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Abstract: Behavioral factors can affect the blood glucose (BG) levels in people with type 1 diabetes
(T1D), therefore, their effects need to be incorporated in blood glucose management for these individ-
uals. Accordingly, in this work, we study the effect of two behavioral states, physical activity (PA) and
stress state (SS), on BG fluctuations in individuals with T1D. We provide two methods for quantifying
biomarkers related to PA and SS using raw acceleration (ACC) and electrodermal activity (EDA) data
collected with a wearable device. We evaluate the impact of PA and SS on BG fluctuation by adding
the derived behavior-related biomarkers in two cutting-edge deep learning-based glucose predictive
models, a long short-term memory (LSTM) and a convolutional neural network (CNN)-LSTM net-
work, for prediction horizons (PHs) of 30, 60 and 90 min. Through an ablation study, we demonstrate
that incorporating the estimated behavior-related biomarkers improves the BG predictive model’s
performance obtaining mean absolute error (MAE) 9.13 ± 0.95, 17.75 ± 1.93 and 31.85 ± 2.88 in
[mg/dL], root mean square error (RMSE), 12.35 ± 1.06, 24.71 ± 2.31 and 41.64 ± 4.12 in [mg/dL],
and coefficient of determination (R2), 95.34 ± 3.34, 78.87 ± 4.35 and 60.11 ± 4.76 in [%], for the
LSTM model; and MAE 9.37 ± 0.88, 17.87 ± 1.67 and 29.47 ± 2.13 in [mg/dL], RMSE 12.51 ± 1.40,
24.37 ± 2.49 and 39.52 ± 3.89 in [mg/dL], and R2 94.65 ± 3.90, 78.37 ± 4.11 and 61.12 ± 4.30 in [%],
for the CNN-LSTM model, respectively, across all PHs. Additionally, we illustrate the generalizability
of the proposed models by performing both population- and patient-wise.

Keywords: blood glucose management; continuous glucose monitoring (CGM); glucose forecasting;
convolutional neural network (CNN); long short-term memory (LSTM); physical activity index (PAI);
stress state index (SSI)

1. Introduction

Despite significant efforts devoted to the problem of blood glucose (BG) prediction in
people with Type 1 Diabetes (T1D) over the last several decades [1–9] challenges associated
with glycemic disturbances due to daily unrepresented inputs, such as behavioral states,
are largely under researched. In this regard, perhaps the most crucial challenge is that of
accounting for the effect of daily physical activity (PA), both structured and unstructured,
and emotional or psychological stress state (SS), in the prediction of BG, as a stepping-
stone toward the design of appropriate treatment decisions. To date, several studies have
proposed various methodologies to investigate the impact of such glycemic disturbances
on BG level fluctuations, enabled by the advent of continuous glucose monitoring (CGM)
devices, and the growing use of consumer-grade wearable devices [10], which facilitated
keeping track of BG levels as well as other physiological variables almost continuously and
in a minimally invasive manner. Facciolli et al. [11] investigated the benefits of including
steps count measured by an off-the-shelf wearable device, as a proxy for PA, together with
insulin and meal information, in a linear black box model identified from actual patient
data. The authors reported improved predictions accuracy when including PA in their
model. Some studies included additional inputs related to physical exercise to the glucose
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metabolism model: Refs. [12,13] used a quantized signal representing the level of exercise
in an artificial neural network, while [14–16] employed an estimate of energy expenditure
in linear multivariate models. Bertachi et al. [17] used multilayer perceptron (MLP) and
support vector machine (SVM) to predict nocturnal hypoglycemia (NH) in the daily life
of T1Ds including the effect of PA, however, they reported the manual feature extraction
and high computational cost as the limitations of their methodology. More recently, Sevil
et al. [18] demonstrated that by incorporating new features for the type and intensity of
PA and acute psychological stress (APS), generated using ML techniques, as exogenous
inputs into an adaptive system identification framework, the accuracy of one-hour-ahead
BG prediction improved. De Paoli et al. [19] used a specific type of ANN, Jump Neural
Network, to overcome the challenges associated with the prediction of abrupt changes in
BG values caused by PA. However, as a result of testing on a small number of patients,
they asserted that their results cannot be considered conclusive, and their method has
an additional computational load that does not justify the insufficiently significant gain
achieved.

Against this background, a more comprehensive model that is generalizable to a larger
group of individuals with T1D, applicable to daily life events, computationally efficient,
and has a robust performance, specifically for higher prediction horizons, is needed for
improved BG management.

In a previous study [9], we have obtained encouraging preliminary results pertaining
to BG prediction with a hybrid CNN-LSTM model using meal information, insulin intake
and CGM data on a dataset [4] comprised of 59 individuals with T1D who had participated
in a three-day in-hospital study. Our investigation demonstrated that our model achieved
superior glucose forecasting for up to 90 min PH, compared to existing approaches in the
literature. It is of interest, therefore, to study whether we can further improve the prediction
accuracy and generalize our model to a wider range of people with T1D in the outpatient
setting, by accounting for glycemic disturbances occurring in daily life including PA and
SS. Our aim is therefore to characterize the effect of physical activity and stress on blood
glucose fluctuations by using data collected with wearable devices, and incorporate it into
state-of-the-art BG predictive models to achieve more accurate BG predictions.

To this end, we propose a 2-steps approach: in the first step, we derive biomarkers
for PA and SS from raw accelerometer (ACC) and electrodermal activity (EDA) signals
collected by a wearable device. In the second step, we combine the obtained biomarkers
with the CGM, meal and insulin intakes in a multivariate dataset and feed it to our DL-
based glucose predictive model to forecast the future BG values. We validate our novel
approach on a publicly available dataset of 6 T1D patients whose data were recorded
during an 8-weeks trial under free-living condition [20].

The remainder of the article is organized as follows. The Materials and Methods
Section contains experimental data and a description of the data pre-processing pipeline
followed by description of the proposed algorithms for quantifying PA and stress levels, as
well as an explanation of the proposed prediction strategy. The Results Section presents the
population-wise and patient-wise results, separately, as well as a comprehensive compari-
son with similar studies in the literature. Finally, the Discussion and Conclusion section
contains a discussion of the proposed method’s advantages and limitations, as well as the
study’s conclusion.

2. Materials and Methods
2.1. Experimental Condition

The dataset used in this work was the OHIOT1DM dataset [20] comprises of eight
weeks of data collected from 12 people with T1D. The data consists of periodic blood
glucose measurements, information regarding administered insulin, different biometric
data, and self-reported meals and exercise information which was released in 2020 for the
second edition of the BG Level Prediction (BGLP) Challenge [21], a competition in which
the participating researchers were expected to produce BG predictions for 30 and 60 min
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PH using a common dataset and evaluate the performances of their algorithms according
to predefined metrics. The dataset is distributed in two separate files for the train and
test sets. Each file contains data from six individuals with T1D identified anonymously
as 540, 544, 552, 567, 584, and 596 who were on insulin pump therapy (Medtronic 530G
and 630G [22]) and wore Medtronic Enlite [23] CGM sensors during the eight-week data
collection period. The dataset includes BG concentration collected by a CGM device with a
5 min sampling rate, basal and bolus insulin doses, self-reported ingested carbohydrate
(CHO) intake estimates, self-reported exercise, sleep, work, stress, and illness. Additionally,
all subjects were required to wear an Empatica Embrace [24] fitness band throughout the
study, which recorded one-minute aggregations of EDA, skin temperature, and magnitude
of ACC.

The ACC and EDA signals presented many missing samples, as it is common in
dataset collected in real-life situations. Previous studies that used this dataset omitted
indeed these two signals because of this problem, and thus ignored the effect of PA and
stress level on BG level prediction [25–29]. In our case, we used a linear interpolation
algorithm to estimate the missing data samples when the gaps between samples were less
than 60 min, while for gaps greater than 60 min, corresponding data were discarded.

All sensors’ data were synchronized, and the variables of interest, namely BG, ACC,
and EDA, were uniformly resampled at 15 min sampling intervals. Next, each feature
was normalized and standardized independently to ensure that the model was not biased
toward any particular variable.

2.2. Physical Activity Intensity Estimation

In a previous work [30] we proposed to detect PA and grade its intensity with a novel
threshold-based algorithm. The method exploited the magnitude of the average third-
order time derivative of the 3D displacement retrieved from three-axis accelerometer data
low-pass filtered at 1[Hz] to isolate the static component due to gravity. User-determined
activity intensity thresholds from sedentary to vigorous activity, were tuned to patient self-
reported low, moderate and high fitness conditions, using more than 5000 h of outpatient
subject data available. More detailed information regarding the methodology, are provided
in the paper [30].

In the current study, we apply the same methodology, with appropriate modifications
accounting for the differences in the sampling frequency of the raw ACC signals, to obtain
the biomarker for physical activity intensity, which we call Physical Activity Intensity (PAI)
from now on.

2.3. Stress State Estimation

In this work, we focus on detecting and monitoring changes in the sympathetic
arousal state triggered by the fight-or-flight response to emotional stress. EDA signal has
two components: tonic component which is a slow varying signal and phasic component
which incorporates the sudden neural spikes corresponding to physiological changes. It has
been demonstrated that an increase in the frequency of these spikes relates to an increase
in patients’ stress levels [31]. Accordingly, in [32], Wickramasuriya et al. proposed to
deconvolve EDA signal to obtain neural impulses that stimulate sweat glands using a
two-step optimization formulation that simultaneously recovers sparse neural stimuli and
estimates physiological system parameters. Then, in a previous study [33], we proposed
that sympathetic arousal states can be quantified from skin conductance measurements
collected with a wrist-worn device.

For each stress event, the corresponding hidden cognitive state x̂k was defined as a
function of previous cognitive states x̂k−1, state defining variable nk−1, external stimuli
variable, envk−1 and uk, and noise component, wk:

nk =

{
0 if no peak detected
1 if peak detected

(1)
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x̂k = f( xk−1, nk−1, uk ( nk−1, envk−1), wk), (2)

where uk and envk are obtained through assessing the stress event and modeling the
increase in it at any timestamp. Therefore, the hidden state xk was computed for each
time point through an iterative process. More detailed information and formulation can be
found in [33].

Correspondingly, in this study we leverage this methodology to obtain a biomarker
representing the quantified estimation of stress level obtained from raw EDA signal in the
OHIOT1DM dataset. We call this feature Stress State Index (SSI) from now on.

Figure 1 shows the available data along with the proposed biomarkers for a represen-
tative subject in the study.
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Figure 1. Representative subject’s data: CGM [mg/dL] (blue); CHO intake [g] (green); insulin doses
[u] (red); PAI [a.u.] (purple) and SSI [a.u.] (yellow) vs. Time of the day [HH:MM].

2.4. Input-Output Partitioning

We concatenated and aligned the obtained PAI and SSI with BG concentration mea-
sured by CGM, self-reported ingested CHO and insulin intakes, to create the multivariate
dataset to be used for prediction. Then, a sliding window with a step size of one was
rolled over the multivariate dataset to generate sequences of corresponding input, X , and
output, Y , sets for training the proposed DL-based BG prediction model depending on the
user-specified PH. By construction, each windowed sample Xi ∈ X, Xi ∈ Rn×3PH is a
retrospective snapshot of all variables corresponding to a sequence of future CGM values,
Yi ∈ Y, Yi ∈ R1×PH, such that:

Xi(t) =

x1(t− 3PH) · · · x1(t)
...

. . .
...

xn(t− 3PH) · · · xn(t)

 (3)

Yi(t) = [CGM(t + 1), · · · , CGM(t + PH)], (4)

where i = [1, · · ·, n], stands for the window index with n the total number of input windows
generated by rolling the sliding window all over the multivariate time series. xj, j = [1, · · ·, n]
is a vector representing the jth feature with n showing the number of features used for training
the model. We investigate the effect of PAI and SSI on the performance of the GC predictive
model via an ablation study; thus, n varies depending on the scenario. For example, when
CGM, CHO, and insulin are used as inputs to the model, n = 3, whereas when PAI and SSI are
added to those three variables, n = 5.
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2.5. Glucose Predictive Model

To investigate the feasibility of our hypothesis, we build on our previously published
hybrid CNN-LSTM model [9]. The input samples are historical windows of data, con-
taining BG values, meal, and insulin intakes information, as well as PAI and SSI samples,
biomarkers as described in Sections 2.2 and 2.3, for time interval of (t− (3× PH), · · ·, t)
as the input, such that Ŷi(t)= f(Xi(t), Wk) for i =[1, · · · , n] with n, total number of win-
dowed training samples, Wk with k =[1, · · · , m] model parameters and m number of
parameters. These samples are sent into the CNN component so that significant features are
extracted. The produced feature vectors are then input into two LSTM layers, which learn
the variables’ temporal dynamics and causal relationships. Finally, the output of the final
LSTM layer is embedded into two fully connected layers, where each neuron is connected
to every neuron in the preceding layer, in order to interpret the non-linear combination
of these features and predicted future BG values Ŷi(t), for up to a user specified PH, in
the output layer. The proposed model architecture is depicted in Figure 2. For compar-
ison purposes, we designed a second model comprised of two layers of LSTM network
followed by three fully connected layers. The third fully connected layer is the output layer
which contains predicted future BG values Ŷi(t), for up to a user specified PH, given the
input samples, structured in the same as what explained for the CNN-LSTM model. The
proposed LSTM model architecture is depicted in Figure 3. It should be noted that for
model architecture and hyperparameters selection, we run grid search to make sure the
best possible model is designed.
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Figure 2. The architecture of the proposed CNN-LSTM model. Raw ACC and EDA signals are used
to estimate PAI and SSI features, respectively. Then, these generated features, along with the CGM,
insulin, and CHO signals are passed through the preprocessing pipeline.
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Figure 3. The architecture of the proposed LSTM model. Raw ACC and EDA signals are used to
estimate PAI and SSI features, respectively. Then, these obtained features, are combined with the
CGM, insulin, and CHO timeseries and are passed through the preprocessing.

The training procedure is carried out by backpropagating the error via the network
layers and changing the weights Wk in such a way that the loss function is minimized,
i.e., the model learns to predict the future BG value as close to the actual value as possible.
Following each convolutional layer, a batch normalization operation is performed to
re-center and scale the input features for the subsequent layer. By standardizing the
parameters, this stabilizes the learning process and minimizes internal covariance shift.
Additionally, in both models, a dropout layer is utilized following each LSTM layer to
minimize overfitting by randomly setting certain input units to zero during training.

We used the TensorFlow framework [34] in Python 3.7 programming language to build
and implement our models. The training set was divided into train and validation subsets
with an 80:20 ratio, respectively. To minimize loss and optimize the cost function, the
root mean square propagation (RMSProp) approach was adopted with a moving average
parameter of 0.9 and an initial learning rate of 0.0001. The model was trained for 300 epochs
with a batch size of 128 while an early stopping point strategy was utilized to minimize
over-training by monitoring changes in validation loss with a patience of 50 epochs.

3. Results

In this section, we present results obtained on eight weeks of real-life data for six T1D
patients from the OHIOT1DM 2020 dataset [20].
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3.1. Evaluation Metrics

Several metrics were utilized to evaluate the proposed model’s performance and the
influence of incorporating PAI and SSI in our computations: the mean absolute error (MAE),
the root-mean- square error (RMSE), and coefficient of determination (R2). Equations (5)–(7)
report the formulas used for their calculation, where n is the total number of windowed
samples, Yi(t) and Ŷi(t) are the actual and predicted GC values at time t + PH and Ŷi in R2
is the mean value of all samples:

MAE =
∑n

i=1
∣∣Yi(t)Ŷi(t)

∣∣
n

(5)

RMSE =

√
∑n

i=1
(
Yi(t)Ŷi(t)

)2

n
(6)

R2 = 1− ∑N
i=1
(
Yi(t)− Ŷi(t)

)2

∑N
i=1
(
Yi(t)− Ŷi(t)

)2 (7)

Using these metrics will enable us to compare our results to those of other research
studies in the literature.

3.2. Evaluation Scenarios

We evaluated our proposed models with seven distinct scenarios, summarized in
Table 1. Scenario 1 represents the baseline case, containing CGM, CHO and insulin in-
takes, while in Scenario 2 and 3, raw EDA and ACC signals, representing the effect of SS
and PA, respectively, are included into computations, to investigate the effectiveness of
incorporating PA and SS in BG predictive model’s performance. In Scenario 4 and 5 the
biomarkers for PAI and SSI are added to the baseline case, to be compared with scenarios 2
and 3, respectively, in terms evaluating the changes in results obtained as a result of the
two quantification methodologies. Finally, Scenarios 6 and 7 incorporate the raw ACC and
EDA, and PAI and SSI, respectively, to the baseline. The rationale behind defining these
scenarios is to differentiate the influence that the raw EDA and ACC signals may have on
BG prediction compared to that of the estimated biomarkers for SSI and PAI.

Table 1. Scenarios considered in our ablation study to understand the contribution of different
variables on BG prediction performance.

Scenario Variables

Scenario 1 CGM, CHO, Insulin
Scenario 2 CGM, CHO, Insulin, EDA
Scenario 3 CGM, CHO, Insulin, ACC
Scenario 4 CGM, CHO, Insulin, SSI
Scenario 5 CGM, CHO, Insulin, PAI
Scenario 6 CGM, CHO, Insulin, ACC, EDA
Scenario 7 CGM, CHO, Insulin, SSI, PAI

3.3. Population-Wise Analysis

We employed training sets of all patients for population-wise analysis, and then test
sets of all six individuals for performance evaluation in order to forecast future BG values
for an unknown data sample. The model was trained on three distinct PHs, namely 30, 60,
and 90 min. Tables 2 and 3 show the performance of the proposed LSTM and CNN-LSTM
algorithms for different scenarios in terms of MAE [mg/dL], RMSE [mg/dL] and R2 [%]
metrics, respectively.
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Table 2. Population results for LSTM model. RMSE [mg/dL], MAE [mg/dL] and R2 [%] for 30, 60
and 90 min ahead BG prediction, for different scenarios.

Scenario

30 min 60 min 90 min

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

1 18.32 ± 2.53 12.98 ± 1.99 91.54 ± 4.32 33.26 ± 3.13 22.98 ± 2.90 66.92 ± 6.83 48.76 ± 5.61 37.11 ± 3.56 49.76 ± 6.93
2 17.64 ± 1.45 12.54 ± 1.15 92.11 ± 5.11 32.12 ± 3.45 21.44 ± 2.53 69.61 ± 6.13 47.21 ± 5.44 35.11 ± 3.12 52.09 ± 6.42
3 17.98 ± 1.85 12.81 ± 1.54 91.12 ± 4.21 31.07 ± 2.93 20.98 ± 1.99 69.30 ± 6.12 46.98 ± 6.01 34.60 ± 3.42 53.22 ± 5.94
4 12.47 ± 1.04 9.93 ± 0.93 94.35 ± 3.45 26.27 ± 1.96 18.05 ± 1.89 77.12 ± 4.56 42.90 ± 4.98 32.65 ± 2.91 55.74 ± 5.30
5 16.88 ± 1.56 11.97 ± 1.08 93.12 ± 5.12 32.15 ± 3.11 19.91 ± 2.80 70.34 ± 5.11 45.65 ± 5.24 33.65 ± 4.02 54.33 ± 5.65
6 17.11 ± 1.91 12.10 ± 1.34 92.43 ± 4.11 31.11 ± 2.89 19.59 ± 2.56 71.54 ± 5.67 45.11 ± 4.66 32.88 ± 3.76 55.08 ± 5.11
7 12.35 ± 1.06 9.13 ± 0.95 95.34 ± 3.34 24.71 ± 2.31 17.75 ± 1.93 78.87 ± 4.35 41.64 ± 4.12 31.85 ± 2.88 60.11 ± 4.76

Table 3. Population results for CNN-LSTM model. RMSE [mg/dL], MAE [mg/dL] and R2 [%] for 30,
60 and 90 min ahead BG prediction, for different scenarios.

Scenario

30 min 60 min 90 min

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

1 19.35 ± 2.67 13.31 ± 189 90.87 ± 5.53 32.68 ± 3.11 22.32 ± 3.11 68.82 ± 6.13 46.12 ± 5.10 34.20 ± 3.11 54.12 ± 5.53
2 18.65 ± 2.35 13.23 ± 1.82 90.98 ± 5.59 31.48 ± 2.90 21.12 ± 2.66 70.02 ± 5.73 45.56 ± 5.53 33.45 ± 3.21 56.34 ± 5.11
3 18.43 ± 2.53 13.02 ± 1.89 91.21 ± 4.51 31.12 ± 2.89 20.23 ± 2.11 70.34 ± 5.23 45.23 ± 5.11 33.30 ± 3.09 56.72 ± 5.56
4 12.63 ± 1.78 10.05 ± 1.01 93.75 ± 4.11 26.48 ± 2.83 18.79 ± 1.90 76.50 ± 4.41 40.59 ± 4.83 30.82 ± 2.20 59.82 ± 4.06
5 17.36 ± 2.56 12.37 ± 1.61 91.82 ± 4.90 30.15 ± 3.13 19.80 ± 2.22 72.34 ± 4.75 44.67 ± 4.92 31.90 ± 2.53 58.34 ± 5.03
6 17.28 ± 2.87 12.30 ± 1.53 91.90 ± 4.34 31.02 ± 3.05 19.59 ± 2.27 72.14 ± 4.90 43.67 ± 4.11 30.75 ± 2.90 59.12 ± 4.58
7 12.51 ± 1.40 9.37 ± 0.88 94.65 ± 3.90 25.37 ± 2.49 17.87 ± 1.67 78.37 ± 4.11 39.52 ± 3.89 29.47 ± 2.13 61.12 ± 4.30

Although adding raw EDA and ACC in Scenarios 2, 3 and 6 improved results slightly
comparing to the baseline, using the computed biomarkers SSI and PAI in Scenarios 4, 5 and
7 significantly improved model performance, demonstrating the validity of our suggested
methodologies for producing these two biomarkers and including them in the prediction
model. Overall, the best results for both models are obtained in Scenario 7, as highlighted
in bold face characters in the tables.

3.4. Patient-Wise Analysis

We evaluate the suggested models patient-by-patient, training and testing a tailored
model on each patient’s data, in order to address the inter-subject variability inherent in
T1D. Tables 4 and 5 illustrate the proposed LSTM and CNN-LSTM model’s performance in
terms of MAE [mg/dL], RMSE [mg/dL], and R2 [%] metrics in predicting future BG for
each patient individually, respectively, using the same patient’s data as the training and
test sets and Scenario 7 as the training scenario.

Table 4. Patient-wise analysis results with LSTM model, given scenario 7. MAE, RMSE and R2 of BG
prediction for personalized training for each patient separately, for 30 to 90 min PH.

Patient ID

30 min 60 min 90 min

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

540 15.74 11.46 88.86 33.54 23.35 72.34 41.73 31.61 56.12
544 11.47 8.14 93.41 21.28 15.37 79.99 38.77 29.15 68.30
552 11.12 8.71 92.56 21.79 15.31 79.92 39.15 27.62 69.45
567 12.47 9.61 91.36 27.8 18.76 73.78 47.85 33.44 40.30
584 13.32 10.01 91.78 27.28 19.68 73.06 44.94 32.95 51.45
596 12.99 9.98 93.32 22.61 16.03 78.12 42.71 32.90 53.87

Mean ±
(STD) 12.85 ± 1.50 9.65 ± 1.05 91.88 ± 1.54 25.71 ± 4.37 18.08 ± 2.89 76.20 ± 3.22 42.52 ± 3.17 31.27 ± 2.16 56.58 ± 9.01
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Table 5. Patient-wise analysis results with CNN-LSTM model, given scenario 7. MAE, RMSE and R2
of BG prediction for personalized training for each patient separately, for 30 to 90 min PH.

Patient ID

30 min 60 min 90 min

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

RMSE
[mg/dL]

MAE
[mg/dL]

R2
[%]

540 16.12 13.45 86.76 33.45 23.11 69.56 40.12 30.61 58.11
544 12.98 9.98 91.65 23.65 16.11 77.67 38.56 29.11 69.35
552 12.12 9.56 90.56 23.11 16.23 77.34 39.05 27.88 69.65
567 13.98 11.34 90.36 26.44 18.87 71.12 46.11 32.41 47.89
584 14.56 12.18 90.78 26.87 19.54 71.76 44.35 31.66 52.41
596 14.06 12.01 91.32 24.11 17.05 76.54 41.12 32.40 56.57

Mean ± (STD) 13.97 ± 1.25 11.42 ± 1.32 90.23 ± 1.61 26.27 ± 3.50 18.48 ± 2.43 73.99 ± 3.26 41.55 ± 2.77 30.67 ± 1.69 58.99± 8.10

Additionally, the box plots in Figure 4 depicts the distribution of the resulting metrics
for the patient-wise analysis for both models. Although the model performance degrades
when compared to the population-wise analysis, the distribution of the findings across all
individuals remains favorable, indicating the generalizability of the suggested methods
across a diverse collection of T1D patients.
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Figure 4. Box plot showing the patient-wise results for (top) LSTM and (bottom) CNN-LSTM models
in terms of (left) MAE, (middle) RMSE and (right) R2 metrics, given scenario 7 as dataset. In each
panel, blue, orange and green are boxplots for 30, 60 and 90 min.

3.5. Comparison with Existing Methods

Table 6 compares our results to the top five ranked research works that participated in
the 2020 BGLP challenge [21]. Studies were evaluated based on MAE [mg/dL] and RMSE
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[mg/dL] for 30 and 60 min PH and ranked according to the overall accuracy defined as the
summation of MAE and RMSE in [mg/dL]. We see that our work outperforms the previous
research across all metrics and overall performance. Contributions are identified by their
Paper ID, as syndicated on the official BGLP challenge ranking page [21].

Table 6. Comparison of our results and the top five ranked research works that participated in the
2020 BGLP challenge. Population mean ± (standard deviation) of accuracy metrics (MAE and RMSE)
for 30 and 60 min ahead BG prediction.

30 Min 60 Min

Paper ID RMSE
[mg/dL]

MAE
[mg/dL]

RMSE
[mg/dL]

MAE
[mg/dL]

Overall
[mg/dL]

13 18.22 12.83 31.66 23.60 86.31
6 19.21 13.08 31.77 23.09 87.15
16 18.34 13.37 32.21 24.20 88.12
15 19.05 13.50 32.03 23.83 88.41
1 18.23 14.37 31.10 25.75 89.45

CNN-LSTM (Scenario 7) 12.51 9.37 25.37 17.87 65.30
LSTM (Scenario 7) 12.35 9.13 24.71 17.75 63.94

4. Discussion and Conclusions

In this work, we analyzed whether the incorporation of our proposed biomarkers
for PA and SS, computed from raw ACC and EDA signals collected with a commer-
cially available wearable device, improved the BG prediction accuracy for PH ranging
from 30 to 90 min. We compare the performances of our previously published CNN-
LSTM prediction model [9] with those of a novel LSTM-based predictor. At a population
level, as far as the CNN-LSTM model is concerned, our results demonstrate a decrease
in RMSE of 6.84 ± 3.01 [mg/dL], 7.31 ± 2.08 [mg/dL] and 6.6 ± 6.41 [mg/dL] for 30, 60,
90 min PH, respectively; a decrease in MAE of 3.96 ± 2.08 [mg/dL], 4.45 ± 3.53 [mg/dL]
and 4.73 ± 3.77 [mg/dL] for 30, 60, 90 min PH, respectively; and an increase in R2 of
3.78 ± 6.77 [%], 9.55 ± 7.38 [%] and 7 ± 7.01 [%] for 30, 60, 90 min PH, respectively, from
Scenario 1 to Scenario 7. While considering the LSTM model, instead, the reduction in
RMSE is 5.97 ± 2.74 [mg/dL]; 8.55 ± 2.33 [mg/dL] and 7.12 ± 6.96 [mg/dL] for 30, 60,
90 min PH, respectively; a reduction in MAE of 3.85 ± 2.21 [mg/dL], 5.23 ± 3.48 [mg/dL]
and 5.26 ± 4.58 [mg/dL] for 30, 60, 90 min PH, respectively; and an increase in R2 of
3.8 ± 5.46 [%], 11.95 ± 8.10 [%] and 10.35 ± 8.41 [%], respectively, when comparing Sce-
nario 1 with Scenario 7. These findings validate our hypothesis that adding our proposed
biomarkers is indeed beneficial for improved BG prediction, especially on longer PH. When
comparing the 2 proposed models, we report similar accuracy for the CNN-LSTM and the
LSTM for shorter PHs (30 and 60 min), however for 90 min PH, CNN-LSTM has a minor
superiority over LSTM. This acknowledges the capacity of the CNN model in extracting
significant features from more complicated datasets, given the fact that for 90 min PH, we
trained the model with longer data windows as input sample, making it difficult for LSTM
to deal with it. Additionally, we demonstrated that our technique outperforms all prior
research that utilized the OHIOT1DM 2020 dataset and were participants in the second
BGLP competition.

We acknowledge several limitations in our study. First of all, since data recording
occurred in a free-living environment, we reported missed data points for a variety of
reasons, including the patient’s discomfort with the sensor being attached to his/her body
at all times, particularly during sleep or activity. This may have a substantial impact on the
model’s performance. For example, during the preprocessing steps, due to the presence of
numerous missing samples in the OHIOT1DM dataset, specifically in variables recoded by
the Empatica E4 sensor, we had to use a variety of mathematical techniques to compensate
for the missing samples, such as interpolation and extrapolation for the training and test
sets, respectively, or even discarding some parts, where the gap was greater than one hour



Biomedinformatics 2022, 2 725

in the dataset. This undoubtedly has a detrimental effect on the model’s performance and
liability.

Finally, we assert that, adding the proposed biomarkers, obtained by the state-of-
the-art signal processing and mathematical approches, to the physiological information
recorded from individuals with T1D improved the performance of BG predictive models.
Such models, if integrated into a decision support systems or artificial pancreas (AP) system,
can extend the time in the euglycemic range for T1D patients, which is one of the most
crucial concerns in diabetes management.
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