Supplementary Data

Lanatoside C induces G2/M cell cycle arrest and suppresses cancer cell growth by attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR signaling pathways

Dhanasekhar Reddy¹, Ranjith Kumavath^{1*,} Preetam Ghosh² and Debmalya Barh³

Gene	Forward primer	<u>Reverse primer</u>	
Bcl-2	TTGTGGCCTTCTTTGAGTTCGGTG	GGTGCCGGTTCAGGTACTCAGTCA	
Bax	CCTGTGCACCAAGGTGCCGGAACT	CCACCCTGGTCTTGGATCCAGCCC	
CDK6	GGATAAAGTTCCAGAGCCTGGAG	GCGATGCACTACTCGGTGTGAA	
Chk1	TTGGCTTCCTGCCACATGAT	TTGCAGTTTGCAGGACAGGA	
Chk2	AGTGGTGGGGAATAAACGCC	TCTGGCTTTAAGTCACGGTGTA	
p53	CAGCACATGACGGAGGTTGT	TCATCCAAATACTCCACACGC	
MEK1	TGAGAGCGACGGTTCTCTACT	CACAATCAGAGTGTCCTGTTGTT	
p44	ACTATGTCCGAAGCAAGGATTTC	CGCCCACTGATAATCTCTGGAG	
р38 а	AACCTGTCTCCAGTGGGCTCT	CGTAACCCCGTTTTTGTGTCA	
SAPK/JNK	GGGTATGCCCAAGAGGACAGA	GTGTTGGAAAAGTGCGCTGG	
NF-kβ -P65	GTCAAAAACGCCACCTCTCAA	CTCGCATGGAATTTGGAACCG	
AKT	CCTCCACGACATCGCACTG	TCACAAAGAGCCCTCCATTATCA	
STAT3	CAGCAGCTTGACACACGGTA	AAACACCAAAGTGGCATGTGA	
JAK	GCCAACGAGGATCTTCGAGC	CTTCTCGCGTTCCACTTTGC	
p62	GCACCCCAATGTGATCTGC	CGCTACACAAGTCGTAGTCTGG	
mTOR	ATGCAGCTGTCCTGGTTCTC	AATCAGACAGGCACGAAGGG	
РІЗК	CCACGACCATCATCAGGTGAA	CCTCACGGAGGCATTCTAAAGT	
β-catenin	AGCTTCCAGACACGCTATCAT	CGGTACAACGAGCTGTTTCTAC	
с-Мус	ATGGCCCATTACAAAGCCG	TTTCTGGAGTAGCAGCTCCTAA	
Cyclin D1	GCTGCGAAGTGGAAACCATC	CCTCCTTCTGCACACATTTGAA	
c-Jun	TGACTGCAAAGATGGAAACG	CAGGGTCATGCTCTGTTTCA	
c-Fos	AAGGGAAAGGAATAAGATGGCT	GCAAAGCAGACTTCTCATCT	
LC3	GGAGAATCCGAAGGGAAAG	TTGAGCTGTAAGCGCCTTCTA	
Beclin 1	CTGGTAGAAGATAAAACCCGGTG	AGGTAGAGCGTGGACTATCCG	
Sestrin 1	TGCTTTGGGCCGTTTGGATAA	TGTAGTGACGATAATGTAGGGGT	
MAPK24 (MKK4)	GACGAGGAGCTTATGGTTCTGT	TTTTCATCCACTGTTGACCGAA	
PTEN	AGGGACGAACTGGTGTAATGA	CTGGTCCTTACTTCCCCATAGAA	
Msk1	CAACAATCGTTCAAAAGGCCAA	CGACTGCCTAATGTGTTCCAG	
Gsk3A	GTGCCCGAGACAGTGTACC	ACACCTTGACATAGAGGATAGGG	
GAPDH	AACGGGAAGCTTGTCATCAATGGAAA	GCATCAGCAGAGGGGGGCAGAG	

Supplementary Table 1: List of primers used in this study.

S.no	Gene/protein	Expressions (Up/Down)		wn)]
		MCF-7	A549	HepG2	1
1	c-Fos	\downarrow	↓	\downarrow	1
2	c-Myc	\downarrow	\downarrow	\downarrow	
3	c-Jun	\downarrow	\downarrow	\downarrow	
4	Chk1	\downarrow	↓	↓	
5	Chk2	\downarrow	↓	↓	
6	CDK6	\downarrow	↓	\downarrow	
7	Cyclin D1	\downarrow	↓	\downarrow	
8	MAPK24	\downarrow	↓	\downarrow	
9	MEK1	\downarrow	↓	\downarrow	
10	p38MAPK	\downarrow	↓	\downarrow	
11	p62	\downarrow	↓	\downarrow	
12	PI3K	\downarrow	↓	\downarrow	
13	AKT	\downarrow	↓	\downarrow	
14	mTOR	\downarrow	↓	\downarrow	
15	Beclin	\downarrow	↓	\downarrow	
16	LC3	\downarrow	↓	\downarrow	
17	Sestrin	\downarrow	↓	\downarrow	
18	Bcl-2	\downarrow	↓	\downarrow	
19	Gsk3a	\downarrow	↓	\downarrow	
20	β-catenin	\downarrow	↓	\downarrow	$\uparrow U pregulation \downarrow Downregulation$
21	NF-kB	1	1	1	
22	Msk1	1	1	1	
23	Bax	1	1	1	
24	STAT3	1	↓	1	
25	p53	\downarrow	\downarrow	1	
26	p44	1	1	\downarrow	
27	JAK	1	1	\downarrow	
28	SAPK/JNK	1	↓	1	
29	PTEN	1	1	\downarrow	

Supplementary Table 2: Summary of identified gene/protein expressions in this study with Lanatoside C treatment.

Supplementary Fig. 1: MCF-7, A549 and Hepg2 cells were treated with Lanatoside C for 24 or 48 h. Morphological changes in the cells were observed. Representative images were obtained at 40× magnification. Scale bar: 50 µm.

Supplementary Fig. 2: Lanatoside C treated cells showing DNA damage in MCF-7, A549, and HepG2 cells compared to untreated control cells..

Supplementary Fig. 3A: Immunofluorescence imaging for the analysis of protein localisations of Chk1, Chk2, CDK6 and Cyclin D1 in Lanatoside C induced MCF-7 cells.

Supplementary Fig. 3B: Immunofluorescence imaging for the analysis of protein localisation of Gsk3α in Lanatoside C induced MCF-7 cells.

Supplementary Fig. 3C: Immunofluorescence imaging for the analysis of protein localisations of p38MAPK, MEK1and SAPK/JNK in Lanatoside C induced MCF-7 cells.

Supplementary Fig. 3D: Immunofluorescence imaging for the analysis of protein localisations in AKT, mTOR, LC3, PI3K and p62 in Lanatoside C induced MCF-7 cells.

Supplementary Fig. 4A: Immunofluorescence imaging for the analysis of protein localisations of Chk1, Chk2, CDK6 and Cyclin D1 in Lanatoside C induced A549 cells.

Supplementary Fig. 4B: Immunofluorescence imaging for the analysis of protein localisation of β-catenin in Lanatoside C induced A549 cells.

Supplementary Fig. 4C: Immunofluorescence imaging for the analysis of protein localisations of p38MAPK, MEK1and SAPK/JNK in Lanatoside C induced A549 cells.

Supplementary Fig. 4D: Immunofluorescence imaging for the analysis of protein localisations in AKT, mTOR, LC3, PI3K and p62 in Lanatoside C induced A549 cells.

Supplementary Fig. 5A: Immunofluorescence imaging for the analysis of protein localisations of Chk1, CDK6 and Cyclin D1 in Lanatoside C induced A549 cells.

Supplementary Fig. 5B: Immunofluorescence imaging for the analysis of protein localisation of GSK3α and β-catenin in Lanatoside C induced HepG2 cells.

Supplementary Fig. 5C: Immunofluorescence imaging for the analysis of protein localisations of p38MAPK, MEK1and SAPK/JNK in Lanatoside C induced HepG2 cells.

Supplementary Fig. 5D: Immunofluorescence imaging for the analysis of protein localisations in AKT, mTOR, LC3, PI3K and p62 in Lanatoside C induced HepG2 cells.

Supplementary Fig 6: Docking complexes of target protein and ligand (a) STAT3, (b) Bcl-2, (c) Cyclin D1, (d) p38, (e) NF-kB, (f)PARP, (g) Chk1, (h) AKT, (i) Chk2, (j) JNK, (k) PI3K, (l) CDK6, (m) MEK1, (n) mTOR, and (o) JAK.