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Abstract: Biological fish often swim in a schooling manner, the mechanism of which comes from
the fact that these schooling movements can improve the fishes’ hydrodynamic efficiency. Inspired
by this phenomenon, a target-following control framework for a biomimetic autonomous system is
proposed in this paper. Firstly, a following motion model is established based on the mechanism of
fish schooling swimming, in which the follower robotic fish keeps a certain distance and orientation
from the leader robotic fish. Second, by incorporating a predictive concept into reinforcement learning,
a predictive deep deterministic policy gradient-following controller is provided with the normalized
state space, action space, reward, and prediction design. It can avoid overshoot to a certain extent. A
nonlinear model predictive controller is designed and can be selected for the follower robotic fish,
together with the predictive reinforcement learning. Finally, extensive simulations are conducted,
including the fix point and dynamic target following for single robotic fish, as well as cooperative
following with the leader robotic fish. The obtained results indicate the effectiveness of the proposed
methods, providing a valuable sight for the cooperative control of underwater robots to explore
the ocean.

Keywords: biomimetic motion; biomimetic autonomous system; target following; deep reinforcement
learning; predictive control

1. Introduction

With the rapid development of science and technology, the field of biomimetics has
witnessed substantial advance in recent years, garnering widespread attention from re-
searchers globally. With a long history of natural evolution, biological fish have acquired re-
markable motion capabilities. They demonstrate proficiency in executing various acrobatic
maneuvers, including rapid start and stop, inter-media leaping, and other sophisticated
actions. Additionally, natural fish can achieve hydrodynamic drag reduction and energy
efficiency through the utilization of diverse biological mechanisms.

Inspired by nature, the biomimetic robotic fish has attracted the attention of many
scientists and engineers [1–6]. Katzschmann et al. designed a new kind of soft robotic
fish named Sofi, which can interact with remote control personnel through ultrasonic
communication module and realize the close observation of underwater organisms with a
maximum diving depth of 18 m [1]. By mimicking yellowfin tuna, White et al. developed a
series of high-speed biomimetic robotic tuna [7,8], and achieved tail-fin flapping frequencies
of up to 15 Hz. To quantify the role of body flexibility in high-speed swimming, they further
presented Tunabot Flex, which could achieve a high swimming speed of 4.6 BL/s (body
length per second, BL/s) at a swing frequency of 8 Hz. Yu et al. designed a robotic dolphin.
Based on the motion control strategies, a high swimming speed of 2.05 m/s (2.85 BL/s)
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was achieved, and the action of repetitive leaping similar to that of biological dolphins was
completed [9]. Compared with the traditional autonomous underwater vehicles (AUVs),
the biomimetic robotic fish has the advantages of high maneuverability, strong concealment,
and better biocompatibility. These attributes underscore their considerable potential for
application across diverse domains.

More importantly, by learning the motion mechanism of biological fish, the movement
performance of the robotic fish can be further improved, e.g., by using fish schooling
movement to save energy. It is hypothesized that fish schooling movements can improve the
hydrodynamic efficiency via a certain swimming mode [10]. In a school of fish, the leader
fish tend to consume more energy than the follower fish. The eddy current generated
by the tail of leader fish can provide a certain amount of water power to the follower,
thus achieving the effect of energy saving. This movement has a similar phenomenon
in birds. As a result, biological fish tend to travel in flocks for long-distance voyages.
Many researchers have investigated the fish schooling mechanism. Li et al. focused on
how the fish plan their movement to save energy and achieve larger thrust from the
vortices generated by others [11,12]. They designed some bionic robotic fish to measure
the energy consumption when the robotic fish swim in the pool. Further, a vortex phase-
matching strategy was obtained, indicating that the schooling fish exhibited a tailbeat
phase difference that varied linearly with front–back distance. They also found that when
the fish swim side by side, an individual could improve its efficiency if they changed the
tailbeat phase to a certain angle, such as 0.25π. By measuring the actual movement of
15 fish, Marras et al. found that compared with the individual swimming, the schooling
fish in any position can save energy, and the fish swimming behind the neighbours showed
the best performance [13]. Thandiackal et al. conducted an interesting experiment to
observe the movement of natural trout when it interacted with the thrust wakes via a
robotic mechanism. The results illustrated that the trout exhibited reduced pressure drag,
further proving the energy saving [14]. Li et al. investigated the pressure and vorticity
fields between a single fish and a pair of fish, and offered some results. However, there are
insufficient conclusions about motion benefits of fish schooling [15]. Dai et al. investigated
a variety of stable formations with the schooling of two, three and four self-propelled
fish-like swimmers, and examined the energy efficiency of each formation [16]. Verma et al.
explained the energy-saving mechanism in the schooling behavior of fish. By combining
deep reinforcement learning and fluid simulation, an energy-saving strategy was proposed,
which enabled followers to save energy by using vortices in the leader’s wake [17]. More
studies can be found in [18].

With regard to the target following control, there are many related results. Dai et al. [19]
designed a robust tube model predictive controller (MPC) with an extended Kalman filter
target observer for an underwater vehicle-manipulator system, specifically tailored to
address the challenge of capturing moving targets. Cui et al. [20] proposed an optimal
trajectory tracking method for AUVs, applying reinforcement learning techniques with
critic and action neural networks. He et al. [21] formulated asynchronous multithreading
proximal policy optimization-based algorithms to tackle issues related to path planning and
trajectory tracking in unmanned underwater vehicles. Jiang et al. [22] introduced a model-
free attention-based, model-agnostic meta-learning algorithm for AUVs, demonstrating
efficacy in achieving high-precision tracking tasks. Zou et al. [23] designed an image-guided
motion controller which consists of a genetic algorithm-based linear quadratic regulator
velocity controller and direction controller to realize mobile target following for micro-
robotic swarms. Yan et al. [24] designed a reinforcement learning and orthogonal fractional
factorial design-based tracking controller for AUVs to enhance the scalability of uncertainty
evaluation. Shi et al. [25] applied a hybrid actors–critics architecture to improve following
control accuracy of AUVs. Gao et al. [26] introduced a fixed-time resilient cooperative
edge-triggered estimation and control framework designed to facilitate cooperative target
tracking for unmanned surface vehicles (USVs). Wai et al. [27] constructed an adaptive
following control scheme with a dynamic recurrent fuzzy neural network that allowed
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the vision-based mobile robot to track the moving target. Huang et al. [28] designed a
homography-based visual servo controller that allowed the unmanned aerial vehicle to
track the moving ship trajectory. Lin et al. [29] designed an image-based visual servoing
geometric controller for quadrotors for tracking the desired trajectory.

Our work is motivated by the collective motion observed in fish schooling, where
a phenomenon is known to enhance motion efficiency and reduce energy consumption.
The studies on fish schooling movement can be theoretically categorized into kinematic and
behavioral levels. At the kinematic level, the studies primarily focus on the macroscopic
distances and swimming postures among fish. By closely observing the swimming patterns
within fish schools, optimal distances and directions can be discerned. Further, at the
behavioral level, greater emphasis may be placed on the individual body swimming
postures of fish. For instance, in the context of tail-wagging fish swimming, it becomes
imperative to synthesize parameters such as tail-wagging frequency, amplitude, and phase
differences within the fish school. In this paper, we focus on the kinematic level, wherein we
translate the complexities of fish schooling swimming into the pursuit of target position and
attitude, thereby providing foundational support for biomimetic research at the behavioral
level. The primary contributions of this paper can be concluded in three aspects.

• Inspired by fish schooling movement, we focus on the kinematic level and propose a
target following control framework, including a predictive deep deterministic policy
gradient controller (PDDPG) and nonlinear model predictive controller (NMPC).

• Aiming to address the hysteresis characteristics of following control for the robotic
fish, we introduce the predictive concept into the deep deterministic policy gradient
method. By predicting the future state and adding it to the buffer pool, we effectively
mitigate the overshooting phenomenon during the tracking process. Furthermore,
the state space is intentionally designed in a normalized manner, concurrently featur-
ing a multi-objective optimization reward function.

• Taking the kinematic and dynamic models as the predictive model, we derive the
nonlinear model predictive control law with full consideration of the stage cost and
terminal cost. Extensive simulations are carried out to verify the effectiveness of the
proposed PDDPG and NMPC methods.

The subsequent sections of this paper are structured as follows. Section 2 provides an
exposition of the problem statement and the control framework. Section 3 delves into the
target-following control methodologies, encompassing the predictive deep deterministic
policy gradient controller and the nonlinear model predictive controller. Furthermore,
Section 4 presents simulation results, followed by a comprehensive analysis. Finally,
Section 5 offers concluding remarks to summarize the paper.

2. Problem Statement and Control Framework

In this section, we commence by introducing the target-following task and succinctly
present the kinematic and dynamic models pertaining to the underwater robot. Subse-
quently, aligned with the specified task, we formulate a target-following framework for the
robotic fish. Additionally, an alternative movement strategy is proposed, which integrates
both the predictive deep deterministic policy gradient controller and the nonlinear model
predictive controller.

In view of the observations that fish schooling movement in nature can save energy con-
sumption and improve movement efficiency, this paper aims to design a target-following
control method for the robotic fish. As shown in Figure 1, by selecting a robotic fish as the
leader, a path cruise task that involves setting target points can be executed. Pl = (xl , yl)
denotes the real-time position of the leader robotic fish while φl is its yaw angle. dg and φg
indicate the Euclidean distance and relative direction between the leader robotic fish and
the target points, respectively. φlg = φl − φg illustrates the attitude direction difference
between the leader robotic fish and the target points.
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Figure 1. The illustration of the target-following task and coordinate system definition.

Furthermore, we set some robotic fish as followers. Pi
f =

(
xi

f , yi
f

)
denotes the real-

time position of the follower robotic fish, where i = 1, 2, . . . , n. The purpose of the following
task is to maintain the set target distance di

f and direction φi
f between the follower and

leader robotic fish. Given the aforementioned variables, the target position point for the
follower can be obtained as follows:

xi
f = xl + di

f cos
(

φi
f − φl

)
yi

f = yl + di
f sin

(
φi

f − φl

) . (1)

It should be noted that the target point undergoes real-time variations with the move-
ments of the leader. Consequently, for the follower, this task is characterized as a dynamic
following mission. One of the principal improvements of this study lies in the approach
based on a deep reinforcement learning framework. During training, static target-following
scenarios are employed, yet the method is endowed with the capability to dynamically
follow targets. Besides, for each single robotic fish, we offer the kinematic model for the
following control, which can be formulated by

ẋ = u cos φ − v sin φ, (2)

ẏ = u sin φ + v cos φ, (3)

φ̇ = r, (4)

where p(t) = (x(t), y(t), φ(t)) represent the position and yaw angle with respect to inertia
frame, respectively. (u, v, r) denote the linear and angular velocities with respect to body
frame, respectively. Thereafter, the dynamic model can be derived as follows:

u̇ =
1

m11
(τu + m22vr − d11u), (5)

v̇ =
1

m22
(−m11ur − d22v), (6)

ṙ =
1

m33
(τr + (m11 − m22)uv − d33r), (7)
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where (m11, m22, m33) and (d11, d22, d33) are the mass and damping parameters larger than
zero. τu and τr indicate the thrust force and yaw moment, respectively.

Therefore, based on the aforementioned problem statement, this paper proposes a
target-following control framework, as illustrated in Figure 2. The framework comprises
a biomimetic autonomous system consisting of one leader robotic fish (referred to as
Agent_0) and multiple follower robotic fish. Initially, a cruising target point is set for the
leader robotic fish. Utilizing the proposed PDDPG controller, real-time control force and
moment can be generated to achieve cruising control. It is noteworthy that although these
target points are discrete, if they are relatively close, an effect similar to continuous path
following can be achieved. Subsequently, through a task allocation module based on the
principles of natural fish, real-time target following positions can be determined for each
follower robotic fish. Furthermore, for each follower robotic fish, a controller selector is
designed, corresponding to the proposed PDDPG controller and NMPC, to output real-
time control force and moment for target following. It is essential to emphasize the dual
purposes of designing the selector. On one hand, the PDDPG controller exhibits strong
environmental adaptability and scalability, suggesting that it has an advantage over NMPC
when introducing random obstacle avoidance tasks in this mission. However, NMPC
features stable solution finding and smooth motion output, contributing to improved
control stability. On the other hand, in this paper, the two controllers are independent
and are switched through a toggle switch. In practice, they can be organically integrated
based on certain principles, such as event-triggered mechanisms, according to different
task scenarios.

Agent_0

PDDPG controller

System 

model 

and 

Environment

NMPC controllerGoal_i

PDDPG controllerGoal_1

Goal_0

Task 

assignment

.

.

.
.
.
.
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Agent_1
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State

Action

Controller 

selector

Actor Critic
Predictive 
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Optimizer

Online network

Target network

Optimizer

Online network
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Experience buffer poolst, rt, at, st+i

Sample
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Figure 2. The target following control framework.

3. The Methodology of Target Following Control
3.1. The Predictive Deep Deterministic Policy Gradient Controller

In consideration of the dynamic characteristics and strong interference in underwater
environments, this section introduces a following controller based on a predictive deep
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deterministic policy gradient. Firstly, the target-following problem is formulated as a multi-
objective optimization issue through the design of network architecture, state space, action
space, and reward function. Secondly, to enhance the training performance, normalization
scaling is applied to the designed state variables, and reward values are standardized.
More importantly, due to the highly nonlinear nature exhibited by biomimetic robotic fish,
traditional control methods often result in following overshooting. To address this issue,
the predictive approach is incorporated into the conventional deep deterministic policy
gradient (DDPG) method. Specifically, when certain conditions are met, state variables
and reward values after Np steps are calculated and stored in a buffer pool. During the
testing stage, actions can be output from the network based on the state variables after Np
steps. This technique can expand the training space to some extent, effectively avoiding
overshooting without increasing the state space, thereby reducing network complexity.

First, the target-following task can be regarded as a Markov decision process. The tuple
data comprises the state variable s ∈ S , the action variable a ∈ A, the reward function
R(s), the state transition function F : (s, a) → s′, and the discount factor γ. By inputting
the current state into a neural network, the action variable can be outputted, leading to the
transition to the next state. The optimization objective is to maximize the reward function,
driving parameter updates in the neural network. In recent years, DDPG has come to
stand out as a reinforcement learning algorithm that has garnered substantial interest
in recent years due to its efficacy in addressing challenges associated with continuous
action space problems. Its applications span diverse domains, including robotics, control,
and various other fields. DDPG amalgamates concepts from both value-based and policy-
based reinforcement learning, utilizing a dual-neural network architecture comprising the
Critic and the Actor. In this paper, we introduce certain enhancements to the conventional
DDPG framework to accomplish the target-following task.

For deep reinforcement learning algorithms, the selection of appropriate state and
action spaces, along with the design of a suitable reward function, stands as a pivotal deter-
minant of network performance. In the subsequent section, specific design methodologies
will be elucidated.

3.1.1. State Space

In pursuit of reducing the complexity of deep neural networks, we exclusively focus
on the design of two state variables as follows:

• dsg: The state variable considered in this context pertains to the distance between the
current position of the robot and the target point. This variable primarily ensures that
the robot consistently approaches the target point at a predetermined velocity.

• φsg: The state variable involves the angular separation between the robot’s current
position and the target point. This variable is crucial for ensuring the robot’s sustained
alignment towards the target, serving the dual purpose of minimizing travel distance
and maintaining a stable motion posture.

To enhance training performance and expedite convergence, we propose a normal-
ization and scaling technique for a specific set of state variables. Firstly, we determine the
maximum values for two state variables. In this study, the Euclidean distance between the
robot’s starting point (xo, yo) and the target point (xg, yg) is designated as the maximum
value for dsg, as follows:

dmax =

√(
xo − xg

)2
+

(
yo − yg

)2. (8)

As for φmax, we set it to 2π. Additionally, after normalization, we introduce a scale-up
factor for two primary purposes. Firstly, post-normalization, the values fall within the
[0, 1] range, which might be unsuitable for network convergence. Hence, amplification is
applied. Secondly, considering the difference in the physical interpretations of dsg and φsg,
it is necessary to balance their magnitudes for faster convergence when inputting into the
network. It is noteworthy that the selection of dmax is not a fixed value due to the real-time
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variability of the follower robot’s target. Hence, by dynamically updating the target point
(xg, yg) for the follower robot, more effective action values can be obtained. Considering
these aspects, the formulated state variables are expressed as follows:

d̃sg = k1
dsg

dmax

φ̃sg = k2
φsg

φmax

. (9)

3.1.2. Action Space

Based on the kinematic and dynamic models of biomimetic robotic fish, we define
forward thrust and yaw moment as action variables. In contrast to conventional kinematic
navigation approaches, we directly employ control quantities as actions, implying that it is
necessary to traverse two layers of non-linear models, namely kinematics and dynamics,
which increases the learning complexity. Additionally, building upon our previous work,
we set the action ranges for forward thrust and yaw torque to [0, 6 N] and [−6 Nm, 6 Nm],
respectively. Moreover, since this study does not involve information exchange among
robot swarms, the leader robotic fish does not decelerate when the distance between
the leader and follower robotic fish is substantial. Hence, it is essential to ensure that
the follower robotic fish possesses the ability to catch up with the leader, leading to the
specification of the maximum forward thrust range for the follower robotic fish as [0, 8 N].

Furthermore, the forward thrust of the robotic fish is constrained to be consistently
greater than zero, while the yaw torque exhibits bilateral symmetry. Therefore, a bilateral
correction is applied to the forward thrust. Specifically, during both the network output
and replay buffer storage phases, the range of forward thrust is adjusted to [−3 N, 3 N].
When inputted into the training environment, the forward thrust outputted by the network
is increased by 3 N, rendering it unilaterally positive, and subsequently fed into the motion
model to update the environmental information.

3.1.3. Reward Function

The reward function constitutes a pivotal element in deep reinforcement learning.
With full consideration of path smoothness and length factors, a multi-objective optimiza-
tion reward function is proposed as follows:

R =
3

∑
i=1

ciri, (10)

where ci denotes the weight coefficients and ri represents the different reward forms. There
are three principles.

• The principle of minimum distance: it is expressed as r1 = −
∣∣d̃sg

∣∣, primarily employed
to minimize the length of the motion path.

• The principle of directional convergence: it is expressed as r2 = −
∣∣φ̃sg

∣∣, with the
aim of guiding the robot to orient itself towards the target point during motion. This
principle not only contributes to the reduction in path length but also serves to ensure
a certain degree of stability in the output yaw moment.

• The path-smoothing principle: it is characterized by r3 = −
∣∣∣φ̃sg − φ̃′

sg

∣∣∣, where φ̃′
sg

represents the previous time step’s φ̃sg. This principle primarily aims to enhance
control stability by minimizing the yaw angle difference between consecutive time
steps, thereby smoothing the motion path.

3.1.4. Predictive Concept-Based Improvement

In light of the aforementioned state space, action space, and reward function, it is
evident that the learning objective of the proposed method is to achieve rapid and smooth
target following. However, in practical tracking scenarios, due to the highly nonlinear
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characteristic of the system, the steering of robotic fish exhibits a certain degree of lag,
leading to the occurrence of overshooting phenomena. To address this issue, the most direct
solution is to introduce angular velocity as an additional state variable and incorporate it
into the learning network. Nevertheless, this approach encounters two primary challenges.
Firstly, the introduction of angular velocity increases the complexity of the state space,
thereby escalating the training difficulty. Secondly, in real-world applications, angular
velocity information is typically obtained from inertial measurement unit (IMU) sensor
modules, making it susceptible to external environmental factors and noise, manifesting
notable information instability such as abrupt fluctuations. Therefore, angular velocity
is deemed unsuitable as a state variable. With these considerations, this paper integrates
a predictive approach into the traditional DDPG framework, presenting a novel train-
ing architecture. This structure effectively mitigates overshooting phenomena without
introducing additional state variables.

In the conventional DDPG algorithm, the replay buffer stores a series of experience
tuples (st, at, st+1, rt), including the representation of the state at the next time step st+1,
i.e., st+1 = f (st, at). Here, f denotes a composite motion model of kinematics and dynamics.
The key improvement in the proposed method lies in the replacement of the current state
with the state quantity obtained after Np steps when the steering angular velocity exceeds
a predefined threshold. Both the state after Np steps and the current state are then stored in

the replay buffer, i.e.,
(

st, at, st+Np , rt

)
. This process generates a sequence of states as

S =
(

st+Np , st+Np−1, · · · , st+1, st

)
st+i = f (st+i−1, at)

. (11)

Based on the above illustration, the calculation process of PDDPG is presented in
Algorithm 1.

Algorithm 1 Algorithm for PDDPG

1: Initialize the parameters of Actor network and Critic network.
2: Initialize the experience replay buffer pool.
3: for episode = 1 to N do
4: Reset the control system, and obtain the initial states s0.
5: for step =1 to M do
6: According to the trained strategy, select the output action with the added noise

information.
7: Perform actions in the model environment.
8: if φ̇ > 20◦/s then
9: Apply the predictive model, and calculate st+Np .

10: Put
(

st, at, st+Np , rt

)
into buffer pool.

11: else
12: Based on the motion model, calculate st+1.
13: Put (st, at, st+1, rt) into buffer pool.
14: end if
15: Sample a subset of data from the experience replay buffer for network updating.
16: Update the Critic network according to the loss.
17: Update the Actor network based on deterministic policy gradient followed by

the target Actor network.
18: end for
19: end for

3.2. The Nonlinear Model Predictive Controller

In recent years, the utilization of MPC has become increasingly prevalent within the
domain of robotics. MPC proves valuable not only in tackling the intricacies of systems
with multiple inputs and outputs, but also in addressing and managing control constraints
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effectively. The control approach employed in this paper can be considered as a means
of achieving setpoint stabilization to a certain extent. This is achieved by designing a
controller that effectively stabilizes a predefined stationary setpoint.

Although the approach proposed in this paper also allows for dynamic target points
to be followed, the switching of these dynamic targets is governed by specific triggering
rules. On one hand, for the leader robotic fish, the target point switching criterion is based
on the condition that the robotic fish is within a certain threshold distance from the target.
As a result, this type of target point switching can be considered as setpoint stabilization on
a time scale. On the other hand, for the follower robotic fish, the target points change in real
time with the position of the leader robotic fish. However, due to the time-independence
characteristic of target point locations during the controller design process, these changes
can be simplified as setpoint stabilization. Furthermore, in order to achieve the following
control, we need to stabilize the key variables, including the planar position and the yaw
attitude. Hence, based on the kinematic and dynamic models of the robotic fish, the state
variables can be selected as P f = (x, y, φ). Correspondingly, we consider the forward thrust
and yaw moment as control variables, i.e., u f = (τu, τr).

This design implies the incorporation of both the kinematic and dynamic models as
components of the predictive model, which simplifies the controller design process. How-
ever, the combination of two nonlinear models may introduce a degree of computational
complexity and elevate optimization challenges. Iterative solution-seeking is necessary,
and parameter adjustments are implemented to address these complexities. Therefore, by
defining the reference Λ f = (xd, yd, φd) and error item e, we can consider the cost function
as follows:

J
(

e(tk), u f

)
=

∫ tk+T

tk

L
(

e(τ), u f

)
dτ + g(e(tk + T)), (12)

where L indicates the stage cost while g is the terminal penalty. T is the prediction horizon.
Furthermore, the optimal control problem addressed at each sampling instant can be
structured as follows:

min
u f

J
(

e(tk), u f

)
, (13)

Subject to

e(tk) = ξ
(

x(tk), y(tk), φ(tk), R f

)
, (14)

L = e(τ|tk)
TQe(τ|tk) + u f (τ|tk)

T Ru f (τ|tk), (15)

g = e(tk + T|tk)
TKe(tk + T|tk), (16)

u f ∈
[
u f min, u f max

]
, (17)

where ξ can be calculated by the motion model of the robotic fish. Q, R, and K represent
the coefficient matrix. Through the resolution of the optimization problem outlined above,
the optimal control sequence can be derived. Subsequently, solely the control sequence up
to the next sampling instant is considered, and the optimization process is reiterated in a
receding horizon way.

4. Simulation and Analysis

In this section, extensive simulation tests were conducted to validate the effective-
ness of the proposed target following method. Firstly, we constructed a simulated pool
environment and performed network training using Pytorch 1.12.1. In pursuit of real-time
performance, a four-layer fully connected structure was chosen for the architecture of the
Actor and Critic networks. The neuron counts in the intermediate two hidden layers are set
to 400 and 300, respectively. For key training parameters, the discount factor was set to 0.9,
the learning rate to 1 × 10−5, the target smoothing coefficient to 0.005, the minimum batch
size to 256, the maximum training episodes to 3000, and the maximum training steps per
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episode to 300. The control period is 0.1 s. The other key parameters of the motion model
and control system can be seen in more detail in Table 1.

Table 1. Parameters of the following control system.

Item Value Item Value Item Value

m11 9.9 kg m22 14.5 kg m33 1.8 kg
d11 17.2 kg/s d22 19.3 kg/s d33 1.1 kg·m/s2

Q diag{50, 50, 0.2} R diag{0.005} K diag{0.5}
c1 0.4 c2 0.4 c3 0.2
k1 10 k2 20 T 10

u f min τu = 0, τr = −6 u f max τu = 8, τr = 6

4.1. Training Results and Analysis

In this section, the neural network constructed based on the proposed reinforcement
learning method was trained. When the prediction step size was set to five, Figure 3
presented the results of six training sessions, including rewards, Actor loss, and Critic
loss. The shaded area in the figure represents the range of the maximum and minimum
values for each round in the six training sessions. The obtained results indicate that the
proposed method exhibits a relatively rapid convergence rate in the initial stages, achieving
preliminary convergence at around 500 steps. By the time the training steps reach 3000,
complete convergence is achieved, resulting in satisfactory training outcomes.
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Figure 3. The training results of PDDPG when Np = 5.

It should be noted that in Figure 3, the Done flag is used to indicate whether the
target point is reached in each training round. In each training session, if the target point
was reached within the current round, the variable was set to 1; otherwise, it was set to
0. The Done flag represents the cumulative sum of these binary values in the six training
sessions, with a minimum value of zero and a maximum value of six. Therefore, the results
suggest that with an increase in the number of training steps, the Done flag exhibited an
overall upward trend, indicating that convergence was ultimately achieved in each training
session. As a whole, from the reward and loss results, it can be seen that the values reached
a satisfactory level after 3000 iterations, and the curves appeared relatively smooth. In terms
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of completion, the Done flag was essentially at the maximum value around 3000 steps,
indicating successful attainment of the target point in each training instance.

To investigate the impact of different prediction steps on training outcomes, we
conducted relevant simulation experiments. Initially, we set the parameter Np to values
of 0, 3, 5, 8, and 10, employing identical training parameters. The training results are
illustrated in Figure 4a. The findings indicate optimal training performance when Np is
set to 5, followed by Np = 3. Notably, with Np = 5, not only did rapid convergence occur,
but a certain degree of training stability was also observed. Subsequently, we performed
an extension of training for the case where Np was set to 5, reaching 5000 steps. The results
demonstrate that the reward has stabilized without significant fluctuations.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure 4. The reward comparison of testing results. (a) Under different Np. (b) Under differ-
ent episodes.

Further analysis is presented in Figure 4b, depicting comparative results of training
with fixed steps under different Np. Overall, PDDPG exhibits superior training performance
compared to traditional DDPG, with Np = 3 and Np = 5 showcasing particularly outstanding
results. However, it is noteworthy that temporary divergence phenomena were observed
during the training processes with Np = 8 and Np = 10. This suggests that when the
prediction step size is too small or too large, the training outcomes are unsatisfactory. This
phenomenon can be attributed to two main factors. Firstly, a too small prediction interval
implies an ineffective restriction on overshooting, leading to frequent changes in system
attitude and triggering substantial penalties. Secondly, influenced by the inaccuracy of
the motion model, longer prediction intervals may render the system more sensitive to
model uncertainty, since model predictions over extended periods may accumulate errors.
This could result in a decrease in the robustness of control performance, particularly in the
presence of uncertainty or environmental changes.

Hence, the selection of an appropriate prediction interval is crucial for enhancing
model training effectiveness, as both excessively small and large prediction intervals may
impact the stability and performance of training results. The obtained results support the
selection of Np as 5 during the training process, as it exhibits superior performance in terms
of rapid convergence and training stability. These findings provide valuable insights into
the optimization of prediction step parameters for effective model training.

4.2. Testing Results and Analysis
4.2.1. Fix-Point Target Following under Single Robotic Fish

To further validate the effectiveness of the proposed method, simulation tests were
conducted in this section. Firstly, fix-point target following tests under single robotic fish
were performed by setting the initial position, initial attitude, and target point. The trained
network results were evaluated based on different prediction horizons. Figure 5a illustrates
the motion trajectories of the robotic fish under different prediction horizons. Figure 5b
depicts the motion trajectories of the robotic fish at different episodes when Np = 5. Motion
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data results, including distance to the target point, the yaw angle difference, forward thrust,
and yaw moment, are presented in Figure 6.

Np = 3
Np = 0

Np = 5
Np = 8
Np = 10

Goal position: 
(5.0, 5.0)

Initial position: (1.0, 1.0) 
Initial yaw angle: −100°

(a)

Episode = 500 Goal position: 
(5.0, 5.0)

Initial position: (1.0, 1.0) 
Initial yaw angle: −100°

Episode = 1000
Episode = 1500
Episode = 2000
Episode = 2500

(b)

Figure 5. The trajectories comparison of testing results. (a) Under different prediction horizons.
(b) Under different episodes.
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Figure 6. The motion data results of testing results. (a) Distance to the target point and forward
thrust. (b) Yaw angle difference and yaw moment.

It can be seen that the trajectories reveal noticeable overshoot phenomenon in the
early stages, when the initial pose set at −100°. Without a prediction horizon, the control
performance exhibits poor performance. As the prediction horizon increases, the overshoot
is effectively suppressed. However, when the prediction horizon reaches 8, some motion
instability phenomena begin to emerge. Particularly in the case of Np = 10, the yaw angle
curve is unsmooth; the reason for this may be that the increased prediction horizon can lead
to a chaotic learning process. Specially, although the performance of Np = 3 is superior to
Np = 8 from a training perspective, the motion trajectories suggest that the performance
of Np = 8 seems more favorable. The reasons for this phenomenon may be identified
in Figure 6b. It can be observed that the test results for Np = 8 show small oscillations
in the yaw moment even after entering the steady-state following process, indicating an
instability in its swimming posture. The obtained results indicate that there are interactions
between the prediction horizon and control performance, and it also influences overshoot
suppression and post-steady-state stability in following motion.
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4.2.2. Dynamic Target Following under Single Robotic Fish

To assess the effectiveness of the proposed methods in dynamic target following,
a standard circle was employed for testing, establishing a foundation for collaborative
following. Initially, the circle’s center was positioned at (4, 4) with a set radius of 2. The circle
was then partitioned into 200 points and followed sequentially. The robotic fish transitioned
to the next target point when its distance to the target point fell below 0.3 m.

Figure 7 presents the following path, while Figure 8a,b provide insights into the
following data. The results demonstrate the successful implementation of the proposed
method for standard circle following, yielding some conclusions. Initially, during the stable
following process, the distance between the robotic fish and the dynamic target point is
maintained at 0.32 m. According to the switch criterion for dynamic target following,
the proposed method can be validated to accomplish following promptly and effectively.
Subsequently, the yaw attitude during the following process exhibits relative stability but
with subtle oscillations. The forward thrust remains at its maximum value for the majority
of the time, which is primarily attributed to the consistent distance between the robotic
fish and the dynamic target point. In the context of turning motion, a certain degree of
lateral movement is induced, resulting in a lateral velocity. Finally, consistent with the
performance of yaw attitude, both the yaw moment and turning angular velocity display
slight oscillations characterized by small amplitudes, without significantly affecting the
system stability.

2 3 4 5 6
2

2.5

3
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4

4.5

5

5.5

6

5.6 5.7

2.9

3

Figure 7. The simulation results of circle following trajectory.

4.2.3. Cooperative Following Control under Multiple Robotic Fish

In this section, inspiration from the efficient mechanisms of fish schooling motion
is applied to multi-robot cooperative motion. Studies indicate that maintaining a certain
distance and direction between multiple fish swimming together can enhance hydrody-
namic performance. For instance, swimming in a side-by-side following manner can reduce
energy consumption. Therefore, we emulate the principles of fish swarm motion at the
locomotion level, laying the foundation for research on robotic fish swarms. It should be
noted that the proposed methods in this paper can be directly applied to any agent in the
cluster, and are not limited to the number of agents. To better demonstrate simulation
results, this section takes the example of a following task with two biomimetic robotic fish
to validate the effectiveness of the proposed methods.
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Figure 8. The motion data results of dynamic target following control. (a) The velocity illustration
and control force/moment. (b) The following distance and yaw attitude.

Throughout the cooperative following involving multiple robotic fish, the dynamic
repositioning of the leader robotic fish prompts a corresponding adjustment in the target-
following coordinates Pi

f for the follower robotic fish. Hence, if the initial position of
the follower robotic fish remains fixed, dmax is a variable which will introduce a notable
drawback. In the scenario where the leader robotic fish is engaged in a single-point
following task, the ongoing following motion results in a progressive increase in the
distance Pi

f from the initial point, leading to an augmentation of the follower robotic fish’s
dmax, as indicated in Equation (9). Despite the continuous pursuit of the leader by the
follower robotic fish, it is indicated that there is potential for a decreasing dmax, ultimately
causing a gradual reduction in pursuit speed until it becomes insufficient for successful
following. To mitigate this challenge, both dmax for the leader and follower robotic fish
are intentionally maintained as constants, specifically set at 6 during the testing phase in
this section.

Furthermore, we outline a task for a biomimetic autonomous system. The task involves
a leader robotic fish guiding a collective of follower robotic fish in the exploration of a
predefined area. The exploration process is facilitated by establishing search target points
for the leader robotic fish, with the other follower robotic fish collaboratively tailing
the leader in the exploration endeavor. Besides, the distances and orientations during
the following process can be determined based on biological mechanisms observed in
natural fish. Consequently, this section presents the simulation testing of leader–follower
cooperative following control. First, the corner points of a square are defined as search
target points for the leader robotic fish, specifically at (6, 2), (6, 6), (2, 6), and (2, 2). The leader
robotic fish aligns its movement towards these target points, switching to the next target
point when the distance from the current target falls below 0.3 m. Further, the follower
robotic fish dynamically follows the movement of the leader robotic fish in real time.

In alignment with the biological mechanisms of collaborative motion [16], we stipulate
a distance of di

f = 0.5 m and a target orientation of φi
f = 135◦ concerning the leader

robotic fish. Thus, based on Equation (1), we can derive the real-time target position for the
follower robotic fish. Figure 9 provides snapshot sequences of the cooperative following
control, encompassing leader trajectory generated by PDDPG, and the follower trajectories
generated by PDDPG and NMPC. The obtained results demonstrate that the leader robotic
fish successfully completes the standard square path search task with minimal overshooting.
Notably, the follower robotic fish, under the control of both PDDPG and NMPC methods,
successfully accomplishes the following task.
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Figure 9. The snapshot sequences of cooperative following control.

Figure 10 depicts the motion data results for cooperative following. Based on dsg, it
can be seen that NMPC displays a marginally superior performance in following distance
compared to PDDPG, indicating a capacity for faster target following. However, concerning
φsg, PDDPG significantly outperforms NMPC, especially when the leader robotic fish
switches target points for a right-angle turn. The distinct weak overshooting characteristic
of PDDPG is conspicuously manifested, while NMPC exhibits a noticeable degree of
overshooting, resulting in unstable yaw attitude. To further verify the superiority of the
proposed method, some quantitative comparison results are offered. On one hand, the total
lengths of the following path generated by PDDPG and NMPC are 18.34 m and 18.36 m,
respectively, which indicates the slim margin for PDDPG. On the other hand, when the
robotic fish turns at a right angle, the overshoot phenomenon is obvious. Taking the time
interval of t = [10 s, 20 s] as an example, the root-mean-square error (RMSE) of φsg for
PDDPG and NMPC are 8.3◦ and 45.6◦, respectively. Additionally, the mean absolute error
(MAE) of φsg for PDDPG and NMPC are 7◦ and 25.5◦, respectively. Therefore, the obtained
results illustrate that the proposed PDDPG shows more satisfactory performance.

Moreover, Figure 11 provides insight into the control quantities of forward thrust and
yaw moment. In terms of forward thrust, PDDPG seldom reaches its maximum value,
whereas NMPC consistently maintains a near-maximum swimming speed throughout
the pursuit process. This may be attributed to PDDPG learning, which revealed that
that overshooting is prone to occur during high-speed turns, prompting the model to
avoid utilizing maximum thrust to prevent this phenomenon. Regarding yaw moments,
consistent with yaw attitudes during turning, NMPC outputs a more substantial moment
amplitude during turning phases. Nevertheless, it can be observed that in the steady-
state tracking phase, NMPC’s yaw moment is more stable, while PDDPG exhibits slight
oscillations, resembling the swimming behavior of real tail-flapping fish.
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Figure 10. The motion data results of cooperative following distance and yaw difference.
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Figure 11. The motion data results of control quantities.

4.3. Discussion

Drawing inspiration from the schooling movement of biological fish, a target-following
method based on deep reinforcement learning is proposed, leading to successful imple-
mentation of cooperative following control. On one hand, by incorporating predictive
thinking into the traditional DDPG algorithm, the system overshooting is effectively re-
duced. Notably, the method utilizes static target-following scenarios during training but
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demonstrates the ability to follow dynamic targets. On the other hand, as an auxiliary
control, a target-following controller based on NMPC is designed.

When adjusting the parameters of neural networks and hyperparameters of deep
reinforcement learning, we adhere rigorously to the principle of cross-validation to identify
the most suitable parameter combinations for a specific task while mitigating issues such
as overfitting or underfitting. With the consideration of model complexity, we explore
multiple combinations of neurons, conduct cross-validation, and ultimately select appro-
priate parameters. With regard to the discount factor, learning rate, smoothing coefficient,
and batch size, we conduct preliminary tests based on conventional DDPG parameters and
further engage in simulation testing to finalize the parameters. Concerning certain parame-
ter settings in the reward function of deep reinforcement learning, we adjust the parameters
from the aspects of objectives significance and simulation test results. Regarding general-
ization performance, we employed several strategies to enhance generalization, including
the normalization and scaling technique for the state variables, adding the noise for action
generation, and adjusting the target network update frequency. Further, in dynamic target
following and cooperative following control simulations, even with real-time changes
to the target point, the proposed method consistently demonstrated effective following
capabilities, providing further evidence of its robust generalization performance.

Furthermore, extensive simulations are conducted. First, the training results reveal
optimal performance with a prediction step of Np = 5. Excessively large or small prediction
periods yield unsatisfactory performance. This conclusion is further validated through
stationary target-following tests. Second, to assess dynamic target-following performance,
the proposed PDDPG algorithm successfully follows a circular trajectory. Finally, by setting
up a cooperative following task, the proposed method accomplishes cooperative explo-
ration in a quadrilateral environment, concluding with a performance comparison between
PDDPG and NMPC, confirming the effectiveness and superiority of the proposed method.

Despite the successful implementation of cooperative following control, there are
still some limitations. On one hand, this paper places particular emphasis on the motion
of individual robotic fish, with the goal of directly transferring learned target-following
capabilities to swarm control. Consequently, considerations such as inter-swarm motion
constraints or obstacle avoidance are omitted. By incorporating neighboring robotic fish
states into the state space and devising appropriate reward functions, this issue may be
addressed. On the other hand, we focus on the kinematic level of biological fish schooling
movement, without delving into behavioral level [30]. To this end, it is required that the
joint dynamic models and biomimetic motion control algorithms should be introduced,
which is our ongoing endeavor.

5. Conclusions and Future Work

In this paper, we have developed a target-following control framework, including a
predictive deep deterministic policy gradient controller and a nonlinear model predictive
controller. Inspired by the mechanism of hydrodynamic efficiency improvement observed
in fish schooling movement, we aim to investigate a target following method that can be
applied to achieve a cooperative following task. In view of the nonlinear characteristics
in the motion model of the robotic fish, the predictive modeling concept is incorporated
into the conventional DDPG algorithm. On this basis, the training framework is developed,
including the normalization of the state space, action space, and the standardization of the
reward function. Additionally, we introduce an auxiliary controller based on a nonlinear
predictive model, offering an alternative for cooperative following control of the follower
robotic fish. Finally, extensive simulations are conducted, demonstrating the effectiveness
of the proposed method.

In future work, we plan to further investigate the mechanistic aspects of the behavioral
level in the biological fish schooling movement. By incorporating inter-cluster motion
constraints, more intelligent cooperative following can be achieved. Furthermore, how
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to realize three-dimensional cooperative following control is another issue worthy of
in-depth study.
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