
biomolecules

Article

The Relevance of Thimet Oligopeptidase in the
Regulation of Energy Metabolism and
Diet-Induced Obesity

Mayara C. F. Gewehr 1, Alexandre A. S. Teixeira 2 , Bruna A. C. Santos 1, Luana A. Biondo 2 ,
Fábio C. Gozzo 3, Amanda M. Cordibello 3, Rosangela A. S. Eichler 1, Patrícia Reckziegel 4,
Renée N. O. Da Silva 1, Nilton B. Dos Santos 1 , Niels O. S. Camara 5, Angela Castoldi 5,
Maria L. M. Barreto-Chaves 6, Camila S. Dale 6, Nathalia Senger 6, Joanna D. C. C. Lima 2,
Marilia C. L. Seelaender 2, Aline C. Inada 1 , Eliana H. Akamine 1, Leandro M. Castro 7,
Alice C. Rodrigues 1 , José C. Rosa Neto 2 and Emer S. Ferro 1,*

1 Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, 05508-900 São Paulo,
SP, Brazil; ferrari.mayaracalegaro@gmail.com (M.C.F.G.); bacsbruna@usp.br (B.A.C.S.);
reichlerusp@gmail.com (R.A.S.E.); oliveirarenee@gmail.com (R.N.O.D.S.);
niltonbsantos@gmail.com (N.B.D.S.); inadaaline@gmail.com (A.C.I.); eliakamine@usp.br (E.H.A.);
alicecristinarodrigues@gmail.com (A.C.R.)

2 Department of Cell Biology and Development, Biomedical Sciences Institute, University of São Paulo,
05508-900 São Paulo, SP, Brazil; alexandreast@gmail.com (A.A.S.T.); luabiondo@gmail.com (L.A.B.);
joannacarola@usp.br (J.D.C.C.L.); seelaend@icb.usp.br (M.C.L.S.); josecesar23@hotmail.com (J.C.R.N.)

3 Institute of Chemistry, State University of Campinas, 13083-862 Campinas, SP, Brazil;
fgozzo@gmail.com (F.C.G.); amiquilini@id.uff.br (A.M.C.)

4 Department of Pharmacology, Federal University of São Paulo, 04023-062 São Paulo, SP, Brazil;
reckziegel.patricia@gmail.com

5 Department of Immunology, Biomedical Sciences Institute, University of São Paulo, 05508-900 São Paulo, SP,
Brazil; niels.camara@gmail.com (N.O.S.C.); angela.castoldi@gmail.com (A.C.)

6 Department of Anatomy, Biomedical Sciences Institute, University of São Paulo, 05508-900 São Paulo, SP,
Brazil; marialuizabarretochaves@gmail.com (M.L.M.B.-C.); camisdale@gmail.com (C.S.D.);
nathaliasenger@usp.br (N.S.)

7 Biosciences Institute, São Paulo State University, 11330-900 São Vicente, SP, Brazil; leandromcbio@gmail.com
* Correspondence: eferro@usp.br; Tel./Fax: +55-(11)-3091-7310/+55-(11)-3091-7422

Received: 4 January 2020; Accepted: 12 February 2020; Published: 17 February 2020
����������
�������

Abstract: Thimet oligopeptidase (EC 3.4.24.15; EP24.15; THOP1) is a potential therapeutic target,
as it plays key biological functions in processing biologically functional peptides. The structural
conformation of THOP1 provides a unique restriction regarding substrate size, in that it only
hydrolyzes peptides (optimally, those ranging from eight to 12 amino acids) and not proteins.
The proteasome activity of hydrolyzing proteins releases a large number of intracellular peptides,
providing THOP1 substrates within cells. The present study aimed to investigate the possible
function of THOP1 in the development of diet-induced obesity (DIO) and insulin resistance by
utilizing a murine model of hyperlipidic DIO with both C57BL6 wild-type (WT) and THOP1 null
(THOP1−/−) mice. After 24 weeks of being fed a hyperlipidic diet (HD), THOP1−/− and WT mice
ingested similar chow and calories; however, the THOP1−/− mice gained 75% less body weight and
showed neither insulin resistance nor non-alcoholic fatty liver steatosis when compared to WT mice.
THOP1−/− mice had increased adrenergic-stimulated adipose tissue lipolysis as well as a balanced
level of expression of genes and microRNAs associated with energy metabolism, adipogenesis, or
inflammation. Altogether, these differences converge to a healthy phenotype of THOP1−/− fed a HD.
The molecular mechanism that links THOP1 to energy metabolism is suggested herein to involve
intracellular peptides, of which the relative levels were identified to change in the adipose tissue of
WT and THOP1−/− mice. Intracellular peptides were observed by molecular modeling to interact
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with both pre-miR-143 and pre-miR-222, suggesting a possible novel regulatory mechanism for gene
expression. Therefore, we successfully demonstrated the previously anticipated relevance of THOP1
in energy metabolism regulation. It was suggested that intracellular peptides were responsible
for mediating the phenotypic differences that are described herein by a yet unknown mechanism
of action.

Keywords: obesity; insulin resistance; diet-induced obesity; proteasome; proteases; peptidases; mass
spectrometry; peptidome

1. Introduction

Mammalian proteasomes play essential functions in degrading proteins [1]. Proteasomes are
also important in the processing of peptides for major histocompatibility class I (MHC-I) antigen
presentation [2]. However, an evolutionary ancient function must exist for peptides processed by
proteasomes, considering that active proteasomes are found in prokaryotes (some bacteria and archaea),
while MHC-I is only found in cartilaginous fish [3–6] and not in earlier, more primitive species. Indeed,
in the late 1950s, some intracellular peptides were described in Pseudomonas hydrophila [7] and Torula
utilis [8]. Recently, our group developed a substrate-capture assay using a catalytically inactive form of
thimet oligopeptidase (EC 3.4.24.15, EP24.15; THOP1) that allowed for the seminal identification of
mammalian intracellular peptides, which are products of proteasome activity distinct from MHC-I
antigens [9,10]. To date, multiple research groups have identified hundreds of novel intracellular
peptides in human cell lines [11,12], human tissues [13,14], rodents [15,16], zebrafish [17], yeast [18],
and plants [19,20]. THOP1 only hydrolyzes a restricted group of peptides in the optimal range of 8–12
amino acids in length [21–23], and has never been shown to degrade proteins, likely due to its catalytic
site being deeply located in the bottom of a narrow channel [24,25]. Therefore, proteasome activity
generates intracellular peptides that can eventually be processed by THOP1 [12,26,27]. THOP1 is
ubiquitously present in the cytoplasm and nuclei of mammalian cells and tissues [28–32], and it is also
extracellularly secreted [33–39] and membrane-associated [35,40–43]. THOP1 has been established
as one of the highly expressed genes related to epigenetic interactions in lung adenocarcinoma
of poor prognosis [44]; it is also associated with MHC-I antigen presentation [26,27,45–47] and
the inactivation of several neuropeptides [41,42,48–53]. These data were recently corroborated by
THOP1 C57BL6 null mice (THOP1−/−), which showed poor clinical scores compared to wild-type
C57BL6 mice (WT) in an autoimmune encephalomyelitis neurodegeneration model for multiple
sclerosis [54]. THOP1 was also shown to have roles in sepsis, peripheral bradykinin metabolism
related to the inflammatory pain response, and in affecting animal behaviors such as depression,
attention, and memory retention [54]. Previous studies have associated THOP1 with distinct human
pathologies [44,55–59], including Alzheimer’s disease [59] and early diabetic retinopathy [55]. In a
primate model of maternal obesity in which obesity was induced in baboons prior to pregnancy, THOP1
was identified as one of the five differentially expressed proteasome pathway genes targeted by four
differentially expressed microRNAs [60]. Neurolysin, an oligopeptidase that is closely structurally
related to THOP1 [23,61,62], was shown to be a key enzyme for energy metabolism, increasing glucose
tolerance, insulin sensitivity, and gluconeogenesis [63]. Neurolysin was also shown to be a key enzyme
for intracellular peptide metabolism [63,64]. Intracellular peptides were previously shown to have
multiple functions, both inside and outside cells [65], such as facilitating glucose uptake [66] and
activating fat metabolism [10,67].

Overweight and obesity are major risk factors for several chronic diseases, including diabetes,
cardiovascular diseases, stroke, and cancer, according to the World Health Organization (WHO) 2019
report. There are currently over 1.9 billion people who are obese or overweight, leading to a rise in
related health complications, including insulin resistance, type 2 diabetes, cardiovascular disease,
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liver disease, cancer, and neurodegeneration [68]. Therefore, the search for novel pharmacological
targets for treating overweight, obesity, and obesity-related chronic diseases remains an important
goal. In the present report, THOP1−/− and WT animals were challenged by either a standard diet (SD,
3.8 kcal/g) or a hyperlipidic diet (HD, 5.4 kcal/g) for 24 weeks. Using this model, it was possible to
investigate the potential functions of THOP1 on hyperlipidic diet-induced obesity (DIO) as well as some
obesity-associated diseases such as insulin resistance. THOP1−/−was considered a unique animal model
to induce changes only in the intracellular peptide profile without disturbing protein degradation, due
to THOP1’s well-characterized unconventional substrate-size restriction [21–24,62,69,70]. Moreover,
THOP1−/− mice were shown to be healthy and viable, in addition to having a normal external
appearance, estrous cycle, and fertility [54]. Altogether, the results presented herein successfully
suggest THOP1 is a novel target for controlling obesity and associated diseases. Intracellular peptides
products of proteasome and THOP1 activities could be responsible for functionally mediating the
phenotypic differences observed between THOP1−/− and WT mice.

2. Materials and Methods

2.1. Generating and Genotyping THOP1−/− Mice

A full detailed description of THOP1−/− mice generation and genotyping procedures were
previously described [54]. Briefly, the THOP1 gene trap knockout mouse strain was generated by
blastocyst microinjection of genetically modified embryonic stem cells (CSG163, 129ola) that were
obtained from BayGenomics through the International Gene Trap Consortium. After transmission of
the knock-out allele from chimera to F1 generation, the THOP1 mice were obtained from heterozygous
breeding, and the line was further maintained on the mixed background by breeding THOP1+/− with
THOP1+/− animals. After breeding these mice for several generations, the animals were genotyped
while using a mouse 384 single nucleotide polymorphism (SNP) panel (SNP markers were spread
across the genome at about 7 Mbp intervals; Charles River, NY, USA; data not shown). THOP1 was
confirmed to be located on chromosome 10 at 81 Mb. The animal chosen for further breeding had
no other 129 alleles unlinked to the THOP1 gene of interest, and was considered 99.35% congenic
to C57BL/6N. The controls C57BL6/N WT animals used herein were not littermate, although all of
the animals were indeed initially generated from C57BL/6N littermates. All of the animals lived and
shared the same environment, and the same persons maintained them during the entire experimental
process. The mice were maintained in individual ventilated cages (Ventilife, ALESCO, SP, Brazil) under
standardized conditions with an artificial 12-h dark-light cycle, with free access to standard chow
and drinking water ad libitum. The experiments were performed with mice four weeks old. All of
the animals were maintained and used in accordance with the guidelines of the National Council
for Control of Animal Experiments (CONCEA), following international norms of animal care and
maintenance. Thus, we hereby state that the University of São Paulo Ethics Committee Councils from
the Biomedical Science Institute previously approved all experimental protocols (approval number for
mice experimentation ICB/USP No. 138/2015).

2.2. Diet-Induced Obesity (DIO) Murine Model and Food Restriction

The animals were fed either an SD with a caloric content of 3.8 kcal/g (70% carbohydrate, 20%
protein, 10% fat; Nuvilab CR1, Nuvital Nutrientes S.A., Colombo, PR, Brazil), or with a HD with a
caloric content of 5.4 kcal/g (25.9% carbohydrate, 14.9% protein, 59% fat; PragSoluções, Jaú, SP, Brazil).
Four-week-old mice began being fed with either an SD or a HD for the next 24 weeks. Food restriction
diet protocols were performed, as previously described [24]. Briefly, 12-week-old animals started being
fed with only 1.5 g/day of an SD. This represented approximately 40% of the regular food ingestion of
these animals per day. Some groups of animals were also administrated food orally by gavage, once a
day, with the beta-adrenergic antagonist, propranolol (10 mg·kg−1/day).
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2.3. Adipose Tissue Image Analyses and Quantification

For the quantification of adipose tissue from WT or THOP1−/− animals, mice that were fed either
with an SD or a HD were used. The in vivo imaging system MS-FX-PRO (Bruker BioSpin, Ettlingen,
Germany; Research Facility CEFAP, ICB/USP) was used for in vivo image acquisition. The animals from
each group were first anesthetized by intraperitoneal administration of a mixture containing ketamine
(150 mg/kg) and xylazine (7.5 mg/kg). The generated images provided an accurate measurement of
X-ray densities, and the analysis software that was integrated with the equipment allowed for the
quantification of abdominal fat from the animals. The results are expressed as percentage of fat and
the evaluated contents were compared among the groups.

2.4. Quantification of Lipid Content in Animal Feces

The determination of the lipid content in animal feces was performed by extraction while using
an organic solvent, as previously described [71].

2.5. Food, Calories, and Water Consumption and Body and Tissue Weights

The body weight of the animals was determined weekly, as well as the consumption rates of
food (g/day/animal), calories (kcal/day/animal), and water (mL/day/animal), over the 24 weeks for the
experiments with different diets. The weight at the end of the 24 weeks was corrected by the nasoanal
length to determine the Lee index (weight 1/3(g)/nasoanal length (cm)) × 100) [72]. The weights (g) of
the liver, retroperitoneal, inguinal, and epididymal/ovarian adipose tissues, as well as the soleus and
gastrocnemius muscles, were determined at the end of the 24 weeks.

2.6. Glucose and Insulin Tolerance Tests and Pyruvate Determinations

For the glucose tolerance test (GTT), the animals were first fasted for 10 h, and a tail blood drop
was then used to determine the basal glucose levels while using a glucose meter (Accu-Check Performa,
Roche, São Paulo, SP, Brazil). Subsequently, 2 g of glucose/kg of body weight was injected into the
peritoneal cavity and tail blood glucose was measured at 15, 30, 60, 90, and 120 min after glucose
injection. For the insulin tolerance test (ITT), similar procedures to those that are described above
were followed. However, insulin was injected at a dose of 0.75 IU/kg of body weight and the blood
glucose was measured at 15, 30, 60, 90, and 120 min after glucose injection. The results are expressed as
the percentage of blood glucose reduction. Gluconeogenesis was assessed by injecting 2 g/kg sodium
pyruvate after 16 h of fasting. In all three assays, glycemia was measured while using a glucose meter
(Accu-Check Performa, Roche, São Paulo, SP, Brazil).

2.7. Blood Pressure and Heart Rate

Indirect systolic blood pressure (SBP) and heart rate (HR) were determined by tail-cuff

plethysmography (Kent Scientific, Litchfield, CT, USA) in WT or THOP1−/− mice that were fed
an SD or a HD. The mice were familiarized with the apparatus for a total of seven days before the
measurements were taken. The measurements of SBP and HR were obtained in the 20th and 24th week
of experimentation with different diets [73].

2.8. Western Blot Assays

THOP1 Western blot analyses were performed while using the Mini-Protean® Tetra Cell apparatus
(BioRad Laboratories, Inc., Hercules, CA, USA), as previously described [34]. Briefly, total proteins
obtained from the 10,000× g supernatant of adipose tissue or liver homogenates were combined with an
equal part of Laemmli buffer (BioRad Laboratories, Inc. USA), containing 5% of beta-mercaptoethanol
and boiled at 95 ◦C for 5 min. Next, 80 µg of protein was submitted to electrophoresis on a 10%
SDS-PAGE gel at constant voltage (90 V), and then blotted onto Immobilon®PVDF membranes (EMD
Millipore Corporation, Temecula, CA, USA). The membranes were stained with Ponceau S to certify
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that equal protein amounts were loaded on the immunoblot membranes. The membranes were blocked
with 3% bovine serum albumin (BSA) that was diluted in TBS-T buffer (50 mM Tris-HCL, 150 mM
NaCl, 0.1% Tween 20, pH 7.5) for 1 h at room temperature, and subsequently incubated overnight at
4 ◦C with specific anti-THOP1 rabbit antiserum (1:1000; Proteimax Biotechnology LTDA, São Paulo, SP,
Brazil), followed by incubation with specific anti-beta-actin mouse antiserum (1:5000; Sigma Aldrich,
USA). After incubation with the primary antibodies, the membranes were developed while using the
appropriate infra-red-conjugated secondary antibodies (dilution of 1:10,000; LI-COR, Inc., Lincoln, NE,
USA) for 1 h at room temperature. The images were captured while using ChemiDoc MP Imaging
Detection System and analyzed with Image Lab software (BioRad Laboratories, Inc., USA).

2.9. Blood Concentration of Glucose, Cholesterol, Triglycerides, and High-Density Lipoprotein (HDL)

Glucose was determined by reactive tapes while using an Accu-Chek Performa glucose meter
(Accu-Check Performa, Roche, São Paulo, SP, Brazil) in the blood drops that were obtained from the
tail of animals that were awake and had previously fasted for 10 h. Additional biomarkers were
determined in blood samples that were collected by cardiac puncture from animals fasted for 10
h and anesthetized with isoflurane. The serum that was obtained by centrifugation (3000 rpm for
15 min.) was stored at −80 ◦C until needed. Total cholesterol, HDL, and triglycerides were measured
by colorimetric assays (kits Liquiform, Labtest, São Paulo, SP, Brazil).

2.10. Adiponectin Assays

The quantitative assessment of adiponectin was performed by enzyme-linked immunosorbent
assay (ELISA) while using DuoSet ELISA®, according to the manufacturer’s instructions (R&D Systems,
Minneapolis, MN, USA).

2.11. Quantification of Blood Peptide Hormones by Luminex®

The blood samples were collected by cardiac puncture and placed in tubes with protease inhibitors
(Complete ™Protease Inhibitor Cocktail, Sigma-Aldrich, St. Louis, MO, USA) and a dipeptidyl
peptidase IV inhibitor (Januvia®, Merck Sharp & Dohme Limited, Broxbourne, UK). Serum was stored
at −80 ◦C until the day of the assays, as previously described [74]. The Milliplex® MAP magnetic
sphere panel metabolic hormone kit (MMHMAG-44K, Merck Millipore, São Paulo, SP, Brazil) was
adopted to detect the markers: C-peptide, ghrelin, gastric inhibitor peptide (GIP), glucagon-like peptide
(GLP-1), interleukin 6 (IL-6), insulin, leptin, monocyte chemotactic protein (MCP-1), polypeptide
(PP), YY peptide (PYY), and resistin. For these assays, the serum samples were incubated for 2 h
with a mixture of Magplex® microspheres (Grand Island, NY, USA) that were coated with the
respective antibodies. The detection of target antigens bound to the microspheres was conducted
while using a mixture of biotinylated capture antibodies and incubation for 1 h followed by incubation
with phycoerythrin-labeled streptavidin for 30 min. The microspheres were then identified by
means of phycoerythrin while using the Magpix® instrument (Life Technologies, Grand Island, NY,
USA). The calculated values of each analyzed hormone were expressed relative to the total protein
concentration based on standard curves.

2.12. Indirect Calorimetry

Indirect calorimetry allows for monitoring the energy metabolism of resting animals by measuring
spontaneous activity, heat, oxygen consumption (VO2), and carbon dioxide production (VCO2).
In addition, the respiratory exchange ratio (RER) can be calculated by the VCO2/VO2 ratio to evaluate
energy use and energy expenditure, as previously described [75].
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2.13. Corticosterone Levels

From the animal tail tip, 100 µL of blood was taken and plasma was prepared by centrifugation
at 1900× g at 4 ◦C for 10 min. The levels of corticosterone were determined according to the kit
manufacturer’s instructions (cat. no. ADI-900-097; Enzo Life Sciences, Inc., Farmingdale, NY, USA).

2.14. Histological Analyses

The liver tissue samples were withdrawn and then immersed in a fixative solution containing
paraformaldehyde in 0.1 M PBS buffer for 24 h. The samples were then washed with 0.1 M PBS buffer
and finally stored in 70% alcohol until histological preparation. The tissues were dehydrated through
successive bathing in a series of solutions with increasing ethanol concentration (70%, 95%, and 100%).
They were then diaphanized in xylol and impregnated in histological paraffin. The paraffin blocks
were sliced while using a microtome (5–8 µm thick slices) to obtain slices from various regions of
the tissues being analyzed. The sections were stretched in a water bath (40 ◦C) and placed on glass
slides covered with Meyer’s albumin for fixation. Once mounted onto the glass slides, the tissue
slices were placed in a 55 ◦C oven for approximately 4 h for better fixation and to remove the excess
paraffin. The slides were then dewaxed while using xylol and hydrated using a series of solutions
of decreasing ethanol concentration (100%, 95%, and 70%) and, finally, water, so that the dye could
penetrate the tissue. The slices were then stained with either hematoxylin-eosin (HE) or periodic
acid-Schiff (PAS) stains. PAS is commonly used to stain the main polysaccharide in human and animal
tissue sections, that is, glycogen. After staining, the sections were dehydrated again, rinsed in xylol,
and finally covered with a glass cover.

2.15. Quantitative Real-Time PCR (qRT-PCR)

Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the
expression of specific mRNAs, as previously described [76,77]. Table S1 shows the primer sequences.
The relative quantification of dicer and microRNAs was conducted by stem–loop RT-qPCR [78].
The TaqMan assays required for each microRNA detection were purchased from Applied Biosystems
(assays ID: 456 for mmu-miR-130b-3p; 2249 for mmu-miR-143-3p; 439 for mmu-miR-103-3p; 2276
for mmumiR-222-3p; mmu480910_mir for mmu-miR-127-3p; mmu480946_mir for mmu-miR-149-5p;
mmu480960_mir for mmu-miR-182-5p; and, mmu478318_mir for mmu-miR-212-3p). For the expression
of either the mRNAs or the microRNAs, the relative quantification method was applied, while using
the average Ct of sno202 as a reference, according to the 2−∆∆CT method. We analyzed the results from
the qRT-PCR assays while using the Pfaffl equation [77]. We calculated Ct = (Ct of the target gene in
the WT group − Ct of the target gene in the THOP−/− group)/(Ct of the housekeeping gene in the WT
group − Ct of the housekeeping gene in the THOP−/− group). We transformed the Ct variation ratios
into fold change using the 2−Ct formula because PCR products are exponentially produced.

2.16. Glycerol (lipolysis) Dosage

The animals were anesthetized with isoflurane, and samples from inguinal adipose tissue were
taken and weighed. First, the samples were separated into two pieces and both were placed in Krebs
buffer (values in mM: 118 NaCl, 4.7 KCl, 1.2 MgSO4, 1.2 KH2PO4, 2.5 CaCl2, and 25 NaHCO3; pH
7.2) for 10 min. One adipose tissue piece was placed in Krebs buffer alone to determine the basal
glycerol concentration (basal group). The other piece was placed in Krebs buffer containing 0.10 ng/g
isoproterenol (ISO) to detect post-stimulus glycerol levels. Glycerol was quantified while using the
Free Glycerol Reagent kit (Sigma, MO, USA). Tissue weight normalized glycerol levels.



Biomolecules 2020, 10, 321 7 of 40

2.17. Progressive Treadmill Test

The exercise capacity, as estimated by the total distance traveled, correlates with the skeletal
muscle’s working capacity. Here, the exercise capacity of the animals was evaluated while using a
graded treadmill, as previously described [63].

2.18. Peptide Isolation and Quantification Using Isotopic Labeling

Peptide isolation and concentration were conducted, as previously described [79]. The procedures
for reductive methylation used in isotope labeling were performed, as previously described [80].
Five biological samples were prepared for each group (WT/SD, WT/HD, THOP1−/−/SD, THOP1−/−/HD).
These samples were labeled twice (forward and reverse labeling) and pooled into 10 runs for LC/MS.
The odd runs were different biological samples and the even runs were technical replicates of each
biological sample. Table S2 and Figure S6 show a schematic view of the sample preparation.

2.19. Mass Spectrometry and Data Analyses

LC-MS and LC-MS/MS experiments were performed in an Orbitrap (OT) Fusion Tribrid mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, U.S.A) within the facilities at Harvard Medical
School while using similar conditions to those previously described [81]. Briefly, OT top speed
data-dependent precursor ion selection was used. The parent ions were scanned with an OT resolution
of 60 K and an automatic gain control (AGC) target of 3,000,000. Dynamic exclusion was turned on
with the following settings: exclusion time = 60 s; mass tolerance = ± 7 ppm; and, repeat count = 1.
For OT detection, the parent ions were scanned in the range of 395–1800 m/z, and the fragment ions
were scanned with the Ion Trap (IT) with a maximum injection time of 200 ms and an AGC target
of 50,000. Precursor ions with +2 and +3 charges were considered. A normalized collision energy
of 35% was used for CID fragmentation. The raw data files were converted into a peak list format
(mgf) by Mascot Distiller version 2.7.1 (Matrix Science Ltd., London, UK) and analyzed while using
the search engine MASCOT version 2.6.2 (Matrix Science Ltd., London, UK) to identify peptides.
The databases used for searching included SwissProt (555,100 sequences; 198,754,198 residues) and the
taxonomy Mus musculus (16,916 sequences). No cleavage site was specified and a mass tolerance of
0.5 Da was applied to the MS and MS/MS ions. The included variable modifications were N-terminal
protein acetylation, methionine oxidation, and also the reductive Me labels: Dimethyl (K), Dimethyl
(N-term), Dimethyl:2H(2) (N-term), Dimethyl:2H(2) (K), Dimethyl:2H(4) (K), Dimethyl:2H(4) (N-term),
Dimethyl:2H(6)13C(2) (K), and Dimethyl:2H(6)13C(2) (N-term). All of the search results were manually
interpreted to eliminate false positives. In brief, the criteria included (1) observed mass within 40 ppm
of the theoretical mass; (2) the number of Me tags observed that matched the number of free amines
available (i.e., Lys residue and N-terminus if not acetylated); (3) observed charge state(s) of the peptide
was consistent with the expected number of positive charges; and, (4) ≥80% of the major fragments that
were observed in MS/MS-matched b or y ions, with a minimum of five matches. Relative quantification
of each peptide present in both WT and THOP1−/− mice fed either with an SD or a HD, labeled
either “Light 1”, “Light 2”, “Intermediate”, or “Heavy” isotopes, were automatically performed
while using the Mascot software (http://www.matrixscience.com), version 2.6.2 (Matrix Science Ltd.,
London, UK). The peptides that showed differences between treatments in automatic quantification
were manually confirmed while using multiple scans of the MS spectra. Manual quantification was
performed by determining the relative intensity of each isotopic peak, while considering both the
monoisotopic peak and the peak containing one atom of 13C and then subtracting the baseline due
to overlapping lower-mass peaks. The intensity of each peptide (labeled with one of the isotopic
forms) was compared with the same peptide that was labeled with another isotopic form (Mass
Spectrometry, Supporting Information). In these analyses, the peptides that increased more than
100% (two-fold) or decreased more than 50% (0.5-fold) as compared to the respective control WT
mice, fed either an SD or a HD, were selected. Only peptides that were present in both duplicates

http://www.matrixscience.com
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(“forward” and “reverse”) from at least three different animals (from the initial five biological replicates)
were considered. Peptides that showed differences between treatments in automatic quantification
were manually checked (Mass Spectrometry, Supporting Information). Complete mass spectrometry
proteomics data were deposited to ProteomeXchange Consortium via PRIDE [82] partner repository
with the dataset identifier PXD016265 and 10.6019/PXD016265 (“Intracellular peptides are linked to
obesity and obesity-associated diseases”).

2.20. Intracellular Peptide Modeling and Docking with microRNAs

Conformational modeling and docking of microRNAs and intracellular peptides were carried
out, as previously described [83]. Molecular dynamic simulation was done while using GROMACS
4.6.1 to check for conformational stability [84]. All of the atomistic simulations were carried out while
using the CHARMM27 all-atom force field (version 2.0) with the periodic boundary condition [85,86].
Electrostatic interactions were calculated while using the particle mesh Ewald (PME) summation.
The microRNA was modeled using the mc-fold/mc-sym pipeline [87]. Docking between the modeled
intracellular peptides and microRNAs was performed using ZDock 3.0.2. ZDock uses a fast Fourier
transformation (FFT) algorithm to search the rotational space [88]. The models were ranked according
to their ZDock score, which is based on a shape complementarity scoring function [88].

2.21. Statistics

Values are expressed as means ± standard error of the mean (SEM). Statistical analyses were
conducted while using Prisma software. Statistical significance was based on Student’s unpaired t-test
for independent samples or the ANOVA test to compare more than two groups. p-values < 0.05 were
considered to be significantly different.

3. Results

3.1. THOP1−/− Animals Gained Much Less fat and Weight than WT Animals, Despite having a Similar
Consumption of Chow, Calories, and Water

The animals were four weeks old and their weights were determined before they began to be
fed either an SD or a HD; their weights were checked weekly for 24 weeks. After the 12th week,
females and males that were fed HD began to show significant differences in their body weight when
compared to animals fed an SD (Figure 1). The body weight gained by THOP1−/− animals fed a HD
was significantly lower than of WT animals fed a HD (Figure 1). Similarly, WT females that were
fed a HD gained more body weight than THOP1−/− females fed a HD (Figure 1A). THOP1−/− male
animals receiving an SD gained slightly more body weight along the 24 weeks than WT males fed
an SD (Figure 1B). In vivo X-ray imaging (Figure 1C,D) suggests that male WT and THOP1−/− mice
that were fed an SD had similar fat contents (8.98% ± 0.85% vs. 6.58% ± 0.45%, respectively; n = 4–5).
WT animals fed a HD had 18.2% ± 0.72% fat when compared to 12.64% ± 1.7% of THOP1−/− animals
(n = 4–5). These data suggest that WT male mice gained 5.5% more body fat than THOP1−/− male mice
when both were fed a HD (Figure 1C,D).

The differences in body weight of WT and THOP1−/− mice could be better visualized after
subtracting the value for their body weights that were measured after the 24th week from their
respective body weights determined before the dietary experiments started (Table 1). These data show
that, after 24 weeks, WT females that were fed a HD gained an extra 6.9 g of body weight compared
to WT females fed an SD (Table 1). In the same period, THOP1−/− females fed a HD gained only 3.9
g, which corresponds to 56% of the body weight gained by WT females fed a HD (Table 1). Male
WT animals fed a HD gained an extra 14.2 g of body weight when compared to WT males fed an SD
(Table 1). THOP1−/− animals fed a HD during the same period gained only 3.8 g, corresponding to
27% of the body weight gained by WT animals fed a HD (Table 1).
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Figure 1. Weight and adipose tissue gain of animals during the 24 weeks of the diets. (A) females;
(B–D) males. (A,B) show that wild-type (WT) animals fed a hyperlipidic diet (HD) began to weigh
more than THOP1−/− mice after 18 (females) or 12 (males) weeks, depending on gender. After 24 weeks,
the adipose tissue (fat) content was observed by X-ray density images (C,D). Results are expressed as
mean ± standard error of the mean (SEM). Statistical analyses were conducted using two-way ANOVA
followed by Tukey’s test (A,B) or Student’s unpaired t-test (D). One letter, p ≤ 0.05; two letters, p ≤
0.01; three letters p ≤ 0.001. a, WT standard diet (SD) vs. WT/HD; b, THOP1−/−/SD vs. THOP1−/−/HD;
c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 5–9).

Table 1. Delta (∆) of body weight gained from the 4th–24th week of mice fed a standard diet (SD) or a
hyperlipidic diet (HD) diet.

Gender/phenotype ∆(g) SD ∆(g) HD ∆(g) HD − ∆(g) SD

WT females 9.7 16.6 6.9 (100%)
THOP1−/− females 8.0 11.9 3.9 (56%)

WT males 12.3 26.5 14.2 (100%)
THOP1−/− males 15.0 18.8 3.8 (27%)

In parentheses are the percentages of the weight gained by wild-type (WT) and THOP−/− mice, on average, across
the 24 weeks of the HD compared to the SD. Note that both female and male THOP1−/− mice gained less body
weight than the WT mice during 24 weeks of the HD (n = 6–9).

Despite the differences in body weight, the food, water, and caloric intakes among these different
groups were similar (Table 2). The Lee index [72] of animals fed a HD was larger than those of animals
fed an SD after 24 weeks (Table 2). The weight of the liver, adipose tissues (retroperitoneal, inguinal,
epididymal/ovarian), and muscles (soleus and gastrocnemius) was determined and corrected by the
body weight of the respective animal (Table 2). The livers of WT and THOP1−/− females as well
as THOP1−/− males receiving a HD weighed less than their respective control animals fed an SD
(Table 2). The adipose tissue weights were not different among WT and THOP1−/− animals that were
fed an SD when comparing both female and male groups (Table 2). However, adipose tissues from
THOP1−/− female and male animals fed a HD weighed significantly less than the respective tissues
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from WT animals that were fed a HD (Table 2). The soleus and gastrocnemius muscles weighed
less in WT and THOP1−/− females fed a HD compared to their respective control females fed an SD
(Table 2). The gastrocnemius muscle from THOP1−/− animals fed a HD weighed more compared to
their respective WT control animals (Table 2). Taken altogether, the above results corroborate the X-ray
analyses (Figure 1C,D), showing that the greatest differences in body weights from WT and THOP1−/−

animals are related to their fat content. As shown above, the food, water, and caloric intakes among
these different groups were similar. In addition, there were no observed differences in the total fecal
lipid content of both WT and THOP1−/− mice that were fed either an SD or a HD during the 24-week
experiment (Supplementary Materials, Figure S1).

Table 2. Biological parameters measured during the 24 weeks of the HD and standard diet (SD) diets.

Female

Parameters WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

Body weight (g) 24.7 ± 0.42 29.3 ± 1.72 a 22.3 ± 0.2 ccc 24.8 ± 0.59 bb;d

Food intake (g/day/animal) 3.55 ± 0.15 2.25 ± 0.05 a 3.2 ± 0.1 1.9 ± 0.1 bb

Water intake (mL/day/animal) 4.05 ± 0.05 2.35 ± 0.3 a 3.5 ± 0.1c 2.55 ± 0.2 b

Caloric intake (kcal/day/animal) 13.5 ± 0,6 12.05 ± 0.3 11.75 ± 0.05 10.35 ± 0.05

Lee Index 39.0 ± 0.43 43.3 ± 1.70 a 37.1 ± 0.26 cc 39.3 ± 0.52 bb;d

Liver (g) 3.53 ± 0.11 2.56 ± 0.06 aaa 3.46 ± 0.09 3.01 ± 0.07 bb;ddd

Retroperitoneal adipose tissue (g) 0.73 ± 0.10 4.22 ± 0.25 aaa 0.82 ± 0.05 2.00 ± 0.33 bb;ddd

Inguinal adipose tissue (g) 1.12 ± 0.11 4.63 ± 0.28 aaa 1.49 ± 0.09 2.42 ± 0.26 bb;ddd

Ovarian adipose tissue (g) 1.87 ± 0.12 6.28 ± 0.35 aaa 1.99 ± 0.20 3.59 ± 0.42 bb;ddd

Soleus (g) 0.06 ± 0.003 0.05 ± 0.003 a 0.07 ± 0.002 0.06 ± 0.001 bb;ddd

Gastrocnemius (g) 1.09 ± 0.02 0.75 ± 0.02 aaa 1.00 ± 0.03 0.83 ± 0.12

Male

Parameters WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

Body weight (g) 27.7 ± 0.28 42.0 ± 0.8 aaa 30.1 ± 0.5 cc 32.6 ± 0.74 b;ddd

Food intake (g/day/animal) 3.5 ± 0.2 2.5 ± 0.2 3.4 ± 0.1 2.5 ± 0.2
Water intake (mL/day/animal) 3.65 ± 0.05 2.55 ± 0.6 bb 3.45 ± 0.05 2.65 ± 0.5

Caloric intake (kcal/day/animal) 13.25 ± 0.7 13.45 ± 1.0 12.8 ± 0.3 13.8 ± 0.1

Lee index 42.2 ± 0.24 55.8 ± 0.82 aaa 44.2 ± 0.48 cc 46.5 ± 0.70 b;ddd

Liver (g) 3.77 ± 0.07 4.60 ± 0.25 aa 3.87 ± 0.10 3.09 ± 0.08 bbb;ddd

Retroperitoneal adipose tissue (g) 0.94 ± 0.13 3.11 ± 0.19 aaa 0.44 ± 0.05 cc 1.03 ± 0.18 bb;ddd

Inguinal adipose tissue (g) 1.35 ± 0.06 4.83 ± 0.19 aaa 0.92 ± 0.04 ccc 1.40 ± 0.17 b;ddd

Epididymal adipose tissue (g) 1.87 ± 0.11 3.07 ± 0.23 aaa 1.41 ± 0.13 c 2.58 ± 0.36 bb

Soleus (g) 0.06 ± 0.001 0.05 ± 0.002 aaa 0.07 ± 0.003 0.05 ± 0.001 bb;d

Gastrocnemius (g) 1.07 ± 0.02 0.72 ± 0.01 aaa 1.06 ± 0.01 0.99 ± 0.02 b;ddd

Results are expressed as mean ± SEM. Student’s unpaired t-test. One letter, p ≤ 0.05; two letters, p ≤ 0.01; three
letters, p ≤ 0.001. a, WT/SD vs. WT/HD; b, THOP1−/−/SD vs. THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD
vs. THOP1−/−/HD (n = 6–9).

3.2. WT but Not THOP1−/− Animals fed a HD Developed Insulin Resistance without Signs of Metabolic
Syndrome

Blood glucose monitoring was performed weekly throughout the 24-week experiment in animals
that were fasted for 10 h prior to measurement (Figure 2). The group of WT male animals that were fed
a HD (Figure 2B) was the only one to present a gradual and sustained increase in blood glucose levels
during the 24 weeks of the experiment (Figure 2).
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ANOVA followed by Tukey’s test or Student’s unpaired t-test (n = 6–9). 

At the end of the 24 weeks, tests for glucose and insulin tolerance, respectively, GTT and ITT, 
were performed on both males and females that were fed either an SD or a HD (Figure 3). The GTT 
results suggest that THOP1−/− males and females that were fed either an SD or a HD had a slower 
decay in blood glucose levels than the WT animals that were fed an SD (Figure 3A–D). This 
phenotypic difference was more evident in THOP1−/− females (Figure 3A,C). After 120 min. of GTT 
experiments, the blood glucose levels of all groups, except for the WT fed a HD, returned to the initial 
basal levels (Figure 3A,B). Next, the ITT results suggest that male WT animals that were fed a HD 
developed insulin resistance, whereas all other groups remained sensitive to insulin (Figure 3E,F). 
The insulin blood levels of WT and THOP1−/− animals fed an SD, both females and males, fasted for 
either 4 or 10 h, were similar; these data suggest that pancreatic beta cells were regularly functioning 
in these animals (Figure S2). THOP1 protein immunoreactivity, either on liver or adipose tissue, was 
similar among WT animals that were fed either an SD or a HD, suggesting that THOP1 expression 

Figure 2. Blood glucose levels. Pre-prandial glucose levels of female (A) and male (B) mice, WT or
THOP1−/−, fed either an SD or a HD, were evaluated every two weeks across the 24 weeks. Note that
only WT male mice fed a HD showed an increase in the pre-prandial blood glucose levels across the
24 weeks. Results are expressed as mean ± SEM. Statistical analyses were conducted using Two-way
ANOVA followed by Tukey’s test or Student’s unpaired t-test (n = 6–9).

At the end of the 24 weeks, tests for glucose and insulin tolerance, respectively, GTT and ITT,
were performed on both males and females that were fed either an SD or a HD (Figure 3). The GTT
results suggest that THOP1−/− males and females that were fed either an SD or a HD had a slower
decay in blood glucose levels than the WT animals that were fed an SD (Figure 3A–D). This phenotypic
difference was more evident in THOP1−/− females (Figure 3A,C). After 120 min. of GTT experiments,
the blood glucose levels of all groups, except for the WT fed a HD, returned to the initial basal levels
(Figure 3A,B). Next, the ITT results suggest that male WT animals that were fed a HD developed insulin
resistance, whereas all other groups remained sensitive to insulin (Figure 3E,F). The insulin blood
levels of WT and THOP1−/− animals fed an SD, both females and males, fasted for either 4 or 10 h,
were similar; these data suggest that pancreatic beta cells were regularly functioning in these animals
(Figure S2). THOP1 protein immunoreactivity, either on liver or adipose tissue, was similar among WT
animals that were fed either an SD or a HD, suggesting that THOP1 expression was not induced by
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DIO in these tissues (Figure S3). However, a higher expression of THOP1 could be observed in the
adipose tissue of females as compared to males, fed either SD or HD (Figure S3A).
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Hypertension and type 2 diabetes are two common obesity- and overweight-associated diseases. 
Cardiac functional parameters, such as systolic blood pressure (SBP) and heart rate (HR), were not 
altered in WT or THOP1−/− mice that were fed with either an SD or a HD (Table 3). Therefore, it can 

Figure 3. Glucose and insulin tolerance tests. (A,C,E) females and (B,D,F) males. (A–D) show the
glucose tolerance test (GTT). (E,F) show the insulin tolerance test (ITT). (C,D) show the area under
the curve (AUC) for groups A (C) or B (D). Note that only WT male animals fed a HD for 24 weeks
were insulin-resistant (F). Data are presented as mean ± SEM. Statistical analyses were conducted
using Two-way ANOVA followed by Tukey’s test (A,B,E,F) or Student’s unpaired t-test (C,D). One
letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001. a, WT/SD vs. WT/HD; b, THOP1−/−/SD vs.
THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 6–9).

Hypertension and type 2 diabetes are two common obesity- and overweight-associated diseases.
Cardiac functional parameters, such as systolic blood pressure (SBP) and heart rate (HR), were not
altered in WT or THOP1−/− mice that were fed with either an SD or a HD (Table 3). Therefore, it can be
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concluded that the DIO model used herein causes insulin resistance and obesity without inducing
metabolic syndrome.

Table 3. Systolic blood pressure (mmHg) and heart rate (bpm).

Systolic Blood Pressure (mmHg) Heart Rate (bpm)

20th Week 24th Week 20th Week 24th Week

WT/SD 101.1 ± 2.91 95.99 ± 0.86 748.1 ± 12.50 766.5 ± 8.88
WT/HD 105.1 ± 4.42 97.19 ± 2.32 751.3 ± 7.58 761.7 ± 9.85

THOP1−/−/SD 111.3 ± 1.82 107.5 ± 3.15 724.8 ± 6.67 708.5 ± 37.28
THOP1−/−/HD 99.87 ± 6.55 102.0 ± 7.79 723.9 ± 13.82 695.6 ± 64.86

Results are expressed as mean ± SEM. Statistical analyses were conducted using. Student’s unpaired t-test,
suggesting no differences between groups (n = 6–9).

3.3. Typical Biochemical Parameters and Endocrine Signaling Peptides Further Corroborate the Distinguishable
DIO Phenotypes of WT and THOP1−/−

Common blood biochemical parameters for evaluating energy metabolism were investigated
herein. First, pyruvate tests were conducted. The results suggest that WT and THOP1−/− females (with
a regular SD) had similar gluconeogenetic abilities (Figure 4A,B). Male THOP1−/− animals that were
fed an SD also had normal gluconeogenetic capacities (Figure 4C,D). However, the total amount of
glucose produced from the pyruvate by male THOP1−/− animals was lower compared to control male
WT animals over the 120 min. period of analyses (Figure 4D). One possibility for explaining these
results is that male THOP1−/− mice have reduced gluconeogenesis ability.
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were performed using Student’s unpaired t-test. aa, p ≤ 0.01 (n = 6). 

Figure 4. Pyruvate tolerance test of 24-week-old WT or THOP1−/− mice fed an SD to evaluate their liver
gluconeogenesis. (A,B) females; (C,D) males; (B,D) respectively, A and C area under the curve (AUC)
for blood glucose curves. Colored curves (A,C) show blood glucose levels after pyruvate injection
(2 g/kg sodium pyruvate after 16 h of fasting) at the indicated time point (x-axis). Blood glucose was
measured using a glucose meter as detailed in the Methods section. Statistical analyses were performed
using Student’s unpaired t-test. aa, p ≤ 0.01 (n = 6).
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Blood cholesterol was higher in both female and male WT mice that were fed a HD as compared
to WT fed an SD (Table 4). Among the THOP1−/− groups fed either an SD or a HD, no differences were
observed in their cholesterol levels, whereas reduced levels of cholesterol were observed in THOP−/−

mice fed a HD when compared to WT mice fed a HD (Table 4). The blood high-density lipoprotein
(HDL) levels were reduced in THOP1−/− females fed a HD as compared to WT females fed a HD
(Table 4). THOP1−/− mice were observed to have higher blood triglyceride levels when compared to
WT mice fed either an SD or a HD (Table 4). These results corroborate previous studies associating
alterations in THOP1 genetic features to alterations in human cholesterol metabolism [89,90].

Table 4. Biochemical parameters of WT and THOP1−/− mice fed an SD or a HD.

Female

Parameters WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

Total cholesterol 118.5 ± 6.9 151.4 ± 9.9 a 115.9 ± 6.8 143.9 ± 16.4
Triglycerides 111.5 ±13.0 134.4 ± 17.4 132.1 ± 12.5 101.5 ± 8.6

HDL 58.5 ± 18.9 95.9 ± 18.0 30.6 ± 3.0 46.4 ± 11.0 d

Male

Parameters WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

Total cholesterol 109.0 ± 5.7 235.8 ± 8.7 aaa 132.8 ± 11.85 139.4 ± 7.2 ddd

Triglycerides 115.7 ± 11.7 100.4 ± 1.7 151.5 ± 8.2 c 126.4 ± 5.8 b,d

HDL 68.3 ± 3.8 61.3 ± 0.2 63.9 ± 3.8 68.9 ± 2.8

Results are expressed as mean ± SEM. Statistical analyses were conducted using Student’s unpaired t-test. One letter,
p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001. a, WT/SD vs. WT/HD; b, THOP1−/−/SD vs. THOP1−/−/HD;
c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 4–9).

Neuronal and endocrine signals are well known for acting on the hypothalamus to control hunger
and satiety through orexigenic and anorexigenic peptides. The adiponectin levels were similar in
WT and THOP1−/− animals that were fed either an SD or a HD (Figure S4). In WT animals, for both
females and males, the blood levels of insulin and resistin increased, while ghrelin decreased in animals
that were fed a HD as compared to those fed an SD (Table 5). On the other hand, the levels of these
hormones remained similar in THOP1−/− animals (Table 5). These data corroborate the observations
above that THOP1−/− animals do not develop obesity. The detection limit for several additional
analytes evaluated herein (leptin, C-peptide, PYY, glucagon, TNF-α, MCP-1, GLP-1, GIP, IL-6, and PP)
was out of the range of the standard curve (data not shown).

Table 5. Multiplex immunoassay in serum samples from WT and THOP1−/− mice fed an SD or a HD.

Female

Hormones WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

Insulin (pg/mL) 120.8 ± 7.5 459.9 ± 75.8 aaa 95.10 ± 16.5 106.5 ± 17.8 dd

Resistin (pg/mL) 3756 ± 536.2 10458 ± 1648 aa 3957 ± 300.4 4845 ± 624.4 dd

Ghrelin (pg/mL) 905.6 ± 105.3 485.9 ± 55.0a 710.8 ± 221.6 713.8 ± 211.8

Male

Hormones WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

Insulin (pg/mL) 223.0 ± 39.0 1901 ± 255.0 aaa 148.0 ± 40.7 235.9 ±103.2 ddd

Resistin (pg/mL) 2437 ± 140.1 8588 ± 506.0 aaa 2837 ± 223.3 3417 ± 223.3 ddd

Ghrelin (pg/mL) 552.2 ± 36.24 197.8 ± 29.4 aaa 604.4 ± 88.9 701.7 ± 54.4 ddd

Animals were fasted for 10 h prior to blood collection. Results are expressed as mean ± SEM. Statistical analyses were
conducted using Student’s unpaired t-test. One letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001. a, WT/SD
vs. WT/HD; b, THOP1−/−/SD vs. THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD
(n = 5–9).
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3.4. The Higher Response of Adipose Tissue to Beta-Adrenergic Stimulation Performs a Key Function in the
Greater Resistance to DIO and Improved Cardiorespiratory Fitness of THOP1−/− Mice

The data above show that the restricted body weight gain of THOP1−/− mice could possibly be
explained by higher energy expenditure (higher metabolic rate and/or physical activity). The resting
energy metabolism of WT and THOP1−/−mice was evaluated through the measurement of spontaneous
activity, heat production, oxygen consumption (VO2), and carbon dioxide production (VCO2) over
24 h (Figure 5A–E; Figure S5). Heat production remained similar between the WT and THOP1−/− male
groups while considering the entire 24 h period (Figure 5B). However, only considering the period
from 5to 10 p.m. (17:00–22:00), which includes the light/dark exchange period, the heat production
of THOP1−/− mice that were fed either an SD or a HD was smaller compared to their respective WT
control (Figure 5G; Figure S5). The spontaneous activity, VCO2, and VO2 levels of WT mice fed a HD
were smaller than that of WT mice fed an SD, both during the entire 24 h period and from 5 to 10 p.m.
(Figure 5A,C,D). The total spontaneous activity and VO2 of THOP1−/− mice that were fed either an SD
or a HD was not different from WT mice during the 24 h period (Figure 5A,D), whereas the VCO2 of
THOP1−/− mice fed a HD was smaller than that of THOP1−/− mice fed an SD (Figure 5C). During the
5–10 p.m. interval, the total spontaneous activity, VCO2, and VO2 levels of THOP1−/− mice fed an SD
were smaller than that of WT mice that were fed an SD (Figure 5F,H,I; Figure S5). Among the different
THOP1−/− groups, the spontaneous activity, VCO2, and VO2 levels were similar (Figure 5F,H,I). When
the respiratory exchange ratio (RER; an RER of 0.7 indicates that fat is the predominant fuel source,
a value of 1.0 is indicative of carbohydrates being the predominant fuel source, and a value between 0.7
and 1.0 suggests that a mix of both fats and carbohydrates) was observed during the 24 h period, both
WT and THOP1−/− mice that were fed a HD had a smaller RER compared to their respective control
groups fed an SD (Figure 5E). These data suggest that both WT and THOP1−/− mice fed a HD used
more fat as a fuel source (Figure 5J; Figure S5). Altogether, these data indicate that the reduced body
weight and adipose tissue of the THOP1−/− animals could be due to their distinctive fat metabolism,
which did not induce higher heat production, nor was it related to higher locomotor activity. These
latter parameters were even lower while considering the interval from 5–10 p.m.

Previous reports show that, in rodents, plasma corticosterone levels peak at the beginning of
the dark phase, preceding the start of their activity period [91]. Indeed, WT and THOP1−/− animals
both had significantly higher levels of corticosterone at 7 p.m. than at 7 a.m. (Figure 6). However, at
7 p.m., the corticosterone levels of THOP1−/− animals were even higher than those of WT animals
(Figure 6). These transient high corticosterone levels of THOP1−/− mice could be associated with the
differences observed in their heat production, spontaneous activity, VO2, VCO2, and RER levels during
the interval from 5 to 10 p.m. Furthermore, these short and transient higher corticosterone levels of
THOP1−/− mice could be beneficial in enabling a lower inflammatory response in these animals.

THOP1−/− and WT male mice were subjected to a caloric restriction diet for 96 h. THOP1−/−

mice under caloric restriction lost more weight than WT animals (Figure 7). The body weight loss
of THOP1−/− animals under caloric restriction was completely prevented by the administration of
propranolol (Figure 7B,D). The blood glucose levels of THOP1−/− animals were lower than that of
WT animals in the first 24 h of caloric restriction, and at 48 h of caloric restriction, their blood glucose
levels returned to normal and remained similar to those of the WT animals (Figure 7). The treatment
of WT animals with propranolol also prevented the reduction of blood glucose levels, mainly at 48 h
(Figure 7).

The lipolysis of adipose tissue is a catabolic process stimulated by the adrenergic system that
leads to the breakdown of triglycerides stored in adipose cells releasing fatty acids and glycerol.
The dysregulation of the processes that are involved in lipolysis has already been observed in
obesity [92,93]. To evaluate whether the lipolytic pathway of THOP1−/− animals was altered, a glycerol
dosage test was performed. The basal- and isoproterenol-stimulated lipolytic activities of inguinal
adipose tissue were both investigated. The basal lipolytic activities of inguinal adipose tissue in both
WT and THOP1−/− mice were similar (Figure 8). After isoproterenol stimulation, an increase in the
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lipolytic activity was observed in the inguinal adipose tissues of both WT and THOP1−/− animals
(Figure 8). However, under the same isoproterenol stimulus, the increase in the lipolytic activity of
THOP1−/− animals was significantly higher than that of WT animals (Figure 8A). The mRNA expression
levels of adrenergic receptors beta1 (B1AR), beta2 (B2AR), and beta3 (B3AR) were investigated herein.
In male animals that were fed a HD, the expression of B1AR, B2AR, and B3AR were all higher in
THOP1−/− when compared to WT mice (Figure 8B). Together, the caloric restriction, lipolytic activity,
and adrenergic receptor expression analyses suggest that, at least in part, THOP1−/− mice may not
gain weight/higher fat content due to a more efficient response to adrenergic stimulus.
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respiratory exchange ratios (RERs). The results are shown for mice previously fed with either an SD 
or a HD for 24 weeks. Data are presented as mean ± SEM. Statistical analyses were performed using 
Student’s unpaired t-test. One letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001. a, WT/SD vs. 
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Figure 5. Resting energy metabolism of WT (black bars) or THOP1−/− (green bars) male mice across
24 h. (A–E) 24 h period (6 a.m.–6 a.m.); (F–J) 5–10 p.m. period; (A,F) spontaneous locomotor activity;
(B,G) heat production; (C,H) VCO2 (mL/kg/h) production; (D,I) VO2 (mL/kg/h) consumption; (E,J)
respiratory exchange ratios (RERs). The results are shown for mice previously fed with either an
SD or a HD for 24 weeks. Data are presented as mean ± SEM. Statistical analyses were performed
using Student’s unpaired t-test. One letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001. a,
WT/SD vs. WT/HD; b, THOP1−/−/SD vs. THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs.
THOP1−/−/HD (n = 4). y-axis: bars represent the area under the curve (AUC).
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Figure 6. Plasma corticosterone levels of WT and THOP1−/− mice. (A) plasma corticosterone levels
(µg/dL) at 7 a.m.; (B) plasma corticosterone levels (µg/dL) at 7 p.m. Results are expressed as mean ±
SEM. Statistical analyses were performed using Student’s unpaired t-test. a, p ≤ 0.05 between WT and
THOP1−/− mice (n = 4–5).
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variation; and, (D) AUC of animal weight variation. Results are expressed as mean ± SEM. Statistical 
analyses were performed using Student’s unpaired t-test. One letter p ≤ 0.05; between: a, WT vs. 
THOP1−/− WT/HD; b, THOP1−/− vs. THOP1−/− + propranolol (n = 7–10). 
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Figure 7. Food restriction experiments. Twelve-week-old WT and THOP1−/− animals were fed with
1.5 g/day of standard diet (SD; corresponding to 40% of the regular fed for these animals). During
four days, once a day, these animals received by gavage either saline or propranolol (10 mg·kg−1/day).
(A) blood glucose variation; (B) area under curve (AUC) of blood glucose variation; (C) animal weight
variation; and, (D) AUC of animal weight variation. Results are expressed as mean ± SEM. Statistical
analyses were performed using Student’s unpaired t-test. One letter p ≤ 0.05; between: a, WT vs.
THOP1−/− WT/HD; b, THOP1−/− vs. THOP1−/− + propranolol (n = 7–10).
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(Basal) or presence of isoproterenol (0.10 ng/g; ISO). Lipolytic activity was measured as the amount 
of glycerol produced, using the “free glycerol reagent” kit (Sigma, MO, USA). Glycerol content 
(µg/mg) was normalized by tissue weight. Results are expressed as mean ± SEM. (B) mRNA 
expression levels of adrenergic receptors β1AR, β2AR, and β3AR. Analyses of gene expression were 
performed by Quantitative Real-Time PCR (qRT-PCR) in female or male retroperitoneal adipose 
tissue. Data are presented as mean ± standard deviation. Statistical analyses were performed using 
Student’s unpaired t-test. One letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001. a, WT/SD vs. 
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males (Figure 9E,F), the THOP1−/− animals ran longer than the WT animals before exhaustion (Figure 
9). At a low intensity in the treadmill tests (approximately 21 m/min. corresponding to 60% of the 
mean value of the maximum speed traveled by these animals during the previous high intensity 
treadmill test), no differences were seen when comparing THOP1−/− and WT mice. The higher lipolytic 
ability of THOP1−/− mice could have contributed to a better performance on the high-intensity 
treadmill test, thus increasing its oxidative metabolism. 

Figure 8. Isoproterenol-stimulated lipolytic activity and mRNA expression levels of β-adrenergic
receptors 1, 2, or 3 (β1AR, β2AR, and β3AR, respectively). (A) Inguinal adipose tissue was removed,
weighed, divided in two pieces, and placed in Krebs buffer, pH 7.2, at 37 ◦C for 10 min., in the absence
(Basal) or presence of isoproterenol (0.10 ng/g; ISO). Lipolytic activity was measured as the amount of
glycerol produced, using the “free glycerol reagent” kit (Sigma, MO, USA). Glycerol content (µg/mg)
was normalized by tissue weight. Results are expressed as mean ± SEM. (B) mRNA expression levels
of adrenergic receptors β1AR, β2AR, and β3AR. Analyses of gene expression were performed by
Quantitative Real-Time PCR (qRT-PCR) in female or male retroperitoneal adipose tissue. Data are
presented as mean ± standard deviation. Statistical analyses were performed using Student’s unpaired
t-test. One letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001. a, WT/SD vs. WT/HD; b,
THOP1−/−/SD vs. THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 4–6).

The cardiorespiratory fitness of the animals fed a standard diet (SD) was evaluated while using a
graded treadmill. At the highest intensity of the treadmill test, for both females (Figure 9A,B) and males
(Figure 9E,F), the THOP1−/− animals ran longer than the WT animals before exhaustion (Figure 9).
At a low intensity in the treadmill tests (approximately 21 m/min. corresponding to 60% of the mean
value of the maximum speed traveled by these animals during the previous high intensity treadmill
test), no differences were seen when comparing THOP1−/− and WT mice. The higher lipolytic ability
of THOP1−/− mice could have contributed to a better performance on the high-intensity treadmill test,
thus increasing its oxidative metabolism.
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Stores and Diminished Sensitivity to Non-Alcoholic Fatty Liver Steatosis (NAFLS) 

Staining male liver slices with periodic acid–Schiff (PAS) suggested that THOP1−/− mice that were 
fed an SD had increased glycogen accumulation when compared to WT animals fed an SD (Figure 
10). Higher glycogen content was also present—although to a smaller extent—in the livers of 
THOP1−/− mice fed a HD as compared to their respective WT controls fed a HD (Figure 10). 

Figure 9. Progressive treadmill exercise test. The cardiorespiratory fitness of the animals fed with a
standard diet (SD) was evaluated using a graded treadmill. (A,C,E,G) running distance (m); (B,D,F,H)
running time (min.). Both running distance and time were evaluated in the high- and low-intensity tests.
(A–D) females; (E–F) males. Data are presented as mean ± SEM. Statistical analyses were performed
while using Student’s unpaired t-test. One letter, p ≤ 0.05; three letters p ≤ 0.001 (n = 7–9).

3.5. Liver Morphological and Molecular Analyses Suggest that THOP1−/− Mice Have Increased Glycogen
Stores and Diminished Sensitivity to Non-Alcoholic Fatty Liver Steatosis (NAFLS)

Staining male liver slices with periodic acid–Schiff (PAS) suggested that THOP1−/− mice that were
fed an SD had increased glycogen accumulation when compared to WT animals fed an SD (Figure 10).
Higher glycogen content was also present—although to a smaller extent—in the livers of THOP1−/−

mice fed a HD as compared to their respective WT controls fed a HD (Figure 10).
Histological analyses were conducted to compare hematoxylin-eosin (HE)-stained liver slices that

were obtained from both WT and THOP1−/− male mice fed either an SD or a HD. The HE-stained
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liver tissue slices suggested that WT male animals that were fed a HD, distinctly from the other
groups analyzed, had large areas of lipid accumulation in their livers, resembling those with NAFLS
(Figure 11).
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Figure 10. Liver slices from WT and THOP1−/− mice stained with periodic acid–Schiff (PAS). WT
or THOP1−/− male mice were fed for 24 weeks with either an SD (WT/SD, THOP1−/−/SD) or a HD
(WT/HD, THOP1−/−/HD). Note the higher intensity of PAS reaction in THOP1−/−/SD when compared
to the other groups; this is an indicative of higher glycogen content in liver of THOP1−/− mice fed an
SD. Panels from top to bottom present increased magnifications of 40- (top), 100- (middle), or 200-fold
(bottom).
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fed a HD (WT/HD panels), suggesting the presence of NAFLS. Panels present increased 
magnifications from 40- (top), 100- (middle) or 200-fold (bottom). Bars, 100 µm. 
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together with the regular insulin sensitivity of THOP1−/− mice, could favor a reduction of NAFLS of 
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Gene WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD 

PPAR-α 1.13 ± 0.24 1.15 ± 0.27 1.11 ± 0.10 0.99 ± 0.18 
PPAR-γ 1.11 ± 0.24 1.58 ± 0.18 0.85 ± 0.06 0.70 ± 0.04 dd 
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CD36 1.18 ± 0.31 1.87 ± 0.15 0.43 ± 0.05 c 0.27 ± 0.01 b;ddd 

Figure 11. Liver slices from WT and THOP1−/− mice stained with hematoxylin and eosin (HE). WT
or THOP1−/− male mice were fed for 24 weeks with either an SD (WT/SD, Table 1. or a HD (WT/HD,
THOP1−/−/HD). Note the large number of lipid droplets (white spots) in the liver slices from WT mice
fed a HD (WT/HD panels), suggesting the presence of NAFLS. Panels present increased magnifications
from 40- (top), 100- (middle) or 200-fold (bottom). Bars, 100 µm.
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3.6. Specific Genes and microRNAs were Differentially Expressed in the Liver and Adipose Tissue of WT and
THOP1−/− Mice, and are Unlikely to be Regulated by HD

The expression levels of specific genes were analyzed in these liver tissues. THOP1−/− mice
that were fed an SD or a HD had reduced CD36/FAT, fatty acid translocase, also known as cluster of
differentiation 36 (CD36) mRNA expression levels when compared to WT mice fed either an SD or a
HD (Table 6). CD36 is present in humans and mice with NAFLS, also contributing to dyslipidemia that
is associated with HD-induced obesity in C57BL6 mice [94]. Lower liver CD36 expression, together
with the regular insulin sensitivity of THOP1−/− mice, could favor a reduction of NAFLS of THOP1−/−

mice. THOP1−/− mice that were fed a HD also had reduced mRNA expression levels of peroxisome
proliferator-activated receptor gamma (PPAR-γ) and fatty-acid synthase (FAS) when compared to
WT mice fed a HD (Table 6). Increased hepatic expression of PPAR-γ and FAS also increases fat
accumulation in the liver [95,96].

Table 6. Analyses of gene expression by qRT-PCR in male mice livers.

Male

Gene WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

PPAR-α 1.13 ± 0.24 1.15 ± 0.27 1.11 ± 0.10 0.99 ± 0.18
PPAR-γ 1.11 ± 0.24 1.58 ± 0.18 0.85 ± 0.06 0.70 ± 0.04 dd

PGC-1α 1.10 ± 0.23 0.70 ± 0.09 1.01 ± 0.10 1.53 ± 0.37
FAS 1.19 ± 0.33 1.55 ± 0.28 1.00 ± 0.05 0.74 ± 0.10 d

LPL 1.08 ± 0.17 1.28 ± 0.15 1.31 ± 0.16 1.52 ± 0.20
CD36 1.18 ± 0.31 1.87 ± 0.15 0.43 ± 0.05 c 0.27 ± 0.01 b;ddd

Results are expressed as mean ± SEM. Statistical analyses were conducted using Student’s unpaired t-test. One
letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001 between: a, WT/SD vs. WT/HD; b, THOP1−/−/SD vs.
THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 5–6).

Next, the expression levels of dicer and specific microRNAs were evaluated (Figure 12A). Dicer
mRNA expression was reduced in WT mice that were fed with a HD as compared to an SD, whereas
no differences were observed in dicer mRNA levels in THOP1−/− mice fed either an SD or a HD
(Figure 12A). Dicer expression in THOP1−/− mice fed a HD was higher than in WT mice fed a HD
(Figure 12A). THOP1−/− animals that were fed an SD had higher expression levels of miR-212 and
miR-127 than WT mice fed an SD, while the expression levels of miR-222, miR-34a, miR-182, and
miR-149 were similar (Figure 12B). A HD increased the expression levels of miR-222 and miR-149 in
WT, but not THOP1−/− mice (Figure 12C). The expression levels of pri-miR-222 were not altered in these
groups (Figure 12D). Therefore, the altered expression of specific genes and microRNAs corroborates
the histological analyses, suggesting that THOP1−/− animals fed a HD do not develop NAFLS, as
observed for WT mice fed a HD (Figure 11).

The expression levels of specific genes were analyzed in the inguinal adipose tissue of WT
and THOP1−/− animals; the inguinal and retroperitoneal adipose tissues were chosen for gene and
microRNA expression analyses due to large differences in their weight when comparing both WT and
THOP1−/− animals (Table 2). WT males that were fed an SD had higher adipose tissue expression
levels of lipoprotein lipase (LPL), CD36/SR-B2 (also known as cluster of differentiation 36, platelet
glycoprotein 4, or fatty acid translocase/FAT), CD206 (also known as cluster of differentiation 206,
C-type lectin mannose receptor), CD11C (also known as cluster of differentiation 11c or integrin alpha
X), and murine macrophage F4/80 glycoprotein (F4/80) compared to THOP1−/− males that were fed an
SD (Table 7). WT males fed a HD showed reduced expression levels of PPAR-γ, FAS, and LPL and
increased expression levels of CD206, CD11C, and F4-80 as compared to WT males fed an SD (Table 7).
THOP1−/− males fed a HD when compared to those fed an SD showed increases in the levels of LPL,
CD36, CD206, and F4/80 expression (Table 7). Distinctly from that of WT males, THOP1−/− males
showed increased levels of PPAR-γ, FAS, and CD36 expression when fed a HD as compared to an
SD (Table 7). Similarly to WT, when THOP1−/− males were fed a HD, the levels of CD206 expression
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increased, although to lower levels (Table 7). Additionally, THOP1−/− mice fed a HD had increased
levels of PPAR-γ, FAS, LPL, and F4/80 when compared to WT mice fed a HD (Table 7). The increased
PPAR-γ expression in THOP1−/− as compared with WT mice could be associated with their higher
levels of corticosterone at the beginning of the activity period, in addition to maintaining regular
insulin sensitivity, also when compared to WT mice. Higher PPAR-γ expression could increase the
adipogenesis in THOP1−/− mice.
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Figure 12. Dicer mRNA and microRNA expression levels in male liver tissue. (A) dicer mRNA
expression levels. (B) Effect of phenotype on the expression levels of the indicated mature microRNAs;
* p ≤ 0.05 comparing WT and THOP1−/− mice. (C) Effect of diet and phenotype on the expression
levels of the indicated mature microRNAs. (D) Effect of diet and phenotype on the expression level of
pri-miR-222. Results are expressed as mean ± SEM. Statistical analyses were performed using Student’s
unpaired t-test. One letter, p ≤ 0.05; a, WT/SD vs. WT/HD; b, THOP1−/−/SD vs. THOP1−/−/HD;
c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 4–6).
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Table 7. Analyses of gene expression by qRT-PCR in inguinal adipose tissue.

FEMALE

Gene WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

PPAR-α 1.22 ± 0.46 4.02 ± 1.02a 1.03 ± 0.14 4.45 ± 1.17b

PPAR-γ 1.01 ± 0.06 0.68 ± 0.05aa 0.37 ± 0.13cc 0.57 ± 0.17
FAS 1.23 ± 0.47 0.78 ± 0.28 0.56 ± 0.12 1.01 ± 0.58
LPL 1.01 ± 0.08 0.68 ± 0.13 0.21 ± 0.07ccc 0.59 ± 0.18

CD36 1.01 ± 0.08 0.85 ± 0.10 0.23 ± 0.07ccc 0.67 ± 0.13b

CD206 1.03 ± 0.12 1.26 ± 0.17 0.40 ± 0.08cc 0.82 ± 0.21
CD11C 1.01 ± 0.08 8.36 ± 2.10aa 2.48 ± 0.53c 1.45 ± 0.45d

F4/80 1.02 ± 0.10 2.86 ± 0.54a 0.59 ± 0.09c 1.35 ± 0.43

MALE

Gene WT/SD WT/HD THOP1−/−/SD THOP1−/−/HD

PPAR-α 1.00 ± 0.04 1.51 ± 0.24 0.99 ± 0.27 1.67 ± 0.65
PPAR-γ 1.03 ± 0.10 0.51 ± 0.02aa 0.96 ± 0.08 1.10 ± 0.07ddd

FAS 1.05 ± 0.14 0.27 ± 0.03aaa 0.78 ± 0.15 1.06 ± 0.16ddd

LPL 1.08 ± 0.16 0.58 ± 0.09a 0.47 ± 0.07cc 0.90 ± 0.10bb; d

CD36 1.05 ± 0.12 0.77 ± 0.06 0.59 ± 0.04cc 0.96 ± 0.04bbb; d

CD206 1.01 ± 0.07 1.28 ± 0.06a 0.36 ± 0.06cc 0.85 ± 0.08bb; d

CD11C 1.02 ± 0.08 6.48 ± 0.47aaa 0.34 ± 0.08ccc 0.27 ± 0.03ddd

F4/80 1.14 ± 0.31 2.16 ± 0.14a 0.30 ± 0.04c 0.47 ± 0.03b; ddd

Results are expressed as mean ± SEM. Statistical analyses were conducted using Student’s unpaired t-test. One
letter, p ≤ 0.05; two letters, p ≤ 0.01; three letters p ≤ 0.001 between: a, WT/SD vs. WT/HD; b, THOP1−/−/SD vs.
THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 5–6).

Next, the dicer and specific microRNA expression levels were evaluated in male retroperitoneal
adipose tissue (Figure 13). Dicer expression was similar between WT and THOP1−/− mice that were
fed either an SD or a HD (Figure 13A). In THOP1−/− mice fed an SD, miR143 expression levels were
higher than in WT mice fed an SD; all other analyzed microRNAs were similarly expressed for the
SD (Figure 13B). The expression levels of miR-212 and miR-222 only increased in WT mice fed a HD
(Figure 13C). In THOP1−/− mice fed a HD, only the expression levels of miR-130 were increased by the
HD (Figure 13C). The expression levels of pri-miR-222 were drastically reduced in the retroperitoneal
adipose tissue of THOP1−/− mice (Figure 13D). Altogether, the data above suggest that THOP1−/− mice
have—at least to some degree—an altered C57BL6 gene and altered microRNA expression patterns in
their liver and adipose tissues.



Biomolecules 2020, 10, 321 24 of 40

Biomolecules 2020, 9, x  25 of 41 

Biomolecules 2020, 9, x; doi: www.mdpi.com/journal/molecule 

Next, the dicer and specific microRNA expression levels were evaluated in male retroperitoneal 
adipose tissue (Figure 13). Dicer expression was similar between WT and THOP1−/− mice that were 
fed either an SD or a HD (Figure 13A). In THOP1−/− mice fed an SD, miR143 expression levels were 
higher than in WT mice fed an SD; all other analyzed microRNAs were similarly expressed for the 
SD (Figure 13B). The expression levels of miR-212 and miR-222 only increased in WT mice fed a HD 
(Figure 13C). In THOP1−/− mice fed a HD, only the expression levels of miR-130 were increased by the 
HD (Figure 13C). The expression levels of pri-miR-222 were drastically reduced in the retroperitoneal 
adipose tissue of THOP1−/− mice (Figure 13D). Altogether, the data above suggest that THOP1−/− mice 
have—at least to some degree—an altered C57BL6 gene and altered microRNA expression patterns 
in their liver and adipose tissues.  

 
Figure 13. Dicer mRNA and microRNA expression levels in male retroperitoneal adipose tissue. (A) 
Dicer mRNA expression levels. (B) Effect of phenotype on the expression levels of the indicated 
microRNAs; * p ≤ 0.05 when comparing WT and THOP1−/− mice. (C) Effect of diet and phenotype on 
the expression levels of the indicated microRNAs. (D) The effect of diet and phenotype on the 
expression level of pri-miR-222. Results are expressed as mean ± SEM. Statistical analyses were 

Figure 13. Dicer mRNA and microRNA expression levels in male retroperitoneal adipose tissue.
(A) Dicer mRNA expression levels. (B) Effect of phenotype on the expression levels of the indicated
microRNAs; * p ≤ 0.05 when comparing WT and THOP1−/− mice. (C) Effect of diet and phenotype
on the expression levels of the indicated microRNAs. (D) The effect of diet and phenotype on the
expression level of pri-miR-222. Results are expressed as mean ± SEM. Statistical analyses were
performed using Student’s unpaired t-test. One letter, p ≤ 0.05; a, WT/SD vs. WT/HD; b, THOP1−/−/SD
vs. THOP1−/−/HD; c, WT/SD vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 4–6).

3.7. DIO Further Modified the Relative Levels of Particular Intracellular Peptides in the Adipose Tissue of WT
and THOP1−/− Mice

Electron spray mass spectrometry and isotope labeling were combined [79,80,97] in order to
identify and semi-quantify intracellular peptides in the adipose tissue of WT and THOP1−/− mice
fed either an SD or a HD (Table 8). Inguinal adipose tissue was chosen because of its physiological
relevance for DIO and also because of its higher weight and fat contents when comparing WT and
THOP1−/− animals that were fed a HD (Table 2). Table 8 shows the amino acid sequences of the
17 identified peptides, their precursor proteins with respective predominant subcellular localization,
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and the average THOP1−/−/WT ratios of peptides identified in duplicates from at least three out of the
five experimental replicates. These procedures were relevant for increasing data robustness, because
the relative concentrations of intracellular peptides varied greatly between the different samples, as
previously observed [98]. Most of the peptides identified herein (14 of 17) had altered relative ratios
in THOP1−/− animals compared to WT animals fed an SD (Table 8, colored lanes). In animals that
were fed a regular SD, the relative THOP1−/−/WT ratio of 13 peptides increased (possibly representing
THOP1 substrates), whereas one peptide decreased (possibly representing a THOP1 product). These
data suggest that THOP1−/− by itself affected the levels of intracellular peptides in the adipose tissue
of C57BL6 mice. From the 13 peptides in which the relative levels were elevated in THOP1−/− mice as
compared to WT mice, seven peptides remained increased, whereas six peptides decreased after these
animals were fed a HD (Table 8). There were three peptides, in which their relative ratios were not
altered for THOP1−/−/WT when fed an SD, but they decreased in THOP1−/− animals that were fed a
HD (Table 8). Therefore, the HD reduced the levels of 10 out of the 17 intracellular peptides identified
herein in the inguinal adipose tissue of both THOP1−/− and WT animals (Table 8). At least some of
the intracellular peptide precursor proteins identified herein have well-known functions in cellular
metabolism and/or obesity. Therefore, it is possible that changes in the expression levels of these
precursor proteins have, at least in part, influenced the changes in intracellular peptides levels that are
reported above. However, the variation in the profile of intracellular peptides could also be related
to differential expression of proteasome and/or other intracellular peptidases. Indeed, dipeptidyl
peptidase 4 (DPP4), neprilysin (NEP), and insulin degrading enzyme (IDE) expression levels were
higher in THOP1−/− mice than in WT mice that were fed a HD for both males and females; in animals
fed an SD, only the IDE mRNA expression levels were higher in THOP1−/− mice as compared to WT
mice (Figure 14A–C,G–I). These latter results suggest a function for additional peptidases in adipose
tissue intracellular peptide metabolism. No alterations in mRNA expression levels were observed
for proteasome beta5-subunit (Protβ5) or for angiotensin converting enzyme 1 (ACE1), whereas
prolyl-oligopeptidase (POP) was only slightly decreased under some conditions (Figure 14).
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Table 8. Intracellular peptides semi-quantitatively identified in inguinal adipose tissue of WT or THOP1−/− mice.

Precursor Protein Name Peptide Sequence Subcellular Localization Ratio THOP1−/−/SD to WT/SD ± SEM (n) Ratio THOP1−/−/HD to WT/HD ± SEM (n)
Macrophage migration inhibitory factor LSELTQQLAQATGKPAQ C 13.35 ± 3.5 (3) 12.16 ± 3.9 (3)

Histone H2A type 1-B AQGGVLPNIQAVLLPK (May1) IP pH 10 N 9.75 ± 4.7 (5) 19.58 ± 8.14 (5)
Histone H2B type 2-B KQVHPDTGISSKAMGIMNS N 20.59 ± 4.3 (4) 16.65 ± 2.6 (4)

Elongation factor 2 ASVLTAQPRLMEPI C 4.35 ± 0.8 (3) 7.74 ± 0.8 (3)
Creatine kinase M-type DISNADRLGSSEVEQ C 8.17 ± 2.1 (3) 15.66 ± 7.9 (3)
Creatine kinase M-type DISNADRLGSSEVEQV C 11.21 ± 3.8 (3) 12.32 ± 3.5 (3)
Creatine kinase M-type IDDHFLFDKPVSPLL C 14.31 ± 5.0 (4) 6.60 ± 1.7 (4)

Apolipoprotein A-I LETLKTQVQSVIDKA (May6) IP pH 6.9 SP 4.25 ± 1.1 (4) 0.42 ± 0.07 (4)
Apolipoprotein A-II FSSLMNLEEKPAPAA (May3) IP pH 4.2 SP 10.59 ± 6.3 (5) 0.27 ± 0.04 (5)
Apolipoprotein A-II HEQLTPLVRSAGTSLVN (May5) IP pH 7.6 SP 5.07 ± 1.3 (4) 0.20 ± 0.03 (4)

Serum albumin SQTFPNADFAEITKL (May7) IP pH 3.9 SP 12.01 ± 1.6 (4) 0.38 ± 0.04 (4)
Non-specific lipid-transfer protein ADSDLLALMTGKMNPQSA (May2) IP pH 3.7 P 6.7 ± 1.8 (3) 0.49 ± 0.08 (3)

Hemoglobin subunit alpha GAEALERMFASFPTTK (May4) IP pH 7.0 C 6.33 ± 4.4 (3) 0.18 ± 0.05 (3)
Hemoglobin subunit alpha FDVSHGSAQVK C 0.43 ± 0.06 (3) 0.29 ± 0.06 (3)
Hemoglobin subunit alpha IGGHGAEYGAEALER C 0.58 ± 0.1 (4) 0.23 ± 0.05 (4)
Hemoglobin subunit alpha SVSTVLTSK C 0.66 ± 0.1 (3) 0.25 ± 0.03 (3)
Acyl-CoA-binding protein QATVGDVNTDRPGLLDLKGK C 0.71 ± 0.1 (3) 0.19 ± 0.04 (3)

Numbers in the colored columns indicate the mean value ± standard error of the mean (SEM; no statistical analyses were performed) of each peptide semi-quantitatively identified by
Mascot automatically after LC–MS/MS data analyses. Five biological replicates were (n = 5) in duplicates (technical replicates, forward and reverse labeling) with each sample labeled with
a different isotope. Note that only peptides founded in 3 or more biological replicates (shown in parenthesis) and in both technical replicates (forward and reverse labeling) are listed.
Isoelectric points (IP) of May peptides are shown; note that IP of May peptides varied from acidic (May2, May3, and May7), through neutral (May6 and May4), to basic (May1 and May5),
indicating different net charges in physiological ~pH 7.4 conditions. C, cytosol; N, nucleus; SP, secretory pathway; P, peroxisome. Red labels are peptides that increased >2.0; green labels
are peptides that decreased <0.5. White unlabeled peptides had relative concentrations between 0.5 and 2.0. Additional details are shown in Experimental procedures. Data are available
via ProteomeXchange with identifier PXD016265.
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Figure 14. Gene expression of peptidases and proteasome beta5-subunit (Protβ5) in adipose tissue
from WT and THOP1−/− mice. A–F, female; G–L, male. Analyses of gene expression were conducted
by qRT-PCR in female and male retroperitoneal adipose tissue for specific peptidases, dipeptidyl
peptidase 4 (DPP4), neprilysin (NEP), insulin-degrading enzyme (IDE), angiotensin converting enzyme
1 (ACE1), prolyl-oligopeptidase (POP), and Protβ5. Data are presented as mean ± standard deviation.
Statistical analyses were performed using Student’s unpaired t-test. One letter, p ≤ 0.05; two letters,
p ≤ 0.01; three letters p ≤ 0.001. a, WT/SD vs. WT/HD; b, THOP1−/−/SD vs. THOP1−/−/HD; c, WT/SD
vs. THOP1−/−/SD; d, WT/HD vs. THOP1−/−/HD (n = 4–6).



Biomolecules 2020, 10, 321 28 of 40

3.8. Molecular Modeling Suggests a Direct Interaction between Intracellular Peptides and Murine pre-miR-143
or pre-miR-222

Specific genes and microRNAs involved in obesity and adipogenesis were differentially modulated
in the liver and adipose tissue of THOP1−/− mice. In parallel, the profile of intracellular peptides was
also modified in the adipose tissue of THOP1−/− mice. Thus, it was hypothesized that intracellular
peptides could regulate gene expression by directly binding specific microRNAs. Intracellular peptides
could affect the expression levels of microRNAs through binding and, consequently, the expression
of specific genes that are related to obesity and energetic metabolism. One intracellular peptide
(AQGGVLPNIQAVLLPK, coined “May1”), derived from histone H2A type 1-B, increased even more
when the animals were fed a HD (Table 8). The relative ratio of six peptides (May2/May7) increased
in THOP1−/−/WT mice that were fed an SD, whereas largely decreased after these animals were fed
a HD (Table 8). The May1/May7 peptides were selected for molecular modeling to analyze their
possible interaction with pre-miR-143 and pre-miR-222. The 10 most probable structures of the selected
intracellular peptides (namely, May1 through May7) and their interaction with microRNAs were
modeled because short peptides have dynamic structures in solution; all of these structures could,
indeed, co-exist endogenously (Figure 15). These 10 structures were individually simulated interacting
with either pre-miR-143 or pre-miR-222; each of these pre-microRNAs have only one predicted structure.
All of the 10 most probable structures of the May1/May7 intracellular peptides interacted with murine
pre-miR-143 and pre-miR-222, although within different regions and with different densities/theoretical
affinities (Figure 15). The regions on the pre-miR-143 and pre-miR-222 found to interact with the May
peptides were frequently identified on the corresponding mature microRNA region; five of the seven
May peptides interacted within the mature region of pre-miR-143, and three of the seven peptides
interacted within the mature region of pre-miR-222 (Figure 15). Thus, this demonstrates that the
intracellular peptides likely interact with microRNAs, but the possible biological significance of this
interaction still needs further investigations.



Biomolecules 2020, 10, 321 29 of 40
Biomolecules 2020, 9, x  30 of 41 

Biomolecules 2020, 9, x; doi: www.mdpi.com/journal/molecules 

 

Figure 15. Cont.



Biomolecules 2020, 10, 321 30 of 40
Biomolecules 2020, 9, x  31 of 41 

Biomolecules 2020, 9, x; doi: www.mdpi.com/journal/molecules 

 
Figure 15. Structural modeling of murine May peptides interacting with either miR-143 or miR-222. Each panel contains seven small Figures that represent, from 
left to right, pre-miR-143 (A) or pre-miR-222 (B) interacting with the indicated intracellular peptide (May1–May7). The top left histogram panel from each small 
Figure represents the different densities/theoretical affinities (shown on the y-axis) of the top 10 structures predicted for each indicated May peptide. Shown on the 
x-axis of the histograms are the nucleotide positions from each microRNA that interacted with the predicted structures of May peptides. Note that intracellular 
peptides were predicted to interact with different regions and with different affinities along the nucleotide sequences of the respective pre-microRNAs. The top 

Figure 15. Structural modeling of murine May peptides interacting with either miR-143 or miR-222. Each panel contains seven small Figures that represent, from left
to right, pre-miR-143 (A) or pre-miR-222 (B) interacting with the indicated intracellular peptide (May1–May7). The top left histogram panel from each small Figure
represents the different densities/theoretical affinities (shown on the y-axis) of the top 10 structures predicted for each indicated May peptide. Shown on the x-axis of
the histograms are the nucleotide positions from each microRNA that interacted with the predicted structures of May peptides. Note that intracellular peptides were
predicted to interact with different regions and with different affinities along the nucleotide sequences of the respective pre-microRNAs. The top right panel on each
small Figure shows all of the top ten predicted peptide structures interacting with their respective pre-microRNAs. The lower larger panel shows only one predicted
structure of the corresponding May peptide, which was predicted to interact with the highest affinity to the indicated region of the respective pre-microRNA. In these
large panels, inside the small blue boxes, are the nucleotides from the mature microRNAs predicted to interact with the peptide of the highest affinity. Note that
intracellular peptides May1–May7 frequently interacted with a large portion (both at 5p and 3p) of the mature region of these miRNAs.
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4. Discussion

Here, THOP1 was shown to play a key role in energy metabolism; THOP1−/− mice, distinctive
from WT mice, were resistant to DIO and showed no insulin resistance after being fed a HD for
24 weeks. In THOP1−/− mice, the higher adrenergic-stimulated lipolytic activity seems seminal to
the characterized phenotypes of these animals with reduced weight gain, no insulin resistance, and
reduced liver and adipose tissue fat stores. Overall, we have, for the first time, successfully provided
evidence that THOP1 could be a therapeutic target for controlling obesity and associated diseases,
such as insulin resistance and NAFLS.

The predominant intracellular localization of THOP1 suggests that its main physiological
significance should take place inside the cells. Corroborating this suggestion, THOP1 has been
shown to play a key intracellular function in processing MHC-I antigens [2,26,27,45]. THOP1
has additional intracellular functions, as shown by siRNA inhibition of its expression, which was
sufficient to potentiate intracellular beta-adrenergic signal transduction; conversely, when THOP1
was overexpressed, isoproterenol and angiotensin signal transduction was inhibited [99,100]. Herein,
a broader characterization of THOP1 null mice uncovered its physiological relevance for the regulation
of energy metabolism. Altogether, the data presented herein suggest that increased adipose tissue
adrenergic-stimulated lipolysis could be seminal for the lack of DIO, NAFLS, and insulin resistance
presented by THOP1−/− mice that were fed a HD. The proteasome is suggested to produce most of
its substrates, which were coined intracellular peptides, because THOP1 is mainly located within
cells. Intracellular peptides were differentially expressed in the adipose tissue of THOP1−/− mice
and were suggested to mediate the phenotypic differences characterized herein, as follows: THOP1
controls the intracellular peptide profile, which then regulates protein interactions and the expression
levels of microRNAs and, consequently, controls the expression levels of genes that regulate energy
balance within adipose tissue. This possible mechanism is based on both the predominant intracellular
location and the structural substrate-size restriction of THOP1. The ubiquitous existence of intracellular
peptides and microRNAs in different cells of different species suggests a broader biological significance
of the present results, whereby proteasome activity is connected to protein synthesis through a
new route. Further investigations are still necessary to demonstrate the feasibility of these yet
hypothetical mechanisms.

The molecular mechanism supporting the distinctive phenotypes of THOP1−/− mice possibly
involves intracellular peptides [54]. Anorexigenic and orexigenic neuropeptides have not previously
been characterized as THOP1 substrates [49] and, here, the levels of hormonal peptides related to
obesity were shown to be unaffected in THOP1−/− animals. THOP1 is a predominantly intracellular
protein [29,36], in support of it having a major function in intracellular peptide metabolism. Therefore,
the extracellular activity of secreted or membrane-associated THOP1 should not play a major role
in the phenotypic differences that are characterized in THOP1−/− mice. Previously, specific brain
regions of THOP1−/− mice were shown to exhibit altered mRNA expression of proteasome beta5
subunit, serotonin 5HT2a receptor, and dopamine D2 receptor. Peptidomic analysis of specific
brain regions identified differences mainly in the intracellular peptide ratios between THOP1−/−

and WT, which were suggested to affect normal cellular functioning. In the present study, the
observed changes in additional peptidases, such as DPP4, NEP, and IDE, could also contribute to the
phenotypic differences described herein, as well as modulate intracellular peptides in the adipose
tissue of THOP1−/− mice that were fed a HD. The differences in the profiles of intracellular peptides
observed when THOP1−/− mice were a fed HD could also be related to alterations in the levels
of intracellular peptide precursor proteins. Most of the intracellular peptide precursor proteins
identified herein were previously shown to be functional in energy metabolism [101–110]. Several
histone marks were identified in a prediabetic mouse model, providing a resource for studying the
epigenetic functions of histone modifications in obesity and type 2 diabetes [109].The histone-derived
intracellular peptides identified herein have putative post-translational lysine modification sites in their
structure (indicated in bold underlined: AQGGVLPNIQAVLLPK and KQVHPDTGISSKAMGIMNS),
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suggesting a possible role of these peptides in regulating histone modifications in adipose tissue.
Intracellular peptides containing putative post-translational modification sites were previously shown
to modulate protein kinase and peptidase activities [10,70]. The histone-derived intracellular peptides
that were identified to be differentially expressed in the brains of schizophrenic patients were also
shown to be neuroprotective [14]. The expression of non-specific lipid-transfer protein, also known
as sterol carrier protein (2SCP-2), significantly altered the association of several proteins (important
to lipid droplet metabolism) with purified lipid droplets both in vitro as well as in intact cells [101].
Therefore, if intracellular peptides from 2SCP-2 could interfere with lipid composition and/or the
association of proteins to adipose tissue lipid vesicles, energy metabolism, and fat deposition could be
affected. Similarly, intracellular peptides from apolipoprotein A could play anti-obesity functions [110].
Acyl-CoA-binding protein (ACBP; also known as diazepam-binding inhibitor, DBI) is a lipogenic
factor that triggers food intake and obesity [111]. In mice, systemic injection of ACBP protein inhibited
autophagy, induced lipogenesis, reduced glycemia, and stimulated both appetite and weight gain. Thus,
the neutralization of ACBP might constitute a strategy for treating obesity and its co-morbidities [111].
Indeed, altered levels of intracellular peptides that were derived from ACBP have been observed
in the adipose tissue of Wistar rats fed a hypercaloric Western diet, and this was shown to improve
glucose uptake in 3T3L1 adipocytes [66].Therefore, by regulating protein-protein interactions [112],
intracellular peptides substrates and/or products of THOP1 could affect the DIO phenotype.

The intracellular peptides May1–May7, identified herein, were suggested to directly interact with
microRNAs miR-143 and miR-222 while using molecular modeling. Therefore, these intracellular
peptides could plausibly regulate microRNA functions by, at the very least, interfering with their
processing and/or their endogenous stability [76,112] Differences in the expression levels of microRNAs
could contribute to balancing the expression of genes shown herein to be differentially modulated
in THOP1−/− mice that were fed a HD. MicroRNAs typically repress gene expression by binding to
the 3’ UTR of mRNA, leading to its degradation [113]. The intracellular peptides identified in the
present research were predicted to interact with different regions of the microRNAs miR-143 and
miR-222, including the eight-base seed region [113]. By binding to the seed region of miR-143 and
miR-222, intracellular peptides could prevent/favor microRNAs binding to the 3’ UTR of their target
mRNAs to regulate gene expression. If these are possible mechanisms through which intracellular
peptides operate, they could modulate gene expression to influence the phenotypic differences that
are characterized between WT and THOP1−/− mice (i.e., great resistance to DIO, lack of insulin
resistance, and absence of large areas of NAFLS in the liver tissue of THOP1−/− animals). However,
further investigations should be conducted to elucidate the mechanisms through which THOP1 and
intracellular peptides operate in regulating energy metabolism.

The differential expression of specific genes in the liver and/or in adipose tissue, including
CD11c, PPAR-γ, LPL, F4/80, and FAS, corroborate the greater resistance of THOP1−/− mice to DIO
and insulin resistance. The enhanced expression of adrenergic receptors should also contribute to
isoproterenol-stimulated enhancement of lipolytic activity of adipose tissue in THOP1−/− animals,
particularly in males. Previous studies have shown that intracellular peptides reintroduced into HEK293
and CHO cells potentiate isoproterenol-stimulated beta adrenergic signaling [99]. The inhibition of
THOP1 in HEK293 cells while using siRNA was also shown to increase isoproterenol response through
protein kinase A [100]. THOP1−/− males showed decreased blood glucose levels under food restriction,
which was prevented by the beta-adrenergic antagonist propranolol. Altogether, these data corroborate
previous assertions [99,100] that THOP1 plays a previously anticipated role in the beta-adrenergic
signaling pathway. The blood pressure and heart rate of WT and THOP1−/− mice were similar, which
suggested that THOP1 has tissue-specific adrenergic-enhanced properties. The apparent contradictory
parameters of THOP1−/− animals that exhibit higher lipolysis and lower inflammation in adipose
tissue could be compensated by the higher PPAR-γ expression observed herein, which could inhibit
the expression of nuclear factor kappa-light-chain-enhancer of activated B cells [114]. In addition,
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higher transient levels of corticosterone at the beginning of the night period could benefit THOP1−/−

animals by reducing the likelihood of adipose tissue inflammation.
The resting energy metabolism of WT and THOP1−/− mice was similar across the 24 h period,

while some differences were observed after the beginning of the mice’s activity period (~5–10 p.m.).
Therefore, changes in resting energy metabolism were probably not important for explaining the
differences in weight gain of THOP1−/− mice. The higher levels of corticosterone that were observed
in male THOP1−/− mice correlate with the shift observed in the resting energy metabolism during
the interval from 5 to 10 p.m. The circadian rhythm has previously been shown to influence THOP1
enzyme activity (formerly endopeptidase 22.19; EC 3.4.22.19) in the whole brain and in individual
areas, such as cerebellum, striatum, hypothalamus, and periaqueductal gray matter [115]. These
data could suggest that the expression levels of the genes that regulate circadian rhythms were also
affected in these animals, because it is well known that circadian rhythm genes are closely related
to energy metabolism [116–118]. A higher expression of THOP1 was observed in the adipose tissue
of WT females when compared to WT males, fed either SD or HD. Previous studies have shown
that, after exposure to a high-fat diet for 12 weeks, females gained less weight than males, and that
ovarian hormones were partially responsible for these differences [119]. Similarly, at least some of
the differences in the weight gain and metabolic parameters observed herein were more evident in
THOP−/− males than females. Future experiments will be still necessary to evaluate the importance of
THOP1 to DIO sexual dimorphism.

5. Conclusions

We demonstrate, for the first time, that THOP1 plays various key functions in energy metabolism.
Intracellular peptides were suggested to mediate the phenotypic differences that are characterized
herein between WT and THOP1−/− mice. These data also provide novel alternative targets for the
pharmacological treatment of obesity and obesity-associated diseases.
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