1).
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The information available on the internet is growing dramatically every year. For
example, searching for “clinical trials” with the semantic scholar search engine found
32,099 related articles in 2001, 82,250 related articles in 2011 (an increase of 256%), and
139,008 related articles in 2021 (an increase of 169%) (Figure 2).

However, because of the large and complex collection of datasets derived from clinical
trials, it often becomes impossible to fully exploit and apply them in health and they are
difficult to process with traditional data processing applications [5]. Furthermore, because
this amount of information is growing rapidly, the ability to apply machine learning tools
(MLTs) to automate knowledge extraction is now more critical than ever.

Currently, the application of digital technology in clinical trials is studied, proposed,
promoted, and implemented in some studies [6,7].

Clinical trials are a fundamental tool used to evaluate the effectiveness and safety of
new drugs and medical devices and other health system interventions. The traditional
clinical trial system acts as a reliable tool for the development and implementation of new
drugs, devices, and interventions in the health system. However, digital tools can be used
to analyze and optimize clinical trials, and finally, in the future, it will be possible to support
them with digital tools completely by implementing virtual tests and experiments using
even virtual human models [8].

https://www.precedenceresearch.com/artificial-intelligence-in-healthcare-market
https://www.precedenceresearch.com/artificial-intelligence-in-healthcare-market
https://www.semanticscholar.org/
https://www.semanticscholar.org/


Biomedinformatics 2022, 2 513

BioMedInformatics 2022, 2, FOR PEER REVIEW 3

The information available on the internet is growing dramatically every year. For
example, searching for “clinical trials” with the semantic scholar search engine found
32,099 related articles in 2001, 82,250 related articles in 2011 (an increase of 256%), and
139,008 related articles in 2021 (an increase of 169%) (Figure 2).

Figure 2. Search for “clinical trials” with the semantic scholar search engine (source:
h�ps://www.semanticscholar.org/, accessed on 10 August 2022).

However, because of the large and complex collection of datasets derived from
clinical trials, it often becomes impossible to fully exploit and apply them in health and
they are difficult to process with traditional data processing applications [5].
Furthermore, because this amount of information is growing rapidly, the ability to apply
machine learning tools (MLTs) to automate knowledge extraction is now more critical
than ever.

Currently, the application of digital technology in clinical trials is studied,
proposed, promoted, and implemented in some studies [6,7].

Clinical trials are a fundamental tool used to evaluate the effectiveness and safety of
new drugs and medical devices and other health system interventions. The traditional
clinical trial system acts as a reliable tool for the development and implementation of
new drugs, devices, and interventions in the health system. However, digital tools can
be used to analyze and optimize clinical trials, and finally, in the future, it will be
possible to support them with digital tools completely by implementing virtual tests and
experiments using even virtual human models [8].

At the present stage, however, the management of clinical trials results in drawing
conclusions, and selecting the appropriate treatment with the application of AI and
machine learning (ML) is an extremely topical and critical issue. In this way, it will be
possible to make the most of clinical studies, thus achieving a more rational and more
economical application in daily clinical practice compared with classical methods.

ML was defined by Arthur Samuel, a ML pioneer, as “a field of study that gives
computers the ability to learn without being explicitly programmed” [9]. A broader
domain of ML is AI. AI refers, in general, to the simulation of human intelligence in
machines that are programmed to think in the same way as humans and mimic their
actions.

Figure 2. Search for “clinical trials” with the semantic scholar search engine (source: https://www.
semanticscholar.org/, accessed on 10 August 2022).

At the present stage, however, the management of clinical trials results in drawing
conclusions, and selecting the appropriate treatment with the application of AI and machine
learning (ML) is an extremely topical and critical issue. In this way, it will be possible to
make the most of clinical studies, thus achieving a more rational and more economical
application in daily clinical practice compared with classical methods.

ML was defined by Arthur Samuel, a ML pioneer, as “a field of study that gives
computers the ability to learn without being explicitly programmed” [9]. A broader domain
of ML is AI. AI refers, in general, to the simulation of human intelligence in machines that
are programmed to think in the same way as humans and mimic their actions.

Although there is a skepticism regarding the practical application and interpretation of
results from ML-based approaches in healthcare settings, the inclusion of these approaches
is growing at a rapid pace [10].

More in detail, recent developments in AI and ML technology have brought on
substantial strides in issues such as the prediction and detection of health emergencies,
the treatment of diseases and immune response problems [10], the diagnosis of diseases,
living assistance, biomedical information processing, biomedical research [11], automated
treatment, disease recommendation, automated robotic surgery, and drug discovery and
development [12].

At the same time, ML and AI have been developing rapidly in recent years in terms
of software algorithms, hardware implementation, and applications in a huge number of
areas [11].

However, the authors of [13] found no unified information extraction framework
tailored to the systematic review process, and published reports focused on a limited
(1–7) number of data elements. Biomedical natural language processing techniques have
not been fully utilized to fully or even partially automate the data extraction step of
systematic reviews.

Nevertheless, it is estimated that natural language processing (NLP) will emerge as the
most effective tool for generating structured information from unstructured data, which is
commonly found in clinical trial texts. In the research article [14], the bibliometric analysis
of the annual publication trend showed that there has been a dramatic increase in research
interests in NLP-enhanced clinical trial research.

Moving in this direction, the author of this article deals with the application of ML
through appropriate tools to extract the results from the application of clinical trials so

https://www.semanticscholar.org/
https://www.semanticscholar.org/
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that they can be properly applied in daily clinical practice [15]. Thus, initially, the author
searched for relative work and analytically described it below in Section 3.1.

More analytically, the author in this article performed a rapid review exploring MLTs
and approaches in the field of clinical trials to support EBHI.

The main research question was as follows:

• RQ1. What MLTs and platforms are reported in the literature to derive results through
clinical trial implementations?

The secondary research questions were as follows:

• RQ2. What are the main categories of these MLTs?
• RQ3. What are the results, benefits, and experience gained from their implementation

and what are the inherent difficulties in implementing them and the main observations
for future work and challenges to be overcome?

The rest of this study is organized as: Section 2 discusses a group of related articles.
Section 3 presents the Materials and Methods of this study. Section 4 summarizes the
results. Section 5 discusses the key issues arising from this study. Section 6 concludes the
study and presents future directions.

2. Related Work

There are some notable studies in the field, but only a limited number deal with
the subject thoroughly. Automation has been proposed or used to expedite most steps
of the systematic review process of clinical studies, including searching, screening, and
data extraction.

Marshall and Wallace [16] provided an overview of the current machine learning
methods that have been proposed to expedite evidence synthesis. They also offer guidance
on which of these are ready for use, their strengths and weaknesses, and how a systematic
review team might go about using them in practice.

In addition, Tsafnat et al. [17] detailed a survey designed to support or automate indi-
vidual tasks in the systematic review, and in particular systematic reviews of randomized
controlled clinical trials, which revealed the trends that see the convergence of several
parallel research projects. This survey described each of the systematic review tasks in
detail. Each task was described along with the potential benefits of its automation. In
addition, the technology systems (up to 2014) that automate or support the tasks are listed
in detail.

Many significant studies refer to algorithms [14,18,19] and strategies to automate data
and knowledge extraction from reviews [20]. Finally, many studies focus on the evaluation
of ML methods through a specific tool [21–23].

3. Materials and Methods
3.1. Study Design

In this study design, the author used the rapid review approach [24]. A rapid review
can be defined as a form of knowledge synthesis that is produced within a short timeframe
using limited resources by streamlining or omitting a number of methods for producing
evidence [24].

Moreover, the forward and backwards snowball method was used [25]. It has been
proposed that in systematic reviews of complex or heterogeneous evidence in the field
of health services research, “snowball” methods of forward (citation) and backwards
(reference) searching are especially powerful. This method allows researchers using the
references and citations of an article to find specific literature on a topic quickly and
relatively easily. Experimentations with this methodology yielded positive results and have
also been presented in [26].

Finally, the SF/HIT model was used as a template to define specific keywords in order
to identify the impacts and outcomes resulting from the use of digital tools in the healthcare
domain [27].
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3.2. Search Strategy and Eligibility Criteria

The review was conducted using the following databases: PubMed, Scopus, COCHRANE
LIBRARY, clinicaltrials.gov, Semantic Scholar and the first six pages of Google Scholar for
the 10 July–15 August 2022 period.

Reviews that observed the main objective of describing the MLTs that may extract
information and knowledge from the data of clinical trials and the assessments of them
were included. It was decided not to restrict the search field in order to collect as much
information as possible. Restrictions were related to the language (only English articles
were included). Snowballing was undertaken, starting from the included citations and
from the references of each article.

3.3. Data Screening

The reference manager Qiqqa version v.76s and Excel were used to export and manage
the results.

A two-stage review process (Figure 3) was performed by the author, (a) initially
excluding assignments based on the titles and their abstracts, and (b) then the remaining
assignments were reviewed based on reading the full text of the article.
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Specifically, the first stage included two phases.
In the first phase, the articles were extracted based on the following acceptance

characteristics: ML methods OR ML approaches OR machine learning tool OR machine
learning systems OR ML techniques AND ((RCT OR clinical trial) AND review).

In this phase, only reviews of clinical studies/trials were selected, as the aim was to
search for tools in which ML was applied and compared in trials.

Thus, the collected articles were studied based on their titles and abstracts, and the
selected ones were included in the second phase.

During the second phase, the MLTs were identified and selected. Next, relevant studies
describing these tools in detail were searched using the Snowball citations method.
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Finally, these studies were screened based on the title and abstract, and the appropriate
ones were included in the pool of selected articles.

One researcher reviewed the articles.

3.4. Data Extraction and Analyses

The following data were extracted from the included studies: authors, type of article,
and summary of the article.

The type of article was one of the following:

• Review (selected from the first phase);
• Tools assessment (selected from the first either second phase);
• Automated tool (article selected from the first phase);
• Book either book chapter (selected from the first or second phase).

The heterogeneity and the difficulty in finding analytical and similar descriptive data
of the tools made it difficult to carry out a rigorous and standardized analytical record.

Specifically, the results of this review were classified into 12 tasks (categories) in
accordance with their type of use and are presented in the results section. This classification
relied heavily on the classification of tasks developed in the study by Tsafnat et al. [17].

Specifically, these are the following:

• Design systematic search
• Run systematic search
• Deduplicate
• Obtain full texts
• Snowballing
• Screen abstracts
• Data extraction and text mining tool
• Automated bias assessments
• Automated meta-analysis
• Summarize/synthesis of data (analysis)
• Write up
• Data miner/analysis of data for general purpose.

4. Results

Finally, 49 articles met the criteria and were included in this review; 17 of them were
identified and gathered in the first phase of the study (Table 1) and 32 tools were identified
and gathered in the second phase of the study (described in Section 4.2).

Table 1. Review articles relative to MLTs for extracting clinical trial outputs.

Author(s) Tools

(J. Clark et al., 2021) [28] Polyglot Search, Translator, Deduplicator, SRA-Helper,
and SARA

(Clark et al., 2020) [29]
Word Frequency Analyzer, The Search Refiner, Polyglot

Search Translator, De-duplicator, SRA Helper, RobotSearch,
Endnote, SARA, RobotReviewer, SRA—RevMan Replicant

(Marshall & Wallace, 2019) [16]

RobotSearch, Cochrane, Register of Studies, RCT tagger,
Thalia, Abstrackr, EPPI reviewer, RobotAnalyst,

SWIFT-Review, Colandr, Rayyan, ExaCT, RobotReviewer,
NEMine, Yeast MetaboliNER, AnatomyTagger

(Khalil et al., 2022) [30] LitSuggest, Rayyan, Abstractr, BIBOT, R software,
RobotAnalyst, DistillerSR, ExaCT and NetMetaXL
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Table 1. Cont.

Author(s) Tools

(Erickson et al., 2017) [31]

Caffe, Deeplearning4j, Tensorflow, Theano, Keras, MXNet,
Lasagne, Cognitive Network Toolkit (CNTK), DIGITS, Torch,

PyTorch, Pylearn2, Chainer, Nolearn, Sklearn-theano and
scikit-learn to work with the Theano library, Paddle, H2O

(Pynam et al., 2018) [5] RapidMiner, Weka, R Tool, KNIME and Orange

(Cleo et al., 2019) [32] Covidence, SRA-Helper for EndNote, Rayyan
and RobotAnalyst

(Wang et al., n.d.) [18]
The authors selected nine mainstream ML algorithms and

implemented them in the response-adaptive randomization
(RAR) design to predict treatment response.

(Tsafnat et al., 2014) [17]
Quick Clinical, Sherlock, Metta, ParsCit, Abstrackr, ExaCT,

WebPlotDigitizer, Meta-analyst, RevMan-HAL, PRISMA Flow
Diagram Generator

(Shravan, 2017) [33]

Weka, Rapid Miner, Orange, Knime, DataMelt, Apache
Mahout, ELKI, MOA, KEEL, Rattle

Mining tasks:
Pre-processing, Clustering, Classification, Outlier analysis,

Regression, Summarisation Techniques:
pattern recognition, statistics, ML, etc.

(Ratra & Gulia, 2020) [34] WEKA and Orange

(Altalhi et al., 2017) [35]
ADaM, ADAMS, AlphaMiner, CMSR, D.ESOM DataMelt,
ELKI, GDataMine, KEEL, KNIME, MiningMart, ML-Flex,

Orange RapidMiner, Rattle, SPMF, Tanagra, V.Wabbit, WEKA

(Dwivedi et al., 2016) [36] WEKA and Salford System

(Naik & Samant, 2016) [37] RapidMiner, Weka, R Tool:, KNIME and Orange

(Zippel & Bohnet-Joschko,
2021) [38]

RobotSearch, Cochrane Register of Studies, RCT tagger,
Thalia, Abstrackr, EPPI reviewer, RobotAnalyst,

SWIFT-Review, Colandr, Rayyan, ExaCT, RobotReviewer,
NEMine.Yeast MetaboliNER, AnatomyTagger

Systematic Review Toolbox
(Marshall and Sutton 2016) [39]

Many tools are presented on web
(http://systematicreviewtools.com/about.php, accessed on 5

August 2022)

(Felizardo and Carver 2020) [20]

An overview of strategies researchers have developed to
automate the Systematic Literature Review (SLR)

process. We used a systematic search methodology to survey
the literature about the strategies used to automate the SLR

process in SE

These articles describe in detail the MLTs and platforms applied to the automatic
extraction of clinical trial data and outputs.

4.1. Review Articles on MLTs for Extracting Clinical Trial Results

Systematic reviews, the cornerstone of evidence-based medicine, are not produced
quickly enough to support clinical practice. Production costs, availability of the required
expertise, and timeliness are often cited as major factors for this delay. The following
reviews and surveys (Table 1) were designed to support or automate individual tasks of
reviews, and systematic reviews of randomized controlled clinical trials, and to reveal
trends, applied algorithms, and tools while highlighting the convergence of many parallel
research projects [17].

http://systematicreviewtools.com/about.php


Biomedinformatics 2022, 2 518

4.2. Articles Relative to MLTs for Extracting Clinical Trial Outputs

This section lists state-of-the-art tools that automate tasks that support knowledge
extraction from clinical trial outputs.

Analytically, during the second phase of this research, 32 MLTs were identified and
were selected.

The most important of these MLTs with a brief description of them are listed below.
Many of the tools present characteristics that place them in more than one category. Thus,
if deemed necessary, they are recorded in all categories. Otherwise, this is simply stated in
their description.

These tools are classified in accordance with 12 functional characteristics (tasks)
(e.g., design systematic search, run systematic search, deduplicate, obtain full texts, etc.)
(Figure 4).
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4.2.1. Design Systematic Search (Includes Two Tools)

Accelerates the design of a search by counting the number of times a word or phrase
appears in a selected group of articles either by checking the recall and precision for each
term in the search string and then displaying it visually.

Some of these tools are described below:

• SRA—Word Frequency Analyzer [28], (http://sr-accelerator.com/#/help/wordfreq,
accessed on 10 August 2022)

Accelerates the design of a search by counting the number of times a word or phrase
appears in a selected group of articles. Words that appear frequently should be used in the
systematic search.

• The Search Refiner [28]

Accelerates designing a search by checking the recall (number of relevant studies
found) and precision (number of irrelevant studies found) for each term in the search string
and then displays it visually. Used to quickly determine which terms should be removed
from the search string.

4.2.2. Run Systematic Search (Includes Two Tools)

Allows for the search of specific concepts.
Two of these tools are described below:

• Polyglot Search Translator (http://sr-accelerator.com/#/polyglot, accessed on 10
August 2022), [28,40]

http://sr-accelerator.com/#/help/wordfreq
http://sr-accelerator.com/#/polyglot
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Accelerates running a search by converting a PubMed or Ovid Medline search to the
correct syntax to be run in other databases.

• Thalia (http://nactem-copious.man.ac.uk/Thalia/, accessed on 10 August 2022), [16]

Allows for the search of PubMed for concepts (i.e., chemicals, diseases, drugs, genes,
metabolites, proteins, species, and anatomical entities).

4.2.3. Deduplicate (Includes One Tool)

Automates most of the deduplication process.
One relative tool is described below:

• De-duplicator (http://sr-accelerator.com/#/help/dedupe, accessed on 8 August 2022)

Automates most of the deduplication process by identifying and removing the same
study from a group of uploaded records. It is designed to be cautious so some duplicates
will remain, which will require removal manually.

4.2.4. Obtain Full Texts (Includes Three Tools)

Screen abstracts and obtain full texts.
Some of these tools are described below:

• SRA Helper (http://sr-accelerator.com/#/sra-helper, accessed on 8 August 2022)

Accelerates screening and obtaining full texts by assigning groups to be performed
with a hotkey. Hotkeys are also assigned to search a list of prespecified locations to attempt
to find the full text of articles.

• SARA (http://sr-accelerator.com/, accessed on 8 August 2022)

Automates requesting full-text articles to the library by requesting all of the needed
full texts with a single request, for which normally these requests need to be processed and
sent one at a time (available within SRA).

• ASH [41]

The ASH tool allows users to download the full text of articles and perform a full-text
search. The tool provides a meta-search interface that allows users to obtain much higher
search completeness, unifies the search process across all digital libraries, and can overcome
the limitations of individual search engines.

4.2.5. Snowballing (Includes One Tool)

These MLTs apply the method for automatic citation snowballing.
One of these tools is described below:

• ParsCit [42]

The proposed tool for automatic citation snowballing is accurate and is capable of
obtaining the full texts or abstracts for a substantial proportion of the scholarly citations in
review articles.

4.2.6. Screen Abstracts (Includes Six Tools)

Screening abstracts automatically sort a search retrieval by relevance.
Some of these tools are described below:

• RobotSearch (https://robotsearch.vortext.systems/, accessed on 8 August 2022), [9]

It is a front-end for a ML model that identifies reports of randomized controlled trials.
Moreover, automate citation screening by identifying the studies that are obviously not
randomized controlled trials (RCTs) from a group of search results. Removes them, leaving
a pool of potential RCTs to be screened.

• Abstrackr (http://abstrackr.cebm.brown.edu, accessed on 8 August 2022), [16,43]

http://nactem-copious.man.ac.uk/Thalia/
http://sr-accelerator.com/#/help/dedupe
http://sr-accelerator.com/#/sra-helper
http://sr-accelerator.com/
https://robotsearch.vortext.systems/
http://abstrackr.cebm.brown.edu
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The authors in [43] described the ongoing development of an end-to-end interactive
ML system. More specifically, they developed abstrackr, an online tool for the task of citation
screening for systematic reviews. This tool provides an interface to our ML methods. The
main aim of this work is to provide a case study for deploying cutting-edge ML methods
that will actually be used by experts in a clinical research setting.

• EPPI reviewer (https://eppi.ioe.ac.uk/cms/er4, accessed on 8 August 2022), [16,44]

EPPI reviewer is an application plus a web-based software program for managing and
analyzing data in literature reviews. It was developed for all types of systematic reviews
(meta-analysis, framework synthesis, thematic synthesis, etc.), but also has features that
would be useful in any literature review.

• SWIFT-Review (https://www.sciome.com/swift-review/, accessed on 8 August 2022), [16]

SWIFT-Review (Sciome Workbench for Interactive computer-Facilitated Text-mining)
provides several features that can be used to search, categorize, and prioritize large (or
small) bodies of literature in an interactive manner. Moreover, it utilizes statistical text
mining and ML methods that allow users to uncover over-represented topics within the
literature corpus and to rank order documents for manual screening.

• Colandr (https://www.colandrapp.com, accessed on 8 August 2022), [16]

Colandr is a web-based, open access platform for conducting evidence reviews.
Colandr can be used by collaborative teams and provides an organizational structure
to manage information throughout the entire evidence review process. Among others, it
provides collaborative team working, citation upload in common bibliographic formats
(e.g., BibTex and RIS), de-duplication of citations, citation screening using the title and
abstract powered by ML, data extraction from full texts powered by natural language
processing, and the export of screening decisions and extracted data in comma-separated
value format.

• Rayyan (https://rayyan.qcri.org, accessed on 8 August 2022), [16,45]

Rayyan is a free web and mobile app that helps expedite the initial screening of
abstracts and titles using a process of semi-automation while incorporating a high level
of usability.

4.2.7. Data Extraction and Text Mining Tool (Includes Six Tools)

These systems automatically extract data elements (e.g., sample sizes, descriptions of
PICO elements).

Some of these tools are described below:

• ExaCT [16,21,22], (http://exactdemo.iit.nrc.ca, accessed on 8 August 2022)

ExaCT is a prototype ML and text mining tool that helps to automatically extract study
characteristics from the full-texts of RCTs. It also aims to help efficiency compared with
manual data extraction.

• RobotAnalyst [46], (http://www.nactem.ac.uk/robotanalyst/, accessed on 8 August
2022), [16]

RobotAnalyst is a web-based software system that combines text-mining and ML
algorithms for organizing references by their content and actively prioritizing them based
on a relevancy classification model that is trained and updated throughout the process.

RobotAnalyst and SWIFT-Review also allow for topic modeling, where abstracts related
to similar topics are automatically grouped, allowing the user to explore the search retrieval.

• Dextr [47]

Dextr provides a similar performance to manual extraction in terms of recall and
precision and greatly reduces data extraction time. Unlike other tools, Dextr provides
the ability to extract complex concepts (e.g., multiple experiments with various expo-
sures and doses within a single study), properly connect the extracted elements within a

https://eppi.ioe.ac.uk/cms/er4
https://www.sciome.com/swift-review/
https://www.colandrapp.com
https://rayyan.qcri.org
http://exactdemo.iit.nrc.ca
http://www.nactem.ac.uk/robotanalyst/
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study, and effectively limit the work required by researchers to generate machine-readable,
annotated exports.

• RobotReviewer (https://robotreviewer.vortext.systems, accessed on 8 August 2022), [16]

RobotReviewer is an open-source ML system that supports semi-automated bias
assessments. It accelerates assessing risk of bias on four of the seven risk of bias domains
by highlighting the supporting phrases in the PDF of the original paper. A check of the
assessments is recommended, although the process is drastically speeded up.

• NaCTeM [16], (http://www.nactem.ac.uk/software.php, accessed on 8 August 2022)

NaCTeM is a text mining tool for automatically extracting concepts relating to genes
and proteins (NEMine).

• Trialstreamer [48]

Trialstreamer continuously monitors PubMed and the World Health Organization
International Clinical Trials Registry Platform and looks for RCTs using a validated classifier.
It combines ML and rule-based methods to extract information from the RCT abstracts.

4.2.8. Automated Bias Assessments (Includes One Tool)

These tools support automatic assessment of the biases in the reports of RCTs.
The systems are recommended for semi-automatic use (i.e., with human reviewer

checking and correcting the ML suggestions).

• RobotReviewer [49], (https://robotreviewer.vortext.systems, accessed on 8 August
2022), [16]

RobotReviewer also supports automated bias assessment processes. As previously dis-
cussed, this is an open-source ML system that also supports semi-automates bias assessments.

4.2.9. Automated Meta-Analysis (Includes Three Tools)

Meta-analysis is a systematic approach for understanding a phenomenon by analyzing
the results of many previously published experimental studies. Unfortunately, meta-
analysis involves great human effort, rendering a process that is extremely inefficient and
vulnerable to human bias. To overcome these issues, researchers are working toward
automating meta-analysis [3].

Some of these ML automated tools are described below:

• SAMA (Ajiji et al., 2022) [50]

This tool provides semi-automated meta-analysis (SAMA).

• MetaCyto (http://bioconductor.org/packages/release/bioc/html/MetaCyto.html,
accessed on 8 August 2022), [51]

The authors Hu et al. [51] developed the MetaCyto Tool for automated meta-analysis
of both flow and mass cytometry (CyTOF) data.

• PythonMeta [4]

PythonMeta package performs the meta-analysis on an open-access dataset from
Cochrane.

4.2.10. Summarize/Synthesis of Data (Analysis) (Includes One Tool)

Although software tools have long existed to support the data synthesis component of
reviews (especially to perform meta-analyses), methods for automating them are beyond
the capabilities of the available ML and NLP tools [16]. However, research in these areas
continues apace. Thus, a related tool, recently developed, is described below:

• Visae [52]

Visae is an app developed in R that uses correspondence analysis to help summarize
data on adverse events from clinical trials. It is built on the underlying approach of applying

https://robotreviewer.vortext.systems
http://www.nactem.ac.uk/software.php
https://robotreviewer.vortext.systems
http://bioconductor.org/packages/release/bioc/html/MetaCyto.html
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stacked correspondence analysis and contribution biplots to help explore differences in
adverse events among interventions within clinical trials

4.2.11. Write Up (Includes Two Tools)

These tools help with the auto-generation of the abstract, results, and discussion
sections of a review.

Some of these tools are described below:

• Endnote (https://endnote.com/, accessed on 8 August 2022)

Endnote screen abstracts, obtains full texts, and writes up SR. Accelerates multiple
tasks and it assists with reference management. Useful for storing search results, finding
full texts, sorting into groups during screening, and to insert references into the manuscript.

• RevManHAL [53]

RevManHAL is an add-on program, which helps auto-generate the abstract, results,
and discussion sections of RevMan-generated reviews in multiple languages.

4.2.12. Data Miner/Analysis of Data for General-Purpose (Includes Five Tools)

These are toolkits that supportML and data mining processes.
Some of these tools are described below:

• RapidMiner [5,37]

RapidMiner supports predictive analysis with its user-friendly, rich library of data
science and ML algorithms through its all-in-one programming environments such as
RapidMiner Studio. Besides the standard data mining features such as data cleansing,
filtering, clustering, etc., the software also features built-in templates, repeatable work
flows, a professional visualization environment, and seamless integration with languages.

• WEKA [5,37,54–57]

WEKA is a widely used toolkit for ML and data mining that was originally developed.
It contains a large collection of state-of-the-art ML and data mining algorithms written
in Java. WEKA contains tools for regression, classification, clustering, association rules,
visualization, and data pre-processing.

• KNIME [5,58]

KNIME is an open source data analysis platform. It allows the user to create workflows
for processing and analyzing almost any kind of data. Written in Java and built upon Eclipse,
its access is through a GUI that provides options to create the data flow and conduct data
pre-processing, collection, analysis, modeling, and reporting.

• COKE [23,24]

The COKE (COVID-19 Knowledge Extraction framework for next generation discovery
science) project involves the use of machine reading and deep learning to design and
implement a semi-automated system that supports and enhances the SLR and guideline
drafting processes. Specifically, the authors propose a framework for aiding in the literature
selection and navigation process that employs natural language processing and clustering
techniques for selecting and organizing the literature for human consultation, according to
PICO (Population/Problem, Intervention, Comparison, and Outcome) elements.

• KEEL (http://keel.es/, accessed on 8 August 2022), [59–63]

KEEL (Knowledge Extraction for Evolutionary Learning) is a Java-based open source
tool. It is powered by a well-organized GUI that lets you manage (import, export, edit, and
visualize) data with different file formats, and to experiment with the data (through its
data pre-processing, statistical libraries, and some standard data mining and evolutionary
learning algorithms).

https://endnote.com/
http://keel.es/
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Summarizing the results obtained from this study, it is worth mentioning that advances
in technology have revolutionized the healthcare sector. ML has helped create tools and
methods for the effective management of data in healthcare [64].

Data mining, also known as knowledge discovery from databases, is a process of
mining and analyzing enormous amounts of data and extracting information from it [33].

The growing interest in the extraction of useful knowledge from data with the aim of
being beneficial for the data owner has given rise to multiple data mining tools [35].

More specifically, this review produced the following results:

• Using MLTs to assist with data extraction resulted in performance gains compared
with using manual extraction.

• At the same time, the use of MLTs has enough flexibility and can speed up and further
improve the results of meta-analyses.

• In summary, there are a number of data mining tools available in the digital world that
can help researchers with the evaluation of the clinical trials outputs [34]. Evaluations
from applying ML to datasets and clinical studies show that this approach could yield
promising results.

Evaluations of these tools were found in a number of articles identified by this study.
Specifically, the initial use of automated tools resulted in modest [21] to satisfactory

time [29] savings compared with manual management.
In addition, the evaluation of the performance, functionality, usability, user interface,

and system requirements also yielded positive results [35].
Moreover, the evaluation of some tools in terms of acceptance [50], feasibility [50], pre-

cision [49], accuracy [42], efficiency [21], efficacy [65], and reliability [21] was also positive.

5. Discussion

The whole idea of developing ML is associated with achieving faster, more efficient,
and more reliable results in the health sector. ML mainly comprises algorithms that, when
put together, have the power to diagnose, display results, and feed data into databases faster
than the traditional method of entering the data manually. Nowadays, as more clinically
relevant datasets are available electronically, researchers have applied ML techniques to a
wide range of clinical tasks [64].

As reported in the literature, many benefits arise from MLTs in the field of extracting
clinical trial results.

More specifically, ML has been described as “the key technology” for the development
of precision medicine [4]. ML uses computer algorithms to build predictive models based
on complex patterns in data. ML can integrate the large amounts of data required to
“learn” the complex patterns required for accurate medical predictions. ML has excelled
in automated meta-analysis, extraction of data from clinical trials and text mining, semi-
automates bias assessments, and in specific medical domains.

The aim of this article is to discover data mining tools used in EBHI and to provide the
research community with an extensive study based on a wide set of features that any tool
should satisfy. In this paper, the author addresses the interest of data mining and describes
the most popular mining tools used in EBHI, and especially to extract clinical trial results.

Although there is no tool that can automate the entire knowledge extraction process,
the author identified a broad evidence base of publications describing the overview of
(semi)automated data-extraction literature in order to extract the results from the clini-
cal trials.

However, the lack of publicly available gold-standard data for evaluation, and the
lack of application thereof, makes it difficult to draw conclusions about which is the
best-performing system for each data extraction target [66].

This review aims to present the appropriate MLTs that will allow for faster and more
reliable extraction of information and knowledge from clinical trials and related to the
prognosis, diagnosis, treatment, and drug use, as related studies are limited.
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There are a limited number of relevant studies. However, these either refer to algo-
rithms and techniques or study the performance of an MLT with applications in clinical
trials. The reviews that focus on the subject of data extraction from clinical trial data either
present a small sample of MLTs or deal with a specialized task.

Thus, the contribution of this study is the renewal of existing knowledge by presenting
a large number of older and more modern tools for extracting information and knowledge
from the outputs of clinical studies. MLTs of more general use are also presented, i.e., tools
that are not limited to the management of RCTs, but that can be used in them as well.

Nevertheless, this review aims first to explore the options available for automating
information and knowledge extraction in this domain. A more detailed and in-depth
review will follow in the future.

In addition, the present study has some methodological limitations. Initially, the
author had some difficulty in identifying suitable articles. This limitation was partially
addressed through the use of snowballing methods. Secondly, the author included articles
written only in English.

In addition, it was not possible to present a consolidated list with a common rating.
This happened because each author adopted different evaluation criteria for the tools
they presented.

6. Conclusions and Future Directions

Evidence-based knowledge synthesis in medicine, i.e., clinical trials, is rapidly becom-
ing unfeasible due to the extremely rapid increase in evidence production. At the same
time, limited resources (in cost, human resources, time, and money) can be better used with
computational assistance and automation to significantly improve the process of extracting
knowledge from clinical trials. In addition, advances in the automation of systematic
reviews of clinical trials will provide clinicians with more evidence-based answers and thus
enable them to provide higher quality information [17].

Sequentially, ML is the fastest growing field in computer science and in accordance
with Health Informatics, one of the biggest challenges has become providing improvements
in medical diagnoses, disease analysis, and drug development in the future [67].

In summary, design based on the application of clinical trial outputs in ML is a
promising approach to implement more effective solutions.

However, more studies are needed in the future for clinical and technical validation
of the performance of ML tools in the health sector. Among other things, future research
should focus on studying the assessment characteristics in order to propose common
measurement standards and assessment mechanisms for these MLTs.

It is also important to conduct a systematic review analytically and precisely evaluate,
and to apply strict evaluation criteria to the MLTs. In this way, it becomes possible to choose
the right MLT for each case.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data from this research are not available elsewhere. Please contact the
author for more information, if required.

Conflicts of Interest: The author declares no conflict of interest.



Biomedinformatics 2022, 2 525

Abbreviations
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ML Machine learning
MLT Machine learning tool
SE Software engineering
SLR Systematic literature review
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R Review
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