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1. Introduction

Hard tissues are living mineralized tissues that possess a high degree of hardness
and are found in organs such as bones and teeth (enamel, dentin, and cementum). The
ultimate goal of bone and joint surgery, craniomaxillofacial surgery, oral/dental surgery or,
in general, hard tissue surgery is reconstruction via the implantation of a biomaterial or a
device to replace bones and/or joints affected by various diseases, traumatic damages, or
deformities. The reconstruction of critical-sized loss or defects caused by trauma, tumor
excision, osteoarthritis, and other bone-resorption-related diseases or disorders remains a
significant challenge [1–7]. However, three-dimensional biomaterial scaffolds (produced
by means of engineering or tissue engineering technologies) have emerged as relatively
novel tools used to repair such damaged hard tissues [8–11]. Biomimetic scaffolds are
designed and generated as biomaterial architectures that promote the regeneration of native
tissue [12–16]. Hard tissue surgery scaffolds require mechanical stability in order to support
the needed geometry of tissue loss or defects and facilitate external loading. Such scaffolds
should provide internal microarchitecture to the tissue that is to be regenerated with an
internal, interconnected porous network of effective space for the infiltration, growth, and
differentiation of bone marrow mesenchymal stem cells, vasculature ingrowth, and new
tissue growth, with the aim of ensuring a channel of material exchange with the external
environment (delivering oxygen and other nutrients to the cells, in addition to waste
removal) [17–20]. Thus, the design of such scaffolds is extremely important to the success
of clinical outcomes in hard tissue surgery. The newest trend in this field is the viable
bioinspired structural and functional design of tissue-mimicking 3D-printed (composite
or hybrid) scaffolds with interconnected pore structures of controlled and often gradual
porosity of implants, with the synergistic functions of promoting bone regeneration (often
seeded with mesenchymal stromal cells and involving biomolecules and growth factors)
and reducing local bacterial infections (intrinsically antimicrobial or loaded with antibiotics,
peptides, antimicrobial metallic ions, and/or nanoparticles, anticancer drugs, etc.) [21–30].

This Special Issue aims to exhibit and discuss the latest advances in biomimetic scaf-
folds for hard tissue surgery, and it includes contributions on potential topics including, but
not limited to, (1) biomimetic design strategies for scaffolds, (2) techniques for fabricating
biomimetic scaffolds, (3) novel biomaterials for biomimetic scaffolds, (4) the biodegradabil-
ity design of biomimetic scaffolds, (5) the surface functionalization of biomimetic scaffolds,
and (6) clinical applications of biomimetic scaffolds.

This Special Issue presents eleven contributions submitted by scholars with renowned
backgrounds in scaffolds design, fabrication, functionalization, or clinical applications [31–50];
four of these contributions are valuable review articles, and seven are original new research
articles. Thematically, according to the area of application, the contributions can be grouped
into articles concerning the following:

• Biomimetic scaffolds for bone and joint surgery;
• Biomimetic scaffolds for maxillofacial surgery and oral surgery;
• Biomimetic scaffolds for general surgery (i.e., hard- and soft tissue surgeries).
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2. Overview of the Published Papers

Within the topic of biomimetic scaffolds for bone and joint surgery, two review articles
highlight the advances that have been made in biomimetic scaffolds. The first review [Con-
tribution 1] regards biomimetic silk-based materials and scaffolds for tissue engineering,
with a focus on skeletal tissues, whereas the second review [Contribution 2] explores the
background of currently used designs in resurfacing arthroplasty (RA) endoprostheses
and presents a new approach for their component fixation via a biomimetic multi-spiked
prototype scaffold.

Branković et al. (2024) [Contribution 1] review the latest research related to the poten-
tial applications of spider silk and silk-based biomaterials in reconstructive and regenerative
medicine and tissue engineering, with a focus on musculoskeletal tissues. The structure
and properties of spider silk, along with natural spider silk synthesis and the further
advanced recombinant production of spider silk proteins, are reviewed. Research insights
into possible spider silk structures, such as fibers (1D), coatings (2D), and 3D constructs,
including porous structures, hydrogels, and organ-on-chip designs, are presented, with
a review of applications of silk-based materials and scaffolds in musculoskeletal tissue
engineering. These include bone and cartilage in addition to muscle and tendon, as well as
the advanced design and precise engineering of artificial skin and vascular tissues and the
design of bioactive silk-based biomaterials for smart medical implants and controlled drug
delivery systems.

Uklejewski et al. (2024) [Contribution 2] take the over-hundred-year-long history
of RA into scope and discuss how the designs of RA endoprostheses have evolved via a
variety of designs of endoprosthesis components, different choices of materials used, and
changes in methods of fixation in bone. The milestones of past design generations of RA
endoprostheses are chronologically discussed along with critical insight into contemporary
hip RA endoprostheses designs and their failure scenarios. As pointed out by the authors,
coupled with technological advancements is the need for innovations directed towards
more biomimetic designs that have materialized with the first biomimetic fixation for the
RA endoprostheses being introduced. This new design type of completely cementless
and stemless RA endoprostheses of knee joints and hip joints (and other diarthrodial
joints), where endoprosthesis components are embedded in the surrounding bone via the
prototype biomimetic multi-spiked connecting scaffold (MSC-Scaffold), initiates the first
at-all generations of biomimetic endoprostheses of diarthrodial joints [44].

Of the research articles published in Part I, on biomimetic scaffolds for bone and joint
surgery, two [Contributions 3 and 4] concern biomimetic design strategies for scaffolds,
as well as techniques for fabricating biomimetic scaffolds, and three are concerned with
novel biomaterials for biomimetic scaffolds. The personalized biomimetic scaffold for
the restoration of long-bone segmental defects is the subject of Contribution 3, and the
drug-releasing biomimetic scaffold for bone tissue repair is the subject of Contribution 4.
Both articles present the development and characterization of 3D constructs with biological
verification. Among the novel materials for biomimetic scaffolds, the three consecutive
original research articles present new composite material mimicking the natural bone
structure for bone scaffolds [Contribution 5], advances in ceramic biocomposites of good
biomimetics of human bone composition and the means by which they are applicable in
bone scaffolds [Contribution 6], and a novel biomimetic highly porous material as a scaffold
with osteointegration potential [Contribution 7].

Popkov et al. (2023) [Contribution 3] propose a method for the restoration of long-
bone segmental defects with the use of a bioactive degradable 3D-printed scaffold. The
porous implant of a gyroid-like triply periodic minimal surface (TPMS) cellular structure
was designed, fabricated via the fused deposition modeling (FDM) additive technology
of ε-polycaprolactone (PCL), and coated with hydroxyapatite (HA). These implants were
experimentally implanted in laboratory sheep to fill a 20 mm long segmental tibial defect,
and radiological examinations demonstrated evident reparative bone tissue regeneration
occurring from the proximal and distal bone fragments in the third week after surgery, the
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ingrowth of bone tissue into the cylindrical PCL-HA implant from the adjacent bone ends,
and periosteal structures from day 7 of the study, in addition to the implant cellular structure
filled with newly formed bone tissue on day 30 of the postoperative day. This in vivo
study proved that the personalized biomimetic scaffold proposed provides stimulation of
reparative osteogenesis and osseointegration in a single-implant bone block and is suitable
for the regeneration of long-bone segmental defects.

Ensoylu et al. (2023) [Contribution 4] present the results of producing a borate-based
13-93B3 bioactive glass composite scaffold mimicking native bone tissue. In their work,
hexagonal boron nitride hBN nanoparticles were included directly inside the bioactive
glass matrix, and dense three-dimensional scaffolds were fabricated using the polymer
foam replication method. The structural, mechanical, and biological performance of the
scaffolds was investigated, and the drug delivery properties of the scaffolds loaded with
gentamicin and fluorouracil were explored. The results indicate that the hBN nanoparticles,
up to a certain concentration in the glass matrix, improved the mechanical strength of the
glass scaffolds, while their presence enhanced the in vitro hydroxyapatite-forming ability
of bioactive glass composites and accelerated the drug release rates of the system. The
authors conclude that bioactive glass/hBN composite scaffolds that mimic native bone
tissue could be used for bone tissue repair and regeneration applications.

Matos et al. (2023) [Contribution 5] investigated the potential of composites produced
from polyvinylpyrrolidone (PVP) nanofibers containing mesoporous bioactive glass (MBG)
80S15 nanoparticles by the electrospinning technique to be used in bone tissue engineering.
These polymeric scaffolds revealed the absence of cytotoxic effects on Saos-2 cells and
enhanced bioactivity considering the rapid formation of hydroxycarbonate apatite (HCA)
when exposed to simulated body fluid (SBF). Their degradation and swelling assays showed
an ability to tailor their properties by varying the amount of MBG powder incorporated
or the cross-linking properties applied, which also translates into the bioactivity (bone-
bonding potential) of the composites. The authors conclude that, considering their inherent
properties, the composites produced can be used for bone scaffolds because they not only
reveal a high level of biocompatibility but also a swelling capacity suitable for further
development, including drug delivery.

Ferro et al. (2023) [Contribution 6] present their advancements in the development of
metal ion-doped ceramic biocomposites with a high level of similarity in composition to
human bone and a bone-like morphology. In the study, tricalcium phosphate-based biocom-
posites were designed and sintered, both dense and poly(methyl methacrylate (PMMA)
induced porous, doped with combinations of metal ions of magnesium (Mg2+), manganese
(Mn2+), zinc (Zn2+), and iron (Fe3+); and simultaneously reinforced (for strengthening)
with tetragonal zirconia (t-ZrO2) and cubic zirconia (c-ZrO2). A detailed evaluation of their
physical, mechanical, and microstructural properties was performed with an evaluation
of cytocompatibility in a human osteoblast (hOB) culture. The presented results led the
authors to conclude that the addition of tetragonal and cubic zirconia resulted in a sig-
nificant improvement in strength—up to 22% and 55%, respectively—and the addition
of PMMA-generated porosity resulted in an improvement of strength up to 30% and an
improvement in interconnectivity, with excellent hOB cellular viability achieved for all
biocomposites produced.

Tavarro et al. (2024) [Contribution 7] propose an innovative bioactive aerogel-based
composite with piezoelectric properties to assist bone regeneration. Aerogels of hydroxya-
patite (HA) nanowires with barium titanate (BT, BaTiO3) particles were synthesized and
characterized for their physical and chemical properties, bioactivity, and in vitro cytotoxic-
ity. The results demonstrated that the HA/BT aerogel, characterized by good bioactivity
and biocompatibility, constitutes a new biomaterial with osteointegration potential, which
combines the advantages of a highly porous structure such as a cell scaffold (providing
osteoconductivity) and can accelerate osteogenesis and osteoinduction by the presence of
surface charges induced by piezoelectric BTs; thus, it could be suitable for non-load-bearing
applications, such as cavity filling.
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The group of papers published in Part II, titled ‘Biomimetic Scaffolds for Maxillofacial
Surgery and Oral Surgery’, includes one review article [Contribution 8] discussing the
recent advances in biological scaffolds for bone formation as a new tissue engineering
technique for maxillofacial surgery and one new research article [Contribution 9] on the
development of a 3D biomimetic scaffold to serve as a biomechanical model of fibrous
periodontal ligament behavior.

Ramezanzade et al. (2023) [Contribution 8] provide a systematic review of the current
literature on the angle of reconstruction of critical-sized maxillofacial defects resulting
from trauma or a benign pathologic disease, using composite allogeneic tissue engineering.
This technique uses an allogenic graft as a biologic scaffold in conjunction with harvested
mesenchymal stem cells and recombinant human bone morphogenic protein-2 (rhBMP-2)
to create, as a custom-made graft, a favorable microenvironment for new bone formation.
The discussion of its reliability and efficacy allows one to see the potential of using large-
scale transplantable, vascularized, and customizable bone to reconstruct large maxillofacial
bony defects as a promising alternative to current therapeutic clinical options that include
extensive autogenous bone harvesting and many patient morbidities.

In their work, Gauthier et al. (2023) [Contribution 9] focus on the development of a 3D
fibrous scaffold with biomechanical properties representative of those of the periodontal
ligament (PDL), the fibers of which would be capable of transmitting mechanical loading
to ligament cells, as it is carried out in vivo by collagen bundles. Three-dimensional fibrous
polycaprolactone (PCL) scaffolds were synthesized by electrospinning and seeded with
human periodontal ligament cells (PDLCs), and the behavior of the cells was observed in
terms of their cellular organization and signaling under static and sinusoidal axial com-
pressive loads. The results highlight the finding that electrospun fibrous PCL 3D scaffolds
mimic the in vivo mechanical deformation of PDL collagen bundles and the transmission of
load to PDLCs; therefore, they might represent an interesting (suitable) experimental model
for investigating PDL mechanobiology and analyzing PDLC mechanobiological behavior.

Under the topic of scaffolds for general surgery (in Part III), one review paper [Contri-
bution 10] discusses the challenges of mechanical property adaptation in tissue-engineered
scaffolds for clinical applications, and one research article [Contribution 11] presents a
novel biomimetic biomaterial for tissue engineering.

Based on a study of all the relevant papers published between the years 2021 and 2023,
Johnston and Callanan (2023) [Contribution 10] provide a review of the current techniques
by which the mechanical properties and biological compatibility of tissue-engineered grafts
(or bioscaffolds)—promoting the repair of damaged soft and hard tissues—are enhanced via
hybrid material usage, multi-layer scaffold designs, and surface-modified-type scaffolds,
as well as clinically translated designs, whose uses and outcomes were published within
the above-given years. From their studies, the authors draw a notable observation—that
accounting for the complex range of mechanical properties present in biological tissues is
generally beyond the scope of a single-material-based design, and a multifaceted approach
consisting of multiple material types, layers, or surface treatment methods working in
tandem is likely to yield the most successful designs. They underline the fact that, in terms
of translation to clinical use, the time-sensitive nature of surgical treatment suggests that
3D printing, as a fabrication method, is a strong contender for the successful realization of
these designs.

Dey et al. (2023) [Contribution 11] present results on the design and development
of new gelatin-based electroconductive hydrogel scaffolds and examine the angle of
their potential applications for tissue engineering scaffolds. Gelatin/poly(ethylene gly-
col)diglycidyl ether/chitosan (G/PEG/CH) nanocomposite hydrogels with the incorpo-
rated nanosized carbon black (CB) were prepared via a mild processing condition that
included aqueous media, various polymer assembly, and cross-linking chemistry, facil-
itating gelation with CB nanomaterial. The synthesized nanocomposite hydrogels and
underwent structural, mechanical, and thermal property characteristics. As a result, the
authors concluded that these nanocomposite hydrogels, which are still in the development
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and optimization stages, are compositionally, morphologically, mechanically, and electri-
cally similar to native extracellular matrixes of many tissues and show great promise for
use as conducting substrates for the growth of electroresponsive cells in tissue engineering.

3. Conclusions

These contributions published in this Special Issue on Biomimetic Scaffolds for Hard
Tissue Surgery (i.e., four valuable review articles and seven new research articles) compre-
hensively summarize the latest achievements in the field, with a discussion of prospects
and challenges for further research. Along with different proposed and developed novel
biomaterials and 3D constructs of specific complementary properties that, through their
biomechanical, biostructural, biochemical, biomimetic, and functional properties, possess
great potential for assisting local tissue regeneration, the contributions of this Special
Issue demonstrate remarkable advancements in this interesting and dynamically develop-
ing field.
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