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Abstract: Mycelium-based composites have the potential to replace petrochemical-based materials
within architectural systems and can propose biodegradable alternatives to synthetic sound absorbing
materials. Sound absorbing materials help improve acoustic comfort, which in turn benefit our health
and productivity. Mycelium-based composites are novel materials that result when mycelium, the
vegetative root of fungi, is grown on agricultural plant-based residues. This research presents
a material study that explores how substrate variants and fabrication methods affect the sound
absorption properties of mycelium-based composites grown on paper-based waste substrate materials.
Samples were grown using Pleurotus ostreatus fungi species on waste cardboard, paper, and newsprint
substrates of varying processing techniques. Measurements of the normal-incidence sound absorption
coefficient were presented and analyzed. This paper outlines two consecutive acoustic tests: the first
round of experimentation gathered broad comparative data, useful for selecting materials for sound
absorption purposes. The second acoustic test built on the results of the first, collecting more specific
performance data and assessing material variability. The results of this study display that cardboard-
based mycelium materials perform well acoustically and structurally and could successfully be used
in acoustic panels.

Keywords: mycelium; acoustic materials; bio-fabrication; sound absorption

1. Introduction

Increasing urban populations, scarce resources, and climate change will force a paradigm
shift in our material use and approaches to construction. Our current framework of
construction is unsustainable; we rely on fleeting systems of resource extraction, waste
management, and energy consumption. By relying on man-made polymers and petroleum-
based components in our built environment, our building materials either cannot naturally
decay or take centuries in a landfill to degrade. Biodegradable materials and biologi-
cally derived materials present an alternative to this traditional construction framework.
Mycelium-based composites, a bio-material derived from fungi, have the potential to suc-
cessfully replace plastic-based materials in our building systems without the extraction of
non-renewable resources. Instead, mycelium, the vegetative root of fungi, is grown on agri-
cultural plant-based residues, resulting in a new compound material. This research aims to
further understand the characteristics of the material and the potential for implementation
as acoustic architectural components. Specifically, this research began with systematic
material tests, assessing the acoustic properties of mycelium-based components grown
on local and accessible paper-based waste products. These material tests then inform the
development of mycelium-based sound absorption panels. Using Pleurotus ostreatus fungi
species, commonly known as the oyster mushroom, this research tested how substrate
variants and fabrication methods affect acoustic absorption.
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1.1. Noise Control through Sound Absorption

Exposure to prolonged environmental noise is associated with several negative effects
that can be mitigated with proper sound treatments. Chepesiuk addresses the health
problems associated with hazardous noise, including tinnitus, elevated blood pressure,
cardiovascular constriction, and hearing loss [1]. These effects, in turn, lead to social handi-
caps, reduced workplace productivity, and decreased student–teacher communication. The
Centers for Disease Control and Prevention (CDC) even declares that “occupational hearing
loss is one of the most common work-related illnesses in the United States” [2]. Address-
ing this problem requires the implementation of noise control treatments in architectural
systems to reduce the negative effects of noise.

Noise control and architectural acoustics are a growing sector of the design field, given
the importance of maintaining acoustic comfort. Aletta and Kang argue that while noise
can be hazardous, the pursuit of “silence” from a health standpoint is not what defines
a successful acoustic environment [3]. They point out challenges in architectural acoustics
but suggest that we move away from total noise control and instead embrace a certain
threshold of environmental sound. Therefore, thoughtful consideration must be made to
regulate acoustic quality rather than just reducing all sound.

Regulating interior acoustic quality is performed through environmental assessment
and sound treatment, pending the spatial and programmatic requirements. All building
materials either reflect, transmit, or absorb incident sound, and thus to manage acoustic
comfort, materiality must be designed with acoustic intent [4].

1.1.1. Sound Absorption

Sound absorption is one method of acoustic treatment in which the energy of a sound
wave is converted into low-grade heat, reducing the strength of reflected sound [4]. This
reduces the amount of sound perceived as well as the effects of acoustic discomfort. Sound
absorptive materials have many different applications within architectural, studio, automo-
tive, and industrial acoustics. They can be used as interior lining in vehicles, aircraft, ducts,
industrial equipment, and buildings/interiors. These materials are notably used within
performance spaces to control unwanted echo, work environments to quiet the reverberant
field, and restaurants to improve users’ communication [5]. A measurement of a material’s
sound absorption is called the sound absorption coefficient, which is the ratio of energy
absorbed to the incident energy. The higher the sound absorption coefficient, the more
absorptive the material [4].

There is a need to develop sustainable alternatives for conventional synthetic sound-
absorbing materials (i.e., glass wool, stone wool, and polystyrene). Both Arenas and
Sakagami [6] and Desarnaulds et al. [7] address the environmental impacts of conventional
sound-absorbing materials. Arenas and Sakagami mentioned that sound absorbing mate-
rials began with asbestos-based materials but were replaced with mineral-based fibrous
materials once asbestos was linked to human health hazards. These fibers are most com-
monly made from glass and rock wool fibers, but their use is associated with negative
environmental effects. The researchers suggest the use of sustainable alternatives, such as
“eco-materials elaborated from residues” [6]. Desarnaulds et al. added to this by assessing
the environmental performance of sustainable acoustic materials [7]. In this article, they
specified that glass and rock wools are unsustainable because they are disposed of in
a non-inert waste landfill. They also release airborne fibers that are harmful to contractors,
laborers, and future occupants.

1.1.2. Factors Influencing Sound Absorption

Sound absorptive materials are generally fibrous or porous in nature. Their absorption
behavior is dependent on physical material characteristics, such as the following: Fiber
size, porosity, material thickness, and material density [5].

Fiber Size: Fiber diameter affects sound absorption because of the fiber’s movement
when sound waves travel through the material. Fibers act as frictional elements, which
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convert sound energy into heat as they move. Thinner fibers have a higher sound absorption
coefficient for two reasons. First, thin fibers move more easily than thicker fibers. Second,
more fibers are needed to reach the same volume density as a material with thicker fibers,
which creates more tortuous paths for sound waves, thus increasing airflow resistance [8].
Thus, having many thin fibers in a material rather than a few thick fibers creates greater
frictional resistance.

Porosity: Porosity deals with the number, size, and type of pores/voids existing in
a material through which sound waves travel through and become dampened. When
sound waves enter pores, the air molecules within the channels vibrate, converting part
of the sound energy into heat [9]. Continuous channels are more successful at absorbing
sound than shorter, closed pores.

Material’s Thickness: The thickness of a sound-absorbing material has a direct relation-
ship with low-frequency sounds (100–2000 Hz), while it has no effect on high-frequency
sounds. As the material becomes thicker, the sound absorption increases. Studies show
that effective sound absorption for low-frequency sounds is achieved when the thickness is
approximately one-tenth of the wavelength of the incident sound [5].

Material’s Density: The sound absorption coefficient increases for middle and high-
frequency sounds as the density of the material increases. Less dense materials absorb low
frequencies (500 Hz), while denser structures absorb higher frequencies (2000 Hz) [5].

The relationship between material characteristics and acoustic performance is also
relevant with regard to musical instruments. Wegst [10] addressed why the physiological
properties of bamboo and wood make them ideal materials for instrument manufacturing.
An important point made is that the loss coefficient (acoustic energy dissipated due to
friction) is dependent on the temperature and moisture content within a sample.

Understanding the physical material characteristics that determine acoustic perfor-
mance is relevant to this research because the growth factors of mycelium-based composites
can be curated to achieve optimal acoustic performance. Since mycelium-based compos-
ites characteristics are highly variable, understanding what outcome is preferred enables
narrowing down the growth parameters.

1.1.3. Testing Sound Absorption

Testing sound absorption can be performed using different methods depending on the
desired result. In order to test the sound absorption of a specific material, an impedance
tube is often used. The two-microphone transfer-function method is a common method
when using an impedance tube. This is when a sound source sends broadband sound
waves at a sample, which reflect off the sample. The sound waves generate a pattern of
forward and backward traveling waves inside the tube. Digital frequency analyzers then
measure the sound pressure at specific locations to determine the sound absorption and
acoustic impedance of the material.

1.2. Mycelium-Based Composites as Biodegradable Alternatives for Sound Absorption

The construction industry generates a significant amount of waste with undeniable
negative environmental impacts. The use of biodegradable materials as building compo-
nents can reduce the amount of building waste generated and the ensuing environmental
consequences. Transporting waste is associated with resource consumption and pollution
emissions, landfills are associated with land use and ground contamination, and waste
incineration produces contaminated ash, air pollution, and greenhouse gas emissions [11].
According to the Environmental Protection Agency (EPA), approximately 600 million tons
of construction and demolition debris were generated in 2018, which amounts to more than
twice the amount of municipal solid waste generated in the same year [12]. There is a clear
need to reduce the amount of waste generated from building construction and demolition,
and biodegradable materials offer a low waste alternative.
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1.2.1. Cultivating Mycelium-Based Composites

Mycelium-based composites result when fungal growth is stopped during coloniza-
tion of the substrate, and a resulting compound material is created [13]. Mycelium grows in
search of food and spreads through the substrate in a network colony. During this growth,
mycelium produces enzymes that convert the substrates’ biomass into nutrients while
simultaneously binding the substrate. The organic matter decomposes over time as the
plant polymers are replaced with fungal biomass. Fabrication of mycelium-based compos-
ites involves the growth of mycelium on organic substrates. The composites’ properties
and performance are highly variable; factors include fungal species, substrate type, envi-
ronmental conditions during growth (temperature, humidity), and forming/processing
techniques [14]. The resulting materials differ immensely in their density, tensile and
compressive strength, morphology, and insulative/acoustic performances [15]. Figure 1
illustrates the typical stages of mycelium-based composite cultivation.

Figure 1. Typical Stages of Mycelium-Based Composite Cultivation. Diagram reworked from [15].

There is a growing field of knowledge on mycelium-based composites as more re-
searchers are testing the characteristics of different growth methodologies. It is important
to note that because the material constitution and mechanical properties of mycelium-based
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composites vary immensely, it is difficult to establish set protocols for growth and fabri-
cation methods. The compressive strength of one composite material, for example, may
be drastically different than another composite because of the different growth protocols.
That said, below are some prominent experiments that assess the physical, chemical, and
mechanical properties of mycelium-based composites.

Appels et al. [16] experimented with the growth and fabrication techniques of mycelium-
based composites by growing Trametes multicolor and Pleurotus ostreatus on beech sawdust
and rapeseed straw. Appels et al. found that the different fungal strains and substrate com-
positions cause differing mechanical and physical characteristics of the resulting composite.
One finding, for example, is that Trametes multicolor grown on rapeseed straw resulted in
flexible and soft skin, while Pleurotus ostreatus also grown on rapeseed straw resulted in
firm and rough skin.

Elsacker et al. [15] grew Trametes versicolor on five different fiber types (hemp, flax,
flax waste, softwood, and straw). They also varied the fiber processing techniques into
four categories: loose, chopped, dust, pre-compressed, and tow. The resulting materials
were then tested for dry density, Young’s modulus, compressive stiffness, stress–strain
curves, thermal conductivity, and water absorption rate. One finding that Elsacker discov-
ered was that the mechanical properties of the composites are dependent on fiber types.
The fiber condition (loose vs. chopped) had a large impact on the compressive stiffness,
and the samples grown were dense.

1.2.2. Mycelium-Based Composites as Sound Absorbers

There is limited research and literature existing on the acoustic performance of
mycelium-based composites. Moreover, since the resulting material characteristics are
variable, the results of one study may not correlate with another. It is difficult to conclude
that all mycelium-based composites are successful acoustic absorbers based on the few
studies that exist.

Mogu [17] is a company selling mycelium-based interior acoustic wall panels. The
company, however, does not disclose its growth methodologies. One prominent study
that reported on the experiments on the acoustic properties of mycelium-based composites
is [18]. This study tested how substrate variants affect sound absorption. Their substrates
were rice straw, hemp pith, kenaf fiber, switch grass, sorghum fiber, cotton bur fiber, and
flax shive, and they assessed sound pressure levels. The results found that mycelium-
based composites are successful absorbers, but the acoustic performance varies between
samples depending on the substrate material. It was also noted that even the low performer,
the 100% cotton bur fiber, still yielded higher than 70% acoustic absorption at 1000 Hz.
In a subsequent study that built upon this research, the team, instead of testing rigid
composites, tested the acoustic properties of mycelium foam [19]. They used Ganoderma as
the fungal species and a combination of ground corn stover, grain spawn, maltodextrin,
and other nutrients as the substrate. They also used a specifically designed growth chamber
to grow the foam. These two studies were the main experiments published regarding the
acoustic properties of mycelium-based composites, and to gather a further understanding
of the acoustic potentials of the mycelium-based composites, more experiments are needed.

Another approach to using mycelium as an acoustic material was seen in the develop-
ment of the biotech violin [20]. Schwarze and Morris developed a mycelium-based material,
coined mycowood, using Physisporinus vitreus and Schizophyllum commune fungi. This mate-
rial was developed and manufactured into violins that match the tone of a Stradivarius,
an extremely high-quality violin.

Additionally, while not fungal-based, there is a growing field of research regarding
alternative natural acoustic materials. Putra et al. [21] analyzed the utilization of natural
waste fibers from paddy as an acoustic material. Similarly, Rachman et al. [22] assessed the
acoustical performance of a particleboard made of coconut fiber and citric acid solution.
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2. Materials and Methods

The following experiment consisted of three stages: (1) the cultivation of mycelium-
based composites, (2) the assessment of the cultivated samples’ acoustic performance, and
(3) the cultivation of mycelium-based acoustic panel prototypes.

Material cultivation began with substrate selection and preparation. The prepared
substrates were then sterilized in an autoclave chamber to mitigate contamination. Once
sterilized, the materials were inoculated with Pleurotus ostreatus spawn. These samples
were left to grow in a controlled growth environment, first in autoclavable bags for 12 days
and then in sterile formworks for 16 more days. Once grown, the samples were dried and
heated in an oven to kill the mycelium and stop the cultivation process. The samples were
then shaped to fit into an impedance tube to test for sound absorption. Table 1 shows the
samples that were tested in the impedance tube.

Table 1. Cultivated Samples.

Sample Abbr. Substrate Substrate Treatment Sample Size

Shredded Cardboard High freq. SCH cardboard shredded 29 mm
Shredded Cardboard Low freq. SCL cardboard shredded 100 mm

Fine Cardboard High freq. FCH cardboard pulverized 29 mm
Fine Cardboard Low freq. FCL cardboard pulverized 100 mm
Shredded Paper High freq. SPH paper shredded 29 mm
Shredded Paper Low freq. SPL paper shredded 100 mm

Fine Paper High freq. FPH paper pulverized 29 mm
Fine Paper Low freq. FPL paper pulverized 100 mm

Shredded Newsprint High freq. SNH newsprint shredded 29 mm
Shredded Newsprint Low freq. SNL newsprint shredded 100 mm

Fine Newsprint High freq. FNH newsprint pulverized 29 mm
Fine Newsprint Low freq. FNL newsprint pulverized 100 mm

Ecovative Mixture High freq. EMH undisclosed undisclosed 29 mm
Ecovative Mixture Low freq. EML undisclosed undisclosed 100 mm

The cultivated samples were tested in an impedance tube, following standard ASTM
E1050-12, to compare sound absorption in the 500 Hz to 6.4 kHz frequency range.

2.1. Cultivation of Mycelium-Based Composites

The following methodology for the growth of these mycelium-based samples was
conducted following an initial growth experiment. In the initial experiment, failure to
consider material shrinkage resulted in the inability to test for acoustic absorption. The
mycelium mixtures were grown in Petri dishes that were the exact size necessary to test
for sound absorption. Once dried, they shrunk and warped considerably and would not
permit accurate results. The following experiment was executed with shrinkage in mind.

2.1.1. Lignocellulosic Substrate Materials

The selected substrate materials are paper-based waste products, specifically sorted
office paper, cardboard, and newsprint. These paper-based materials are all lignocellulosic
materials, meaning they provide the lignin and cellulose for fungi to feed. The office paper
and cardboard were obtained from recycling bins in the Stuckeman School of Architecture
at Penn State University, University Park Campus. The newsprint was similarly obtained
from recycling bins across campus and local recycling centers. All materials were sorted to
ascertain unsoiled samples.

In order to maintain the cyclical nature of biodegradable materials, the importance
of waste and recycled materials was stressed in this study. Thus, strictly local paper-
based waste products were used for substrate materials/feedstock. According to the
EPA, paper-based materials are largely recycled, yet still, 4.2 million tons of paper were
combusted in 2019, making up 12.2 percent of all combusted municipal solid waste (MSW)
that year. Additionally, 17.2 million tons of paper-based MSW landed in landfills, making
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up 11.8 percent of MSW landfilled in 2018 (Environmental Protection Agency, n.d.). This
study addressed the accessibility of paper-based waste products and the need to reduce the
amount combusted/landfilled.

2.1.2. Substrate Preparation

Six substrate mixtures were prepared using: (a) shredded cardboard (SCL and SCH),
(b) fine cardboard (FCL and FCH), (c) shredded paper (SPL and SPH), (d) fine paper (FPL
and FPH), (e) shredded newsprint (SNL and SNH), and (f) fine newsprint (FNL and FNH)
seen in Figure 2a. For all samples, the materials (cardboard, newsprint, paper) were first
shredded using an office shredder [23]. The three materials were then split in half to make
6 separate sample mixtures, and half of each was ground to make a fine cottony material.
All 6 mixtures were supplemented with 10% (w/w) wheat bran and mixed thoroughly.
Wheat bran was used as a supplementary substance to induce mycelial growth and increase
cultivation speed by adding nitrogen to the substrate mixtures. The prepared substrates
were then adjusted to 65% moisture content by adding water. Each prepared substrate
mixture contained 100 g of dry weight material, 185 g of water, and 18 g of wheat bran.

Figure 2. Growth Process of Low-Frequency Samples and Resulting Materials: (a) Prepared Substrates
(80 mm × 80 mm square); (b) Mycelium Mixtures in Formworks (250 mm × 125 mm × 38 mm);
(c) Composite Materials After Drying (250 mm × 125 mm × 38 mm); (d) Composite Materials After
Drying—Side View.

To compare against commercially available mycelium-based composite materials,
Ecovative Design’s Grow-It-Yourself Mushroom® Material was also cultivated (EML and
EMH) (see Section 2.1.8). The substrate material of these samples was hemp hurd, as seen
in Figure 2a.
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2.1.3. Sterilization

The 6 substrate mixtures were placed in polypropylene autoclavable bags [24],
200 mm × 125 mm × 480 mm, and stored overnight in a cold room. The bags were then
autoclaved for 45 min at 121 ◦C. This sterilization process assured the substrate was not
contaminated with other organisms, making the material unlikely to grow mold. The bags
were then cooled down in a clean, room-temperature room overnight.

2.1.4. Inoculation

Each substrate mixture was inoculated with Pleurotus ostreatus spawn. The mycelium
spawn is purchased from Lambert Spawn [25] (Strain 123 Pleurotus ostreatus) in a pre-spawn
bag. These prepared bags were made of supplemented cotton seed hulls and straw. A total
of 10% of the dry weight of the substrate was added to spawn. The spawn was added
directly into the autoclavable bags and thoroughly mixed and compressed. The mycelium
was left to grow in the bags for 12 days. The bags are kept in an environmentally controlled
growth room, with 99% relative humidity and a temperature of 24 ± 1 degree Celsius.

2.1.5. Cultivation in Formworks

After 12 days of growth in bags, the cultivated mycelium mixtures were transferred
to rectangular acrylic formworks, as seen in Figure 2b. Before transferring the cultivated
mycelium, the formworks were sterilized with ethanol solution (70%). The transfer from
bags to formworks was cautiously performed in a sterile environment. The formworks
are then covered with plastic wrap and left to grow for an additional 16 days in the same
environmentally controlled growth room.

2.1.6. Heating and Drying

After 16 days, the samples were taken out of the formworks and left to dry with a fan.
After two days, the samples were placed in an oven at 90 ◦C for 24 h, resulting in the
rectangular composite materials shown in Figure 2c,d. Drying the samples caused the
material to lose 2/3 of its water content and fully kill the mycelium.

2.1.7. Sample Shaping

In order to ascertain whether the samples would fit into the impedance tube to test the
sound absorption, the rectangular samples (thickness 38 mm) had to be shaped into 100 mm
and 29 mm circles. Therefore, the materials were cut on a band saw, seen in Figure 3, and
sanded using a belt sander.

Figure 3. Sample Shaping of Fine Cardboard Material: (a) Large Formwork Dried Fine Cardboard
Sample; (b) FCL Samples (100 mm diameter, 38 mm thickness); (c) Small Formwork Dried Fine
Cardboard Sample; (d) FCH Samples (29 mm diameter, 38 mm thickness).

2.1.8. Commercial Mycelium Comparison

In order to compare against commercially available mycelium-based composite mix-
tures, Ecovative Design’s Grow-It-Yourself Mushroom® Material [26] was grown in the
same two formworks and cut to the same sample circles. Ecovative is one of the pioneers
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in utilizing mycelium-based composites in industrial applications. This start-up began
by producing packaging and insulation materials as an alternative to polystyrene-based
(Styrofoam) materials and has developed into a large biotechnology company, making
myco-leather, mycelium meat alternatives, and beauty industry alternatives [27]. The
company sells Grow-It-Yourself bags with their own mycelium mixture. Samples grown
using their mixture were also tested in this study (EML and EMH).

2.2. Testing and Assessing Sound Absorption of Mycelium-Based Composites

The following experiment outlined two sets of acoustic tests. The first round of tests
was useful in selecting appropriate sound-absorbing materials for acoustic panels. The
second set of tests builds on the results of the first by testing the best performing materials
again using a larger sample size.

2.2.1. Preliminary Testing for Sound Absorption

As a preliminary study, first, two replicates for each of the samples (material thickness:
38 mm) are tested three times using an impedance tube, specifically the two-microphone
transfer-function method, illustrated in Figure 4, following the standard ASTM E1050-12.
Brüel and Kjær’s Impedance Tube Kit (50 Hz–6.4 kHz) Type 4206 was used in this experi-
ment. Type 4206 consists of:

1. 100 mm diameter tube (large tube)

a. Frequency range: 50 Hz to 1.6 kHz;
b. Material sample size requirements: 100 mm diameter, 200 mm max sample length.

2. 29 mm diameter tube (small tube)

a. Frequency range: 505 Hz to 6.4 kHz;
b. Material sample size requirements: 29 mm diameter, 200 mm max sample length.

Figure 4. Impedance tube Testing: (a) Impedance Tube; (b) FCL Sample in the impedance tube;
(c) FCH sample in the impedance tube.

2.2.2. Testing with Larger Sample Size

The results of the preliminary study informed the second stage of acoustical testing.
Substrates that resulted in the structural failure of the samples were omitted. Two of the
most promising substrates from the preliminary study were determined for both low-
frequency and high-frequency sound absorption. These were SCL and FCL and SCH and
FCH, respectively. Six replicates were created for each of the low-frequency samples (SCL
and FCL), and 9 replicates were created for each of the high-frequency samples (SCH and
FCH). These are listed on Tables 2 and 3. All replicates’ thicknesses were 38 mm. These
samples were each tested again, three times, using an impedance tube following the same
standard (ASTM E1050-12).
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2.2.3. Statistical Analysis

There are usually six frequencies used to determine whether a material is sound
absorbing. These are: 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz. If the average
sound absorption coefficient to the above-stated six frequencies α is bigger than 0.2, the
material is called a sound absorbing material [28]. For comparison of the two selected
sample groups, the sound absorption coefficients at the following low-frequency levels
are used for the 100 mm samples: 125 Hz, 250 Hz, 500 Hz, and 1000 Hz; additionally, the
sound absorption coefficients at the following high-frequency levels are used for the 29 mm
samples: 2000 Hz and 4000 Hz. The mean sound absorption coefficients of the sample
groups at the given frequency levels were compared using the Mann–Whitney U test with
the SPSS software (IBM Corp. Released 2015. IBM SPSS Statistics for Windows, Version
23.0. IBM Corp: Armonk, NY, USA). The Mann–Whitney U test was used to determine
whether there is a difference in the dependent variable for two independent groups and to
compare whether the distribution of the dependent variable is the same for two groups [29].
A p-value of <0.05 was considered statistically significant.

2.3. Paneling Experiments

Initial experiments were conducted regarding the design and fabrication of acoustic
panels using the best-performing materials presented in this study. As seen in Figure 5, the
fabrication of the panels was performed by first CNC-milling a positive wooden form of
380 mm × 380 mm × 50 mm, and then thermoforming the wooden form with PVC sheets
to create a reusable plastic negative formwork. This formwork was then filled with a fine
cardboard substrate mixture, and panels were grown using the same procedure presented
in Section 2.1.

Figure 5. Acoustic Panel Fabrication Diagram.

3. Results
3.1. Physical Characteristics of the Cultivated Mycelium-Based Composites

A visual inspection was conducted to determine initial growth conclusions. This
first analysis was useful in determining which mycelium mixtures were unsuitable for the
impedance tube tests and therefore unsuitable as acoustic paneling materials.
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3.1.1. Warpage

The materials, once dried, shrank and warped from their original form, as seen in
Figure 2d. The material with the most warpage was the Sample FPL (fine paper), and the
material with the least warpage was the Sample EML (Ecovative mixture), followed by the
Sample FCL (fine cardboard), and the Sample FNL (fine newsprint). In order to ascertain
accurate test results from the impedance tube, the sample surface must be flat. As a result,
the formworks were made larger than the sample size, so the inaccuracy due to warpage
was minimized. For the use of mycelium-based composites as acoustic panels, warpage
becomes a challenge for form-to-performance accuracy and mounting purposes. Further
research is necessary to predict warpage for specific mycelium mixtures. One possible
solution could be to add weights to the corners of the materials as they dry.

3.1.2. Structural Integrity

The structural integrity of the composite material largely relies on the structure of
the substrate material and how well mycelium can grow throughout the substrate. The
Sample FNL (fine newsprint) did not hold together once dried, cracked, and crumbled, as
seen in Figure 6a. A possible explanation for the deterioration is the structure of the fine
newsprint. When pulverized, the newsprint became very fine dust, while the pulverized
paper and cardboard maintained more of their structure. After shaping the materials using
industrial tools, the materials’ structural integrity was affected, as the fungal skin is a large
component holding the material together. The Sample SPH (shredded paper), once cut
with a saw, could not yield accurate results in the impedance tube because of its structural
integrity, as seen in Figure 6b. Therefore, no further tests were conducted with the FNL,
FNH, SPL, and SPH Samples.

Figure 6. Structural Integrity of Mycelium Samples: (a) FNL (b) SPH.

Once all the samples were cut open, the inner growth of the samples was analyzed.
The samples were observed to have higher mycelial growth on the outer surface and less
mycelial growth internally. This could be related to the absence of light and air and the heat
produced by mycelium during growth [15]. While the shaping of the samples was necessary
for the impedance tube tests, it is worth noting that for the purpose of acoustic panels,
shaping/cutting the samples negatively affects their durability and structural integrity.

It is possible that a combination of different substrate materials would lead to more
mycelium growth and stronger material. Further research can be conducted to assess the
mechanical and physical characteristics of mycelium-based composites grown on different
combinations of paper-based waste substrates.
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3.2. Sound Absorption of the Cultivated Mycelium-Based Composites
3.2.1. Results of the Preliminary Acoustic Absorption Testing

The results of the impedance tube for each sample were recorded and graphed. For
each material mixture, two replicates grown in a single formwork were tested, and their
results were averaged. It is important to note that the surface of the samples varied
depending on the growth of the mycelium. These tests were useful in determining which
mixtures performed better than others and informed the second stage of acoustical testing
with additional replicates.

Of the low to mid-frequency samples, the fine cardboard samples (FCL) showed the
best absorption, as can be seen in Figure 7, though none of the samples showed very
high absorption in the low-frequency range (50 Hz to 500 Hz). It was noted that the
sound absorption results shown do not include the effect of an air gap behind the material.
The introduction of an air cavity between the material and the rigid backing surface can
increase the sound absorption performance at low frequencies [30]. Of the mid-range
frequencies (500 Hz to 2 kHz), the fine cardboard samples FCL had the best acoustic
absorption performance.

Figure 7. Sound Absorption Coefficient of low-frequency samples (100 mm).

Of the high-frequency samples, the shredded cardboard samples (SCH) had the highest
sound absorption from the 2 kHz to 6.4 kHz frequency range, as can be seen in Figure 8.
Samples SCH is followed by the fine cardboard samples (FCH), then the fine paper samples
(FPH). The lowest absorption is from the shredded newsprint samples (SNH). EMH does
not show to be a successful absorber.
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The graphs in Figures 7 and 8 display the results for the 100 mm and 29 mm samples,
respectively. The first graph (Figure 7) represents the materials’ absorption from the 50 Hz
to 1.6 kHz frequency range. The second (Figure 8) is from 500 Hz to 6.4 kHz.

Figure 8. Sound Absorption Coefficients of high frequency samples (29 mm).

3.2.2. Results of the Acoustic Absorption Testing with Larger Sample Size

Low-frequency sound absorption coefficients: To obtain a better understanding of how
the two best-performing samples in low-frequency sound absorption, SCL and FCL, com-
pare with each other, we created six replicates for each sample group and tested their
acoustic absorption. Three formworks were filled for each substrate mixture, resulting in
two replicates per formwork, thus six replicates per substrate mixture (Table 2). Figure 9
presents the test results of the six SCL replicates grown in three separate formworks.
Figure 10 presents the test results of the six FCL replicates grown in three separate formworks.

Table 2. Samples Tested for Low-Frequency Sound Absorption.

Abbr. Sample Formwork Number Number of Replicates Sample Size

SCL Shredded Cardboard Low freq. 1–2–3 6 100 mm
FCL Fine Cardboard Low freq. 4–5–6 6 100 mm
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Figure 9. Sound Absorption Coefficients of SCL replicates (100 mm).

Figure 10. Sound Absorption Coefficients of FCL replicates (100 mm).

Of the low to mid-frequency samples, the shredded cardboard samples (SCL) follow
two general trends. Half of the replicates’ sound absorption coefficients peak between
450 Hz and 650 Hz and then begin to drop, while the other half has a much higher
absorption rate, and the absorption peak shifts to between 750 Hz and 1050 Hz. Of the
mid-range frequencies (500 Hz to 2 kHz), SCL performs well, with half of the replicates
reaching over a 0.9 sound absorption coefficient at some frequency.
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The fine cardboard samples (FCL) similarly follow two general trends in the low to
mid-frequency ranges. Four of the replicates’ sound absorption coefficients peak between
400 Hz and 700 Hz, then drop and remain constant, while the other two have a much
higher absorption rate, and the absorption peak shifts to between 550 Hz and 850 Hz. Of
the mid-range frequencies (500 Hz to 2 kHz), some of the FCL also perform well, with two
of the replicates reaching a 0.9 sound absorption coefficient at some frequency.

As can be seen in Table 4, the test results show that in the selected low to mid frequen-
cies (125 Hz, 250 Hz, 500 Hz, 1000 Hz), the sound absorption trends of both low-frequency
sample groups (SCL and FCL) are statistically similar (p > 0.05).

High-frequency sound absorption coefficients: To obtain a better understanding of how the
two best performing samples in high-frequency sound absorption, SCH and FCH, compare
with each other, we created nine replicates for each sample group and tested their acoustic
absorption. Three formworks were filled for each substrate mixture, resulting in three
replicates per formwork, thus nine replicates per substrate mixture (Table 3). Figure 11
presents the test results of the nine SCH replicates. Figure 12 presents the test results of the
nine FCH replicates.

Table 3. Samples Tested for High-Frequency Sound Absorption.

Abbr. Sample Formwork Number Number of Replicates Sample Size

SCH Shredded Cardboard High freq. 7–8–9 9 29 mm
FCH Fine Cardboard High freq. 10–11–12 9 29 mm

Figure 11. Sound Absorption Coefficients of SCH replicates (29 mm).
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Figure 12. Sound Absorption Coefficients of FCH replicates (29 mm).

Of the high-frequency samples, the shredded cardboard samples (SCH) follow a single
trend. The samples generally peak between 500 Hz and 1.5 kHz, dip and then gradually
rise again. The samples have a medium to high absorption rate from 500 Hz to 1.5 kHz and
4 kHz to 5.5 kHz. The fine cardboard samples (FCH) also follow a single trend. However, as
can be seen in Table 4, in the selected high frequencies (2000 Hz, 4000 Hz), high-frequency
sample groups (SCH and FCH) have different sound absorption trends (p = 0.019 and
p = 0.011, respectively). Shredded cardboard samples (SCH) had better sound absorption
performance than fine cardboard samples (FCH).

Table 4. Sound absorption coefficients of shredded and fine cardboard samples (mean± Standard Deviation).

Frequencies
(Hz)

Shredded
Cardboard

(SCL + SCH)

Fine
Cardboard

(FCL + FCH)
p-Value

Low Freq.

125 0.0698 ± 0.02 0.1218 ± 0.05 0.070
250 0.1609 ± 0.07 0.2074 ± 0.04 0.240
500 0.5116 ± 0.17 0.5096 ± 0.15 0.810
1000 0.6891 ± 0.26 0.4697 ± 0.23 0.070

High Freq. 2000 0.4934 ± 0.07 0.3949 ± 0.08 0.019
4000 0.5731 ± 0.07 0.4703 ± 0.06 0.011

3.3. Mycelium-Based Acoustic Panel Prototypes Cultivated with Fine Cardboard Substrates

The results of the acoustic panel prototypes revealed that mycelium growth is still
consistent even in larger formworks (Figure 13). However, the durability of the material
proves to be a problem on a larger scale. After dying and handling, the edges of the panels
began to show signs of deterioration. In order to ensure durability with the fine cardboard
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material, additional support may be necessary. This could potentially be remedied with
additional substrate materials, internal support, or external backing.

Figure 13. Acoustic panel prototype cultivated with Fine Cardboard substrate.

Concurrently with panel fabrication, a customizable panel system was generated using
parametric modeling software (Rhinoceros 3D, Version 7.0. Robert McNeel & Associates,
Seattle, WA, USA). Figure 14 shows a custom acoustic wall configuration generated using
this system and illustrates how the panel configuration can be altered. The use of the
parametric system aids in random wall configurations. Using a three-dimensional truchet
tile in the parametric system allows for a number of wall configurations with only one panel,
thus reducing the need for different formworks.

Figure 14. Parametric acoustic panel wall prototype design: (a) Acoustic panel installation illustrated
(b) Example wall configuration.

4. Discussion

The results of this study indicate that mycelium-based composites grown on waste
shredded and fine cardboard show potential as sound-absorbing materials, specifically in
the mid to high-frequency ranges. Shredded cardboard samples (SCH) slightly outperform
fine cardboard samples (FCH) in high-frequency ranges.

4.1. Comparison to Commercial Sound Absorbing Materials

The impedance tube test results show that mycelium-based composites cultivated on
shredded cardboard and fine cardboard can both be considered sound-absorbing materials
(α > 0.2) and have the potential to compete with the performance of synthetic sound ab-
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sorbers (Table 5). The sound absorbing coefficients of three types of commercially available
synthetic sound absorbing products made with fiberglass, polypropylene, and plaster
were compared with the fine cardboard samples (FCL + FCH) and shredded cardboard
samples (SCL + SCH). The comparison revealed that the fiberglass insulation board shows
better sound absorption than both sample groups in all the frequencies except 125 Hz.
When compared with the polypropylene product, both sample groups have better sound
absorption at low frequencies (125 Hz, 250 Hz, 500 Hz). Compared with plasterboard, one
of the most common interior wall finishes, the absorption coefficients of both samples are
significantly higher in the mid to high-frequency ranges. These comparisons are helpful in
discussing the potential of the two sample groups as sound absorbers. For more accurate
comparisons, commercially available sound-absorbing materials need to be tested by the
authors for each frequency range using the same testing model.

Table 5. Sound Absorption Coefficients comparing commercial sound absorbing materials with the
fine cardboard samples (FCL + FCH) and shredded cardboard samples (SCL + SCH).

Product/Sample Octave Band Center Frequencies, Hz Average

125 250 500 1000 2000 4000 α

Fine Cardboard Samples
(FCL + FCH) 0.12 0.21 0.51 0.47 0.40 0.47 0.36

Shredded Cardboard Samples
(SCL + SCH) 0.07 0.16 0.51 0.69 0.49 0.57 0.42

Type 706 Series Fiberglas™ Insulation
Board (Fiberglass) [31] 0.01 0.22 0.67 0.97 1.05 1.06 0.66

Quiet Board™ Acoustic Panel
(Polypropylene) [32] 0.05 0.06 0.21 0.8 0.65 0.75 0.42

Plasterboard (1/2′′ paneling on studs) [33] 0.29 0.1 0.06 0.05 0.04 0.04 0.10

4.2. Effects of Surface Texture and Porosity on Sound Absorption

The results of the impedance tube tests revealed significant variances between repli-
cates of the same material (see Table 4). This is hypothesized to be the result of inconsistent
mycelia growth, the size of the substrate material, and the random substrate filling tech-
nique. The following graphs in Figure 15 present the sound absorption coefficients of
SCH replicates cultivated within three different formworks, alongside close-up images
of the replicates cultivated within the same formwork. A visual inspection revealed that
the replicates with more bumps and pores at the surface have higher sound absorption
coefficients; however, further tests are needed to validate this hypothesis.

Figure 15. Cont.
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Figure 15. Sound Absorption Coefficient Graphs and the Shredded Cardboard Samples Tested.
A visual inspection to compare surface texture and porosity with the respective material performance.

4.3. Limitations and Strengths of the Study

There are two main limitations to this study. The first limitation addresses Section 4.1.
The data for the commercially available synthetic sound absorbers were collected from the
existing literature [31–33]. While the sound absorption coefficients for these materials are
validated numbers provided in their data sheets, to be able to ensure accurate results and
have a meaningful comparison, commercially available sound absorbing materials need to
be tested for each frequency range using the same testing model, with samples that have
the same material thickness, density, and porosity.

The second limitation addresses Section 4.2. As can be seen in Table 4, the sound
absorption coefficients for both sample groups in 500 Hz and 1000 Hz frequencies show
significant variances. This limitation can be overcome by creating larger subgroups within
each sample group through visual inspection of the replicates and testing these subgroups’
sound absorption coefficients independently.

The strength of the study was initially performing preliminary tests with multiple
waste paper-based samples. This enabled accurately deciding which substrates fit in the
testing model and eliminating the ones that did not work.

5. Conclusions

Of the tested samples from the preliminary acoustic tests, the shredded and fine
cardboard-based samples show the best acoustic performance. In addition to this, the
fine newsprint and shredded paper substrates are not considered to be applicable for
paneling purposes due to their (lack of) structural integrity. Due to these findings, the
shredded and fine cardboard samples were regrown with larger sample size and tested
again. The results show that both shredded and fine cardboard-based mycelium composites
do show potential as sound absorbing materials, with shredded cardboard samples slightly
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performing better in high-frequency sound absorption. However, the inherent nature of
bio-fabricated materials causes a variance in performance, even between samples of the
same material.

The next steps of this research are to investigate how material thickness, density,
and porosity affect sound absorption of shredded and fine cardboard-based mycelium
composites. This will be performed by cultivating additional replicates and creating larger
subgroups within each sample group by controllably varying their material thickness,
density, and porosity. Along with their sound absorption properties, their mechanical
properties (compression, bending, torsion, and tension and impact damping) and morpho-
logical characteristics (i.e., pore size, porosity, density), as well as the growth mechanisms
of mycelium, will be studied. The main objective is to understand how the growth of
mycelium at microscopic levels, the morphological characteristics at both mesoscopic and
macroscopic levels, and the acoustic absorption performance of the composites interact
with one another. Another follow-up study could be to test various commercially available
synthetic acoustic absorbers using the same testing model, with samples that have the same
material thickness, density, and porosity as the mycelium-based sample groups. This would
enable a more thorough comparison of mycelium-based composites’ acoustic absorption
performance with synthetic absorbers.

Once a holistic understanding and more comprehensive data about the composites’
acoustic, mechanical, and morphological characteristics are gathered, the next steps in-
volve the applications of the shredded and fine cardboard-based composites as acoustic
paneling. The material itself, though sound absorbing, has physical limitations such as
structural integrity and warping when cultivated on larger scales. More experiments must
be conducted to ensure the durability of the material. Concurrently with durability assess-
ments, analyses regarding form-to-performance will be conducted. These experiments will
be used to determine how the form of the acoustic panels affects the sound absorption
performance. Therefore, full-scale prototypes will be built and tested alongside computer
simulation models in reverberant chambers. These results will inform parametric iterations
of panel systems.

Incorporating mycelium-based composites into architectural systems is significant
because of their ability to reduce waste generated and energy consumed during material
manufacturing compared to conventional building materials. Mycelium-based composites
recycle waste materials for growth, require little energy to manufacture, and completely
decompose at the end of their product life. This research is relevant in order to establish
protocols for material use and implementation within acoustic systems.
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