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Abstract: In this study, we present a novel approach to enhancing the interpretability of medical
image classification by integrating formal concept analysis (FCA) with convolutional neural networks
(CNNs). While CNNs are increasingly applied in medical diagnoses, understanding their decision-
making remains a challenge. Although visualization techniques like saliency maps offer insights
into CNNs’ decision-making for individual images, they do not explicitly establish a relationship
between the high-level features learned by CNNs and the class labels across entire dataset. To bridge
this gap, we leverage the FCA framework as an image classification model, presenting a novel
method for understanding the relationship between abstract features and class labels in medical
imaging. Building on our previous work, which applied this method to the MNIST handwritten image
dataset and demonstrated that the performance is comparable to CNNs, we extend our approach
and evaluation to histopathological image datasets, including Warwick-QU and BreakHIS. Our
results show that the FCA-based classifier offers comparable accuracy to deep neural classifiers while
providing transparency into the classification process, an important factor in clinical decision-making.

Keywords: interpretability; FCA; CNN; histopathology; Warwick-QU; BreakHIS

1. Introduction

Cancer is a major health problem that affects millions of individuals worldwide.
It is one of the leading causes of mortality in the world [1]. Advancements in digital
technology have substantially contributed to the availability of histopathological image
datasets. These images are high-resolution images of tissue samples obtained through the
use of a microscope. In the field of cancer diagnosis, the examination of histopathological
images can reveal whether a tumor is benign (non-cancerous) or malignant (cancerous).
However, the traditional practice of relying solely on pathologists to examine these images
is limited by their availability, experience, and risk of human error.

The application of machine learning techniques, including deep neural networks,
for the classification of histopathological images is becoming increasingly common [2].
These computational techniques can automate the process of image classification, assist-
ing pathologists in identifying cancerous tumors more accurately and potentially at an
earlier stage.

In recent years, convolutional neural networks (CNNs) have emerged as a powerful
tool for image classification tasks [3]. The most significant advantage of using a CNN is
that it can automatically learn features from image data and handle non-linearity in the
data. With the development of deep architectures for complex data, CNNs involve the
computation and optimization of millions of parameters. Pretrained architectures such
as VGG-16 [4], ResNet [5], and Inception [6] have made it feasible to work with smaller
medical image datasets and have significantly improved the performance [7].
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In the current literature, CNNs demonstrate promising results in classifying histopatho-
logical images as cancerous or benign. However, the reasoning behind the classification
remains hidden, due to which, they are often treated as a black box model [8]. The lack
of transparency of CNNs poses challenges in high-stake decision-making domains like
healthcare, where interpretability is crucial for trust in the system.

Visualization tools like Saliency maps [9] can interpret the decision-making process
of CNNs by highlighting the specific regions of an image that influence its classification.
While such visualization helps in interpreting individual image classifications, it does
not explicitly offer insights into relationships among multiple images based on shared
high-level features, potentially deriving rules or patterns from these relationships. To
bridge this gap, our research takes a two-fold approach: (1) extracting high-level, abstract
features that have semantically rich representations of original images and (2) using the
formal concept analysis (FCA) framework to identify relationships between these features
and target classes. Our goal is to understand the relationships between multiple images
based on these shared features, which could help us identify patterns or rules that make
the decision process more transparent. While raw pixels provide granular information,
high-level features extracted capture the semantics of images, and interpreting relationships
at this level can be even more meaningful and insightful. This structured and relational
interpretability is different from the pixel-wise importance interpretation provided by
saliency maps for individual images. Using FCA on transformed feature space rather than
raw pixel values can provide structured, rule-based insights, making it a valuable tool for
enhancing the interpretability of classification.

The primary contribution of this paper is the development of an FCA-based classifica-
tion model that enhances the interpretability of image classification for histopathological
images. Our previous work [10] tested this approach on the MNIST handwritten digit
dataset. The results were comparable to CNNs while providing interpretability. This study
extends that work to histopathological image datasets, further validating the approach for
complex applications.

2. Background

A recent survey [11] provides a comprehensive overview of machine learning (ML)
and deep learning (DL) models used for the classification of colon cancer. The research
suggests that DL model performs better than ML approaches when it comes to classifying
image datasets of colon. Most of the studies utilize convolutional neural networks (CNNs)
for the classification of histopathological images of the colon. Specifically, pretrained
networks such as ResNet [12] and SqueezeNet [13] are used for classifying small datasets
of colon cancer.

While CNNs have demonstrated promising results, it is important to consider the
lack of transparency associated with this model. This becomes particularly relevant when
applying CNNs for classifying histopathological images as either “cancerous” or “benign”.
Previous studies have hypothesized the internal working of a CNN classifier in two steps:
(1) feature extraction and (2) classification [5]. Now, we will discuss the techniques used for
feature extraction and the models developed to add interpretability to classification.

2.1. Feature Extraction

Feature extraction is an important step in the analysis of image data, particularly
for complex datasets like histopathological images. Histopathological images are highly
detailed, containing a large number of features that capture the structural characteristics of
the tissue. A large-dimensional dataset makes most of the classification methods infeasible
due to high computational complexity. Therefore, feature extraction techniques are used
to reduce the dimensionality of large datasets. Feature extraction transforms data from
high-dimensional space to a relatively low-dimensional space by identifying important
features and eliminating noise and redundancy. It allows the application of classification
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methods to the low-dimensional representation instead of the entire feature set. Overall, it
helps to improve model performance and also speeds up the model training time.

The feature extraction methods vary from linear to non-linear methods.

• Linear Methods: Linear transformation methods include Principal Component Analy-
sis (PCA) [14] and Linear Discriminant Analysis (LDA) [15], which are widely used for
dimensionality reduction. Principal Component Analysis (PCA) is an unsupervised
technique which works by identifying the features (or axis) in the dataset that maxi-
mize the variance. The newly learned features are called “principal components” and
are linearly independent.These components capture the major patterns and structures
in the data in a hierarchical manner, from the most to the least important. In contrast,
Linear Discriminant Analysis (LDA) is a supervised method which maximizes the
separation between multiple classes. It does this by finding a linear combination of
features that best separate data into different classes [14].

• Non-Linear Methods: To handle non-linear relationships, neural networks, particularly
autoencoders, have gained attention. Autoencoders are a type of artificial neural
network used for unsupervised learning. They can be used for various tasks such
as dimensionality reduction, anomaly detection, and denoising. In addition, CNNs
have potential in automatically learning features directly from raw image data. This
has led to the development of advanced feature extraction architecture, including
pretrained CNN models that can extract high-level features with accuracy. Medical
image datasets are usually small because the procedure of collecting data is expensive.
The limited availability of data is overcome by using pretrained CNN architectures
like VGG16, ResNET, and Inception for feature extraction.

The selection of the feature extraction technique is based on type of data, available
resources, and the problem we are trying to solve. In feature extraction, the extracted
features are high-level representations derived from the original set, which can then be
used for classification.

2.2. Interpretable Classification Models

In high-stake decision-making domains such as healthcare, the transparency of a
model’s decision-making process is crucial. Clinicians and patients are more inclined to
trust and rely on a model if they can gain insights into its reasoning mechanism. The
consequences of errors in these domains can be misdiagnoses, which can potentially
cause harm to patients in healthcare. As a result, there is an ongoing shift in research
towards enhancing model interpretability along with the optimization of performance.
This transition acknowledges that a model’s utility is not only determined by its accuracy
but equally by its ability to provide clear insights into its decisions. As the complexities of
models continue to grow, the challenge remains to strike a balance between performance
and interpretability while ensuring that the models remain both powerful and transparent
in their applications.

Machine learning models, such as decision trees [16], are employed in image classifi-
cation due to their interpretable decision-making process that mirrors human reasoning.
However, decision tree models have limitations. They are unstable to even small changes
in input data, resulting in a completely different tree. They are also prone to overfitting,
where the model can learn not only from the underlying patterns in the data but also
from noise and outlier values within the features, which can degrade their performance on
unseen data. To overcome the limitation of overfitting, an ensemble method like Random
Forest [17] is used. While an individual decision tree is easy to interpret, the interpretation
of results produced by Random Forest is not as straightforward.

As previously highlighted, convolutional neural networks (CNNs) have significantly
advanced image classification tasks. However, by design, they are not interpretable. Several
researchers have developed methods to add a level of transparency to the decision-making
process. One study [18] combines the LIME (Local Interpretable Model-Agnostic Explana-
tion) approach with a black box method to improve the understanding of the prediction
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of colon cancer. LIME is a technique that can explain individual predictions. In addition,
techniques like saliency maps [9] and CAM (Class Activation Mapping) [19] are used to
interpret the CNNs’ decision-making processes. While these enhance our understanding
of the decision-making process, they provide local interpretations of the model and do
not explicitly provide insight into the overall working of these models by establishing a
relationship between the semantic or higher-level features that the model has recognized
and the output labels. Therefore, in the next section, we will discuss the formal concept
analysis framework, which shows potential in identifying these relationships.

2.3. Formal Concept Analysis (FCA)

Formal concept analysis (FCA) [20] is a mathematical framework for data analysis
that focuses on identifying and visualizing relationships within a dataset. It is based on the
notions of “concept” and “lattice” to form a structured representation of data. Concepts
are defined as collections of objects that share common attributes, while a lattice is a
visual representation of these concepts in a hierarchical manner to reveal the relationships,
patterns, and outliers.

The input to formal concept analysis is a formal context, a triplet (G, M, I), where
G is a set of objects, M is a set of attributes, and I is a binary relation between G and
M, indicating which objects have which attributes. A formal context is represented as
an incidence table, where rows represent a set of objects G and the columns represent
a set of attributes M, with entries indicating the binary relationship. From this context,
FCA generates a set of concepts. A formal concept is a pair (A, B) where the following
definitions apply:

• A is a subset of objects or the extent of a concept.
• B is a subset of attributes or the intent of a concept.
• A is the set of all objects that share all the attributes in B, and B is the set of all attributes

shared by all objects in A.

For example, a formal context of six images is represented in Table 1, where images
are objects labeled as {1, 2, 3, 4, 5, 6} and attributes are high-level features of images labeled
as {a, b, c, d}. The “1” indicates the presence of a relationship, and “0” indicates the absence
of a relationship. A concept with intent {a, b} has extent {2, 3, 4, 5}.

Table 1. Formal context of images.

Objects a b c d

1 1 0 0 0

2 1 1 0 0

3 1 1 0 0

4 1 1 0 1

5 1 1 1 0

6 1 0 1 0

Further, FCA generates a concept lattice which provides a visual representation of the
hierarchy of all the concepts of a given context. It is represented by a line diagram called
a “Hasse diagram”, as shown in Figure 1. The line diagram consists of nodes and all the
objects and attributes are represented as labels. The nodes represent the concepts, and the
intent and extent of each concept can be read from the line diagram by following the simple
reading rule: The intent of a concept is the set of attributes on all the paths leading in the
upward direction from the node and extent is the set of objects on all the paths leading in
the downward direction from the node [20]. For example, in Figure 1, the node labeled
“C2” is a concept with intent {a, b} and extent {2, 3, 4, 5} and node labeled “C5” with intent
{a, b, c} and extent {5}.
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Concepts can have relationships with many other concepts; some concepts are more
general than others. The relationship of generalization and specialization is modeled using
the subconcept–superconcept relation. The extent of the subconcept is a subset of the extent
of the superconcept. Likewise, the intent of the superconcept is a subset of the intent of the
sub-concept [21]. In the concept lattice, when we move from top to bottom, we move from
general to more specific concepts. In the Figure 1, the node labeled C5 is a subconcept of
the node labeled C1, C2, and C3.

Figure 1. Concept Lattice of formal context of images.

The advantages of using FCA as a classifier over a CNN are as follows:

1. Abstract Feature Relationships: FCA creates clear mapping between images and their
features, which is defined in the form of concepts. When applied to high-level features
extracted, FCA can show relationships between images based on the shared abstract
features they possess. FCA naturally leads to the derivation of if–then rules, which
offer a human-readable explanation of why a particular decision was made.

2. Hierarchical Understanding: The lattice structure organizes concepts hierarchically,
which can provide insights into the structure of data and how different features relate
to one another and share attributes among images.

3. Incremental Model: FCA can handle changes in input data because it is an incremental
model. The addition of new features or images can be incorporated by either adding
a new concept or extending the existing concept without the need for retraining
the model.

4. Single Pass: FCA is efficient because it requires a single pass over the training dataset
to construct the concept lattice.

In recent works, FCA is often used for clustering [22], association rule mining [23],
and determining classification rules [24]. One survey [25] highlights the potential use of the
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formal concept analysis framework as a classifier in cancer diagnosis. In the next section,
we discuss the details of our FCA-based classifier.

3. Methods

The proposed classifier consists of two main components, (1) feature extraction and
(2) a formal concept analysis (FCA)-based classifier, as shown in Figure 2, which was used
in our previous work [10] with a handwritten image dataset. In this section, we describe
our approach and the histopathological image datasets used to evaluate the method.

In our proposed method, we use a feature extraction framework to identify the im-
portant features in the images and then use the extracted features to train our FCA model.
Given that our FCA classifier could generate 2n concepts (where n is the number of features)
and FCA does not have the inherent ability to perform feature extraction, a pre-processing
step is needed. The choice of feature extraction technique varies depending on the dataset
used. Various feature extraction techniques like PCA, LDA, CNNs, and pretrained CNNs
can be used. This step results in a set of high-level features learned from the original images.

The input to our FCA-based classifier is a formal context: an incidence table where
rows represent the set of images from our dataset and the columns represent the binary
features. To obtain the formal context, we first need to convert the multi-valued, high-level
features obtained from the feature extraction step into a binary feature. This conversion
involves two steps. First, we normalize these features to ensure uniformity across the
dataset. Second, we set a threshold where every feature value above the threshold is
assigned as “1”, indicating the presence of the feature, and “0” otherwise, indicating its
absence. Same threshold is applied to all features across the dataset.

Figure 2. Workflow of the proposed FCA-based classification approach: In the initial step, input
images (e.g., digit images) are processed using feature extraction methods to obtain high-level
features, represented here as a, b, c, d, e, and f. These features are input to the FCA classifier which
identify the relationship between the high-level features and the class labels, represented here as
Digit 0, Digit 2, and Digit 3.

The classification approach based on formal concept analysis allows us to extract the
relationship between high-level input features and the different output class labels based
on the concepts discovered from data. Each concept represents groupings of images based
on shared features. Conceptually, our classification method consists of a learning step
and a classification step. In the learning step, we extract the relationships from a training
set in the form of a concept lattice where we define a class label for each concept. In the
classification step, we predict the class of instances in the testing set based on concepts in
the training lattice.

We implement the FCA classifier algorithm as represnted in Algorithm 1 in Python
using the concepts package to construct the concept lattice.
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Algorithm 1 FCA Classifier Algorithm

1: Input: Training set (Xtrain, ytrain), Testing set (Xtest)
2: Output: Predicted class labels for the testing set.

3: Step 1: Constructing Training Lattice
4: Initialize an empty set Xt and an empty list yt
5: for each feature vector xi in Xtrain do
6: if xi /∈ Xt then
7: Add xi to Xt
8: Add the corresponding class label yi to yt as a new list
9: else

10: Find the index of xi in Xt
11: Append the class label yi to the corresponding list in yt
12: end if
13: end for
14: Construct the training lattice from the unique training feature set Xt

15: Step 2: Defining Class of a Concept in Training Lattice
16: for each concept in the training lattice do
17: Get the extent (set of images) of the concept
18: Count the number of images belonging to each class in the extent
19: Assign the class label with the maximum count as the class of the concept
20: In case of a tie, break the tie arbitrarily
21: end for

22: Step 3: Classify the Testing Set
23: Initialize an empty list ypred for storing predicted class labels
24: for each feature vector xj in Xtest do
25: Calculate the Hamming distance between xj and the intent of each concept in the training

lattice
26: Identify the concept with the smallest Hamming distance
27: Assign the class of the identified concept as the predicted class label for xj
28: Append the predicted class label to ypred
29: In case of a tie in the Hamming distance, break the tie arbitrarily
30: end for

31: return ypred

We use “accuracy” to evaluate the performance of our proposed classifier. Moreover,
the lattice diagram helps in understanding the hierarchical learning and relationship
between features and class labels.

Our proposed image classifier is a generic framework which can be applied to all
image datasets. However, for different datasets, we can modify the feature extraction
framework by incorporating new techniques that improve the classification result. In this
study, we applied the proposed classifier on two well-known histopathological image
datasets, Warwick-QU and BreakHIS dataset.

4. Results and Discussion

The Warwick-QU dataset [26] (Figure 3b) comprises 165 images with 74 benign and
91 malignant colon tissue images. Each image is 522 × 775 pixels in size. We used an
approximate 75–25% train–test split with equal numbers of benign and malignant images
in the test set. The BreakHis Dataset [27] (Figure 3a) comprises 7909 histopathological
images with different magnifications, including 40x, 100x, 200x, and 400x, collected from
82 patients. There are 2480 benign tumor images and 5429 malignant tumor images.

For the Warwick dataset, we explored different convolutional neural networks (CNNs)
for feature extraction: (1) ResNet50 [28]: ResNet50 is a deep convolutional network consist-
ing of 50 layers, known for its “residual blocks”, which help in training deeper networks.
(3) VGG16 [29]: VGG16 has 16 layers, while VGG19 has 19 layers (16 convolutional and
3 fully connected layers). (4) Inception v3 network [30]: It is a convolutional neural network
with several layers of convolution, pooling, and fully connected layers.
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Figure 3. (a) BreakHis: Breast cancer histopathological images. (b) Warwick QU dataset: Colon
cancer histopathological images. The scale bar represents X units.

Although these CNNs were pretrained on the ImageNet dataset, they were not specifi-
cally trained on histopathological images. Given the small size of the Warwick dataset, we
leveraged the transfer learning approach to enable the models to learn relevant features
specific to histopathology. The idea behind transfer learning is to leverage knowledge
gained while solving one problem and apply it to a different but related problem. The
BreakHis dataset, with its breast cancer histopathological images, shares similarities with
the Warwick-QU dataset (Figure 3). Additionally, BreakHis is much larger than the Warwick
dataset. We used global normalization to normalize both datasets to ensure consistency.

First, we pretrained the CNNs on the BreakHis dataset; then, we fine-tuned the models
using the Warwick training set. Finally, we tested the classifier on the Warwick test set to
evaluate performance.

For each of these CNNs, we added a fully connected dense layer on top of the pre-
trained model. We experimented with different numbers of neurons in the fully connected
layer and the number of layers, aiming to keep the number of features low as the training
time of our FCA model depended on the number of features. The final architecture of the
dense layer included three layers with 128, 32, and 16 neurons, respectively. The output
from the last dense layer, consisting of 16 neurons, was used as the feature vector, which
was then passed to the FCA classifier.

We compared the classification performance of the FCA classifier for each feature
extraction technique pretrained on the BreakHis dataset and fine-tuned on the Warwick
training dataset. The performance metrics for the FCA classifier are reported in Table 2. For
each model, the number of features extracted from the CNN model was 16. By pretraining
on BreakHis, our model improved at recognizing cancer-related features, which were then
fine-tuned on the Warwick dataset. By leveraging these feature extraction techniques, our
aim was to optimize the FCA classifier’s accuracy.

Table 2. Comparison of feature extraction models pretrained on BreakHIS dataset and FCA-based
classifier performance on Warwick dataset.

Feature Extraction Accuracy % Sensitivity % Specificity % F1 Score %

ResNet 50 69.04 90 43 73
VGG 16 80.95 90 71 83
Inception v3 95.23 100 81 91

Additionally, we evaluated the performance of the CNN models when used directly
as classifiers, where the fully connected dense layer is followed by a classification layer.
These results are presented in Table 3.
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Table 3. Comparison of CNN models pretrained on BreakHIS dataset used as classifiers on War-
wick dataset.

Model Accuracy % Sensitivity % Specificity % F1 Score %

ResNet 50 61.90 71 52 65
VGG 16 78.57 90 67 81
Inception v3 80.95 95 67 83

The results in Table 2 show that the Inception v3 model, when used for feature
extraction, and FCA as a classifier achieved the highest accuracy of 95.23%, with sensitivity
of 100% and specificity of 81%. Table 3 shows the performance of the CNN models when
used as classifiers themselves. Inception v3 showed the best performance with accuracy of
80.95%, followed by VGG16 with accuracy of 78.57% and ResNet 50 with accuracy of 61.90%.
These results indicate that while all models benefited from the transfer learning approach,
the FCA classifier combined with Inception v3 features significantly outperformed the
models used directly as classifiers.

To show the importance of concept lattices in visualizing the relationship between
high-level features extracted from CNNs and the output class labels, we present the con-
cept lattice for the Inception v3 model used for feature extraction, which achieved FCA
classification accuracy of 90.4%. This is represented in Figure 4 for simplicity. Each node
in the lattice represents a concept with a specific set of features (intent), set of images
(extent), and a class label (0 or 1, where 0 means benign and 1 means malignant). The set
of abstract features is {a, b, c, d, e, f , g, h, i, j, k, l, m, n, o, p}, and concepts are labeled either
0 or 1, which represent class labels for a binary classification problem. For simplicity, we
did not represent the extent for the concepts in the lattice. For instance, the concept c6 is
associated with the feature {a, f , m} and the class label 1. This lattice helps in identifying
the important features or combinations of features that are strong indicators of a class and
identifying patterns or rules that can be directly applied in decision-making processes.

Figure 4. Concept lattice for the Warwick dataset. {c1, c2, . . . , c15} represents concepts, {a, b, . . . , p}
represents features, and {0, 1} represents class labels.
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Predominant Features for a Class:

• For Class 1: Features on the right side of the lattice, {a, k, l, e, g, c}, are predominantly
associated with class 1. This suggests that the presence of these features in an image
makes it more likely to be classified as class 1.

• For Class 0: The left side with features, {j, o, h, p}, has nodes predominantly labeled 0,
suggesting images with these features are more likely to be classified as class 0.

• Some nodes have multiple features associated with them, indicating those features
frequently occur together in the dataset. For example, concept c2 is associated with
features j and o, suggesting that these two features tend to co-occur. The combination
of j and o (concept c2) is exclusively associated with class 0. This can be a strong rule
in the classifier.

• If two features never appear together in a along a path from subconcept to super-
concept, they might be mutually exclusive or at least rarely co-occur in a dataset.
For instance, there is no direct path connecting the left features, {h, p, j, o}, and the
right features, {a, k, l, e, g, c}, suggesting they do not often appear together in the
same instances.

Hierarchy of Concepts:

• The lattice shows a clear hierarchical relationship between concepts, with more general
concepts at the top. As we move down the lattice, the concepts represent a more
specific combination of features. For instance, c1 and c3 are more general concepts at
the top, while c10, c14, and c15 are among the most specific concepts at the bottom.
Concept c15 does not have a class label defined because its extent has no images. The
hierarchy can reveal which features often occur together. For example, the path from
c6 (with feature a) to c3 (with feature f ) suggests that in the dataset, when a is present,
f is also likely present.

Class Inheritance:

• If a superconcept has a class label, its subconcepts will generally have the same label
unless specified otherwise. For example, if a superconcept is labeled 1, and there is no
contradicting information in the subconcept, we can infer the subconcept is also class
1. In the lattice, c6 with feature a inherits the class label 1 from c3 with feature f , as
well as concepts c9 , c11, c12 , c13, and c14.

• Some features might appear in both class 0 and class 1 concepts, making them am-
biguous in terms of classification. By looking at the hierarchy, we can determine if
a feature’s classification power changes depending on its combinations with other
features. For example, concept c2 has class label 0 , and c3 has class label 1, while for
concept c5, sharing the intent from both c2 and c3 makes it stronger towards class 0.

We compared the performance of our proposed FCA classifier with the established
benchmark method on the Warwick dataset from a study using the ResNet50 model [12] and
the Inception v3 classifier, which was used in the feature extraction step. The comparison
results are shown in Table 4. In the existing literature, the highest accuracy on the Warwick
dataset is 88% using the ResNet50 network [12] . Our model achieved accuracy of 95.23 %
with the same train–test split of 75-25% as reported in the study. In addition, we compared
the performance of the FCA classifier with the Inception v3 classifier, where it achieved
significantly lower accuracy of 80.95 % Therefore, in the Warwick dataset, the FCA-based
classifier shows promising results.

Table 4. Comparison of performance on Warwick-QU dataset.

Classifier Accuracy % Sensitivity % Specificity %

FCA 95.23 100 81
Sarwinda et al. [12] 88 89 87
Inception v3 80.95 95 67
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To further validate and test the applicability of the FCA model on other histopatho-
logical images, we tested it on the BreakHIS dataset. The accuracy is reported for each
magnification on the FCA classifier as well as the Inceptionv3 classifier, which is used for
feature extraction for the FCA classifier and has the highest accuracy reported from an SVM
classifier using DenseNet201 (CNN) for extracting features in the current literature [31], as
shown in Table 5.

Table 5. Comparison of accuracy on BreakHis dataset.

Magnification FCA Inception v3 Hao et al. [31]

40x 95.98% 94.49% 96.75%
100x 94.96% 94.72% 95.21%
200x 96.27% 95.04% 96.57%
400x 97.76% 88.19% 93.15%

Further, to validate the performance, we used cross-dataset performance. We first
used the BreakHIS dataset to train the Inception v3 model and then used the trained model
to extract features for the entire Warwick dataset and used these features as input to the
FCA classifier for classification on the Warwick dataset. The results are reported in Table 6.
Here, the model did not use the Warwick dataset in the feature extraction step to learn
the features.

Table 6. Results for cross-dataset evaluation. Models were trained on BreakHIS dataset and tested on
Warwick dataset.

Classifier Accuracy % Sensitivity % Specificity % F1 Score %

FCA 81.21 92 66 84
Inception v3 69.09 49 93 64

Overall, the results show that the FCA-based classifier significantly improves both
interpretability and accuracy in medical image classification. For smaller datasets like
Warwick-QU, transfer learning using pretrained architectures such as Inception v3 helps to
improve classification accuracy. With a classification accuracy of 95.23% on the Warwick-
QU dataset, the FCA-based model outperformed the existing benchmark. Furthermore,
while CNNs have slightly better accuracy on the BreakHIS dataset, our FCA model provides
enhanced interpretability, highlighting the generalizability and robustness of our approach
across various histopathological image datasets of different sizes. Future research should
focus on expanding the evaluation to more diverse datasets, improving scalability and
exploring its utility in real-time medical diagnostic applications.

5. Conclusions

This study presents a novel image classification approach that integrates formal
concept analysis (FCA) with convolutional neural networks (CNNs) to enhance the inter-
pretability of image classification processes in medical imaging. The developed method-
ology utilizes the strengths of FCA to add a layer of transparency to the classification
process by explicitly identifying relationships between high-level (abstract) features and
class labels; the FCA-based classifier thus enhances both the accuracy and interpretability
of model predictions. The application of FCA allows for the visualization of how features
correlate with classification outcomes, addressing a critical gap in CNN-based classifiers
that often operate as “black boxes”. The ability of FCA to systematically organize and
interpret complex feature interactions enhances trust and reliability in automated medical
diagnostic systems. While our findings are promising, achieving the optimal balance be-
tween accuracy and interpretability remains a challenge. The advancements made in this
study can direct the future research in the following directions: applying FCA classifiers to
diverse image datasets and testing their efficacy across various domains. Another key area
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will be to investigate the application of FCA in environments where data are continuously
updated. Such application is crucial to determine the model’s robustness and adaptability
in real-world situations. Additionally, future research should focus on integrating visualiza-
tion methods such as Grad-CAM or Guided Grad-CAM with the FCA framework. These
methods can help visualize the regions where the CNN pays attention during classification,
enhancing the interpretability of the FCA classifier at the input level.
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