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Abstract: This study aimed to investigate the effect of hypoxic preconditioning (HPC) on primary
retinal ganglion cell (RGC) survival and the associated mechanism, including the role of vascular
endothelial growth factor (VEGF). Retinas were separated from the enucleated eyeballs of Sprague–
Dawley rats on postnatal days 1–4. RGCs were harvested using an immunopanning-magnetic
separation system and maintained for 24 h in a defined medium. Hypoxic damage (0.3% O2) was
inflicted on the cells using a CO2 chamber. Anti-VEGF antibody (bevacizumab) was administered
to RGCs exposed to hypoxic conditions, and RGC survival rate was compared to that of non-anti-
VEGF antibody-treated RGCs. HPC lasting 4 h significantly increased RGC survival rate. In the
RGCs exposed to hypoxic conditions for 4 h, VEGF mRNA and protein levels were significantly
increased. Treatment with high dose bevacizumab (>1 mg/mL) countered HPC-mediated RGC
survival. Protein kinase B and focal adhesion kinase levels were significantly increased in 4-h
hypoxia-treated RGCs. HPC showed beneficial effects on primary RGC survival. However, only
specifically controlled exposure to hypoxic conditions rendered neuroprotective effects. Strong
inhibition of VEGF inhibited HPC-mediated RGC survival. These results indicate that VEGF may
play an essential role in promoting cell survival under hypoxic conditions.

Keywords: hypoxic preconditioning; retinal ganglion cell; vascular endothelial growth factor

1. Introduction

Glaucoma is one of the leading causes of blindness worldwide, with the estimated
number of patients exceeding 64 million [1,2]. It is a chronic disease that requires lifetime
treatment upon diagnosis. Conventionally, treatment begins with medication to lower the
intraocular pressure (IOP) to halt the progression of the disease. However, the disease
continues to progress in certain patients despite satisfactory decrease in IOP [3,4]. Conse-
quently, studies have searched for additional treatment strategies. Based on the ability of
the cells to adapt to stressful conditions, preconditioning-induced, neuroprotection-based
approaches to prevent or slow the progressive loss of the retinal ganglion cells (RGCs) have
received considerable attention [5].

The retina is one of the most metabolically active tissues and requires large amounts
of oxygen—even more than that of the brain. Thus, the proper functioning of the retina is
highly dependent on a continuous supply of oxygen [6]. This supply can be impeded by
asphyxia (lack of oxygen in the blood stream), hypoxia (reduction in the available oxygen),
or ischemia (reduction in blood flow that could lead to hypoxia) [7]. Deficient oxygen
supply results in tissue hypoxia, leading to the death of RGCs and subsequent loss of
vision in many ocular conditions, including retinal vein occlusion, glaucoma, and diabetic
retinopathy [6,8]. However, previous studies have reported that the duration of retinal
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tolerance to low-oxygen conditions in adult mice can be extended from days to weeks
through hypoxic preconditioning (HPC) prior to insult [5]. It is believed that under hypoxic
conditions, the neural tissue is capable of inducing protective mechanisms to limit cellular
damage and thereby enhance survival.

Several factors have been identified to be critical to the regulation of protective mecha-
nisms during hypoxia, including hypoxia-inducible factor (HIF)-1α, vascular endothelial
growth factor (VEGF), and nitric oxide synthase [9]. Studies have shown that the overpro-
duction of these factors is implicated in neuronal death under hypoxic conditions. One of
the regulatory factors, VEGF, has been demonstrated to play a central role in the develop-
ment of various ophthalmic diseases including age-related macular degeneration (AMD),
and anti-VEGF antibody has been widely used to treat these diseases [10,11]. Therefore, it
is necessary to conduct in-depth studies on the role of VEGF in the protective mechanism
of HPC.

The purpose of this study was to investigate the effect of HPC on primary RGC
survival and the associated mechanisms, including the functional role of VEGF and anti-
VEGF antibody.

2. Materials and Methods
2.1. Reagents

For in vitro cell culture, Dulbecco’s Modified Eagle’s Medium/F-12 Nutrient Mixture
Ham 1:1 Mixtures (DMEM/F-12) was purchased from HyClone Laboratories (South Logan,
UT, USA). Fetal bovine serum was purchased from Gibco (Life Technologies, Grand Island,
NY, USA). Poly-L-ornithine solution and laminin solution were procured from Sigma-
Aldrich (St. Louis, MO, USA), and penicillin/streptomycin was obtained from Gibco (Life
Technologies).

For the preparation of RGCs, antibiotin microbeads were purchased from Miltenyi
Biotec (Bergisch Gladbach, Germany). Antimacrophage antibody was obtained from
Fitzgerald Industries International (Acton, MA, USA). Anti-immunoglobulin G and anti-
Thy1 antibodies were purchased from Southern Biotech (Birmingham, AL, USA) and
Bio-Rad (Hercules, CA, USA), respectively.

For flow cytometry or cell sorting, cells were incubated with the primary antibody
Annexin-V purchased from BioVision (Milpitas, CA, USA). Anti-β-actin antibody used
for immunoblotting was procured from Santa Cruz Biotechnology (Dallas, TX, USA), and
tubulin was obtained from Cell Signaling Technology (Danvers, MA, USA).

2.2. Rats

Retinas were separated from the enucleated eyeballs of Sprague–Dawley rats (Ori-
entbio, Seongnam, Republic of Korea) on postnatal days 1–4. The study was approved by
the Institutional Animal Care and Use Committee (2019-0150), and the rats were treated
according to the Association for Research in Vision and Ophthalmology Statement for the
Use of Animals in Ophthalmic and Vision Research.

2.3. Primary RGC Harvest and Culture

Primary RGCs were harvested using a previously described immunopanning-magnetic
separation method [12]. Briefly, the retinal cell suspension was incubated with anti-
macrophage antibody and then distributed over an anti-immunoglobulin G antibody-
coated petri dish. Nonadherent cells were treated with biotinylated anti-Thy-1.2 antibody
and subsequently allowed to interact with antibiotin microbeads. Finally, the magnetic-
labeled RGCs were collected using a magnetic separating unit.

2.4. Generation of Hypoxic Damage

The harvested RGCs were maintained for 24 h in a defined medium and then exposed
to hypoxic conditions (0.3% O2) in a CO2 chamber. The level of hypoxic damage (0.3% O2)
was controlled by varying the exposure time (2, 4, 6, 12, and 24 h).



Biomolecules 2021, 11, 391 3 of 13

2.5. Bevacizumab Treatment

Primary RGCs were treated with different concentrations of bevacizumab (0.1, 0.4,
1.0, and 2.0 mg/mL), and RGCs were maintained in a defined medium for 24 h. Next, the
RGCs were exposed to 4-h HPC and different concentrations of bevacizumab (0.4 mg/mL,
1.0 mg/mL, and 2.0 mg/mL) were added to the samples. Following 24 h of additional
incubation in a defined medium, RGC survival rates were compared.

2.6. Cell Counting

Following HPC, the only insult thereafter was the natural death of RGCs over 24 h.
Next, the RGCs were fixed with 4% paraformaldehyde for 30 min. After washing the RGCs
in phosphate-buffered saline (PBS), a sufficient amount of DAPI stain solution was added
to cover the RGCs. The cells were then incubated for 5 min and washed thrice in PBS.
All steps were performed at room temperature. Five images of DAPI stained-RGCs were
obtained for each sample using a light microscope (Olympus IX73, Olympus Corp., Tokyo,
Japan) at 100×magnification. The number of RGCs in each image was manually counted
and expressed as an average.

2.7. Flow Cytometry

Single-cell suspensions of RGCs were prepared according to a protocol described
previously [13]. Briefly, following collagenase digestion, the isolated cells were stained
with AnnexinV-FITC and propidium iodide (BioVision) and analyzed using FACS LSRII
(Beckman Coulter, Brea, CA, USA).

2.8. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

RNA was isolated with the RNeasy® Micro Kit (Qiagen, Hilden, Germany) and
reverse transcribed to cDNA using EcoDryTM Premix (TaKaRa Bio, Mountain View, CA,
USA). Real-time PCR was performed using SYBR® Premix Ex TaqTM (TaKaRa Bio) and
preformulated primers. RT-qPCR was performed on the StepOnePlus™ Real-Time PCR
System (Applied Biosystems/Thermo Fisher Scientific, Foster City, CA, USA). The list of
primers used is presented in Table 1. The results were analyzed using the comparative
cycle threshold (CT) method and normalized to those of β-actin, which was used as an
internal control, in the same sample.

Table 1. Primers used for quantitative reverse transcription polymerase chain reaction.

Target Gene Sequence

BDNF F: 5′–GCG GCA GAT AAA AAG ACT GC–3′

R: 5′–GCC AGC CAA TTC TCT TTT TG–3′

CNTF F: 5′–CAC CCC AAC TGA AGG TGA CT–3′

R: 5′–ACC TTC AAG CCC CAT AGC TT–3′

VEGF F: 5′–GGC TCT GAA ACC ATG AAC TTT CT–3′

R: 5′–GCA GTA GCT GCG CTG GTA GAC–3′

Akt F: 5′–GTG GCA AGA TGT GTA TGA G–3′

R: 5′–CTG GCT GAG TAG GAG AAC–3′

FAK F: 5′–AAA ATG TGA CGG GCC TAG TG–3′

R: 5′–TAC TCC TGC TGA AGG CTG GT–3′

β-Actin F: 5′–CAC CCG CGA GTA CAA CCT T–3′

R: 5′–CCC ATA CCC ACC ATC ACA CC–3′

BDNF: Brain-derived neurotrophic factor; CNTF: Ciliary neurotrophic factor; VEGF: Vascular endothelial growth
factor; Akt: Protein kinase B (PKB); FAK: focal adhesion kinase; F, forward; R, reverse.

2.9. Enzyme-Linked Immunosorbent Assay (ELISA)

Commercially available ELISA kits against rat VEGF (RayBiotech Inc., Norcross, GA,
USA) was used, and ELISA was performed according to the manufacturer’s instructions.
Total protein concentrations were determined using the Pierce™ BCA Protein Assay Kit
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(Thermo Fisher Scientific, Inc., Rockford, IL, USA) as the standard. VEGF concentrations
were measured by ELISA in triplicate.

2.10. Western Blotting

Total cell lysates were obtained using a cell lysis buffer (Cell Signaling Technology)
and incubated on ice for 5 min. The lysates were then sonicated, and the cell homogenates
were centrifuged at 15,000× g for 15 min at 4 ◦C. Next, the concentration of proteins in
the supernatants was measured using the Pierce™ Bicinchoninic Acid Protein Assay Kit
(Thermo Fisher Scientific). Soluble proteins (30 µg per sample) were boiled for 5 min and
resolved using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Proteins
were then electrotransferred to 0.45-µm-pore polyvinylidene fluoride membranes and
blocked using 5% skim milk. Membranes were blotted overnight with primary antibodies
diluted in 0.1% bovine serum albumin and 0.01% sodium azide in TBS-T against protein
kinase B (Akt) (Cell Signaling Technology), focal adhesion kinase (FAK) (Cell Signaling
Technology), and tubulin (Cell Signaling Technology). After washing three times with
TBS-T, blots were incubated with horseradish peroxidase-conjugated secondary antibody
(Cell Signaling Technology) for 1 h at room temperature. Blots were washed three times
with TBS-T, and immunoreactive bands were visualized through enhanced chemilumines-
cence. Relative intensities of immunoreactive bands were measured after normalization
for tubulin.

2.11. Statistics

All data are expressed as the mean ± standard deviation (SD). Differences between
groups were examined using Student’s t-test and one-way analysis of variance was per-
formed using SPSS Version 22.0 (IBM Corp., Armonk, NY, USA). A p-value < 0.05 was
considered statistically significant.

3. Results
3.1. Outcome of Hypoxic Damage to RGCs Based on Exposure Time

First, the response of RGCs exposed to hypoxic conditions for various lengths of
time was measured to identify the sublethal HPC. Following treatment in DMEM/F-12
for 24 h, the harvested RGCs were exposed to hypoxic conditions by incubation in a CO2
chamber for 2, 4, 6, 12, and 24 h; next, the cells were counted (Figure 1A). As the RGCs were
subjected to hypoxic damage, the cells began to aggregate (Figure 1B). In comparison to the
non-hypoxia-damaged controls, the cell count ratio was 91.7%, 92.0%, 81.33%, 42.0%, and
14.7% after exposure to hypoxic conditions for 2, 4, 6, 12, and 24 h, respectively. There was
no significant difference in the cell survival rate until 6 h of exposure to hypoxic conditions.
However, after 12 h of exposure, the cell survival rate was significantly reduced (p < 0.001)
(Figure 1C).

3.2. Effect of HPC on RGC Survival

To examine the effect of HPC on RGC survival, the cell survival rate between non-
hypoxia-damaged cells and 2-, 4-, and 6-h hypoxia-damaged cells was compared. After
inflicting hypoxic damage using the CO2 chamber for varying lengths of time, RGCs were
additionally maintained for 24 h in a defined medium (Figure 2A). Qualitative comparison
of hypoxia-damaged cells with that of non-hypoxia-damaged cells revealed a significant
increase in cell survival in the 4-h hypoxia-damaged group (Figure 2B). The results of
quantification of the number of cells for each group were in accordance with the observation:
a significant increase in cell survival ratio was noted in the 4-h hypoxia-damaged group
(p = 0.003) (Figure 2C).
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Figure 1. Consequence of varying durations of exposure to hypoxic conditions in primary retinal ganglion cells (RGCs).
(A) After harvesting primary RGCs from the postnasal rat retinas, the cells were maintained for 24 h in a defined medium;
then, hypoxic damage was inflicted on the cells in a CO2 chamber. After exposure to hypoxic conditions for 2, 4, 6, 12, and
24 h, the cells in each sample were counted. (B) Representative images of RGCs after exposure to hypoxic conditions for 2, 4,
6, 12, and 24 h. Scale bar, 100 µm. (C) Number of RGCs after exposure to hypoxic conditions for 2, 4, 6, 12, and 24 h. Data in
the columns indicate the mean survival rate ± SD. Differences in RGC survival rates are indicated (** p < 0.01).

3.3. HPC and VEGF

An in vitro model was established to determine the candidate factors that are asso-
ciated with the protective role of HPC in RGC survival. The analysis of mRNA levels of
VEGF, brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) in
the 4-h hypoxia-damaged RGCs revealed a significant increase in the VEGF mRNA levels
(p = 0.006) (Figure 3A–C). This increase was confirmed upon analysis of the VEGF levels
using ELISA (p = 0.043) (Figure 3D).
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in RGC survival rates are indicated (** p < 0.01).
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VEGF after hypoxic preconditioning of retinal ganglion cells (RGCs) for 4 and 6 h. Data in the columns
indicate the mean fold changes± SD. (D) VEGF concentration after hypoxic preconditioning of RGCs
for varying lengths of time (2, 4, and 6 h). Data in the columns indicate the mean concentrations ± SD.
Statistically significant differences in the mRNA fold change and VEGF concentration are indicated
(* p < 0.05 and ** p < 0.01).
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3.4. Effect of HPC and Anti-VEGF Antibody on RGC Survival

Next, to confirm the role of VEGF on HPC-induced RGC survival, the rate of RGC
survival in response to bevacizumab (Avastin®) was investigated. First, the response of
RGCs to varying concentrations of anti-VEGF antibody was verified by administering
different concentrations of bevacizumab (0.1, 0.4, 1.0, and 2.0 mg/mL) and maintaining
RGCs for 24 h in a defined medium (Figure 4A). Compared to the controls, the survival rate
of RGCs decreased with increasing concentrations of anti-VEGF antibody in a concentration-
dependent manner (Figure 4B,C).
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Figure 4. Retinal ganglion cell (RGC) survival rate according to antivascular endothelial growth factor (VEGF) antibody
concentration. (A) After treatment with different concentrations of bevacizumab (0.1, 0.4, 1.0, and 2.0 mg/mL), RGCs were
maintained in a defined medium for 24 h, and cell survival rates were compared. (B,C) Representative images and number
of RGCs after bevacizumab treatment (0.1, 0.4, 1.0, and 2.0 mg/mL). Scale bar, 100 µm.

Next, the harvested RGCs were exposed to hypoxic conditions for 4 h and different
concentrations of bevacizumab (0.4, 1.0, and 2.0 mg/mL) were added to the samples.
Following 24 h of additional incubation in a defined medium, the cell survival rates were
compared among treatment groups (Figure 5A). The flow cytometry results revealed
that the survival rate significantly increased after 4 h of exposure to hypoxic conditions
(p = 0.012). However, after adding bevacizumab, the cell survival rate decreased in a
concentration-dependent manner (Figure 5B). Addition of 0.4 mg/mL and 1.0 mg/mL
bevacizumab offset the positive effect of HPC. Moreover, the ratio of live cells decreased
significantly following the addition of 2.0 mg/mL bevacizumab (p < 0.001) (Figure 5C).
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Figure 5. Effects of antivascular endothelial growth factor (VEGF) antibody on retinal ganglion cell (RGC) survival after
hypoxic preconditioning (HPC). (A) After harvesting, primary RGCs were maintained for 24 h in a defined medium; then,
the cells were subjected to HPC for 4 h in a CO2 chamber. Thereafter, different concentrations of bevacizumab (0.4, 1.0, and
2.0 mg/mL) were added to the samples. RGCs were maintained for another 24 h in a defined medium and cell survival was
compared among the groups. (B,C) Using flow cytometry, the cells that survived HPC were verified and quantified. Data in
the columns indicate the mean survival rate ± SD. Statistically significant difference from the 4-h HPC-treated cell group is
indicated (* p < 0.05).

3.5. VEGF Survival Pathway Following HPC

To investigate the underlying mechanism of action of VEGF in HPC-mediated RGC
survival, signaling molecules known to be involved in prosurvival signaling pathways,
such as Akt and FAK, were assessed under each treatment condition. Western blotting
revealed an increase in Akt and FAK levels in cells subjected to HPC for 4 h. However, a
stepwise decrease in Akt and FAK was elicited by treatment with higher concentrations of
bevacizumab (Figure 6).
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Figure 6. Hypoxic preconditioning and the vascular endothelial growth factor (VEGF) survival pathway. (A) Signaling
molecules involved in pathways downstream of VEGF activation were investigated using immunoblot assays. Akt and
focal adhesion kinase (FAK) levels were compared between the 4-h hypoxic preconditioning group and groups in which
bevacizumab (0.4, 1.0, and 2.0 mg/mL) was administered. Representative gel images are shown. (B) Densitometry of Akt
and FAK immunoblots. Data in the columns indicate the mean density ± SD, normalized to the level of tubulin in the
same sample.

4. Discussion

The present study examined the effect of HPC on RGC survival and the associated
mechanism, including the role of HPC-induced VEGF. Firstly, the results showed that
approximately 4 h of HPC significantly increased RGC survival compared to the control
group. Second, HPC induced high levels of VEGF expression relative to other known
survival factors. Third, the prosurvival effect of 4 h of HPC was offset by high dose anti-
VEGF treatment. Finally, HPC-induced VEGF may promote the survival of RGCs by HPC
through the Akt and FAK pathways.

Hypoxia of the retina often occurs because of systemic conditions such as carotid artery
stenosis, Takayasu’s arteritis, and hyperviscosity syndromes. Hypoxia may also occur
due to retinal ischemia (characterized by retinal venous dilatation), retinal hemorrhages,
retinal edema, and neovascularization [14]. Although the pathophysiology of hypoxic
damage to the retina is not fully understood, it is generally accepted that hypoxia exerts a
negative influence on RGC survival under various conditions including increased vascular
permeability, disruption of the blood–retinal barrier, leakage of the fluid into the retinal
tissue, and direct toxicity of the hypoxic damage [14–17].

In contrast, numerous previous studies have reported that under hypoxic conditions,
the neural tissue is capable of triggering protective mechanisms within minutes and limiting
cellular damage [5]. During a hypoxic episode, neuronal cells utilize adaptive mechanisms
that allow them to survive and maintain homeostasis. The efficiency of energy-producing
pathways is improved and that of energy-consuming processes, such as ion-motive ATPase
and protein synthesis, is reduced. In addition, mitochondrial function is regulated to
suppress apoptosis. HIF is also induced, and target genes of HIF such as erythropoietin
and VEGF play a role in neuroprotection [18]. However, it has been reported that these
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protective mechanisms may disappear within hours, ultimately resulting in cell death [9].
The current findings support those of previous studies, which reported that increases in
RGC death occur after more than 6 h of hypoxic conditioning and hypoxic conditions
lasting less than 6 h increase RGC survival (Figures 1 and 2).

Numerous studies have been conducted to identify molecules that promote RGC
survival. Factors such as including nerve growth factor, BDNF, CNTF, VEGF, and insulin-
like growth factors have been found [19–22]. Studies have also shown that the expression
of several factors, including nitric oxide, inflammatory cytokines, glutamate, VEGF, and
oxidative stress, is upregulated by hypoxia in the retina [8,23–25]. Consequently, the
changes in VEGF, BDNF, and CNTF levels under HPC were investigated in this study.
The results showed that VEGF expression was significantly upregulated in the hypoxic
treatment group compared to that in the nonhypoxic control group. ELISA confirmed
the increase (Figure 3). VEGF is a glycoprotein with a molecular weight of 46 kDa that
binds to receptors on the surface of vascular endothelial cells to cause proliferation and
increase capillary permeability [10,26]. Since it was first reported that hypoxia-induced
VEGF may affect angiogenesis in 1992, [27] many studies have been conducted on the role
of VEGF in retinal vasculature development as well as retinopathy of prematurity [28,29].
In recent studies, VEGF has been shown to promote the development and maturation
of neural tissues, including the retina [8,30]. During development, VEGF is expressed
by astrocytes in the RGC layer, cells of the inner nuclear layer, Müller cells, and retinal
pigment epithelial cells [25,31]. In the adult retina, VEGF is expressed in the absence of
active neovascularization and is implicated in the maintenance and function of adult retina
neuronal cells [32]. Furthermore, VEGF exerts neuroprotective effects on injured RGCs in
ocular hypertension animal models and delays their degeneration after axotomy [33–35]. In
line with the previous studies, the current study also confirmed the protective role of VEGF
in RGC survival following HPC. When VEGF activation was blocked with bevacizumab
after 4 h of HPC, the RGC survival rate decreased in a dose-dependent manner (Figure 5).
These results imply that the upregulation of VEGF expression occurs in many ischemic
conditions of the retina.

Intravitreal injections of anti-VEGF antibodies, such as bevacizumab, are widely used
in treatments to reduce angiogenesis based on studies that have reported VEGF expression
upregulation in ischemic conditions such as AMD and diabetic retinopathy [10,11]. These
high levels of VEGF can lead to retinal and vitreous hemorrhage, retinal detachment,
and often blindness. However, according to the results in this study, repeated anti-VEGF
antibody injections may have the potential risk of interfering with the neuroprotective
action of VEGF. Similarly, a previous study demonstrated that small interfering RNA-
mediated gene silencing of VEGF reduced the thickness of retinal cell layers, concluding
that VEGF plays a neuroprotective role in the survival of the retinal neurons [32]. Although
several studies claim the safety of anti-VEGF antibody treatment, [36–38] further studies are
needed to thoroughly investigate any possible side effects of multiple anti-VEGF antibody
injections for serious conditions of the eye such as glaucoma.

In an attempt to understand the signaling pathways downstream of VEGF, several
candidate signaling molecules were studied. Western blot analyses revealed an increase in
Akt and FAK levels in RGCs exposed to HPC for 4 h, which decreased upon treatment of
the cells with anti-VEGF antibody (Figure 6). These results indicated that VEGF induces
RGC survival following HPC primarily via the Akt and FAK pathways. VEGF has been
shown to be a potent activator of the Akt pathway in other cell systems, including vascular
endothelial cells [39]. Akt is activated by the phosphorylation of phosphoinositide 3-kinase
(PI3K) and is involved in cell survival [34,40]. The FAK pathway is known to be involved
in focal adhesion, cell migration, and cell survival [41,42]. In particular, VEGF activates
FAK by increasing the affinity of integrin, and β1 integrin-FAK signaling has been found
to modulate RGC survival [43,44]. The current study strongly suggests that endogenous
retinal VEGF plays an important role via the Akt and FAK pathways in maintaining the
viability of RGCs.
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This study presents a number of aspects to consider in a clinical setting. First, excessive
hypoxic damage exerts a negative impact on RGC survival. Second, HPC might contribute
to enhanced RGC survival in stressful conditions such as glaucoma and diabetic retinopathy.
In addition, bevacizumab may have unexpected harmful effects on RGC. A specific protocol
for the treatment of neovascularization needs to be developed in the future.

This study has several limitations with respect to reproducing hypoxic conditions.
First, the current study developed an in vitro model that focused on RGCs, despite the
fact that in the body, RGCs are not isolated but coexist with various other cell types such
as astrocytes, Müller cells, and other glial cells. Second, several factors other than VEGF
may also be involved in cell survival following HPC, but not all of the correlations were
analyzed. Third, the full extent of the VEGF survival pathway was not investigated.
However, it seems that the Akt and FAK pathways may play a key role in RGC protection
as reported previously. Finally, rat RGCs are not identical to human RGCs.

5. Conclusions

HPC showed neuroprotective effects on primary RGC survival in this study. However,
only specifically controlled exposure to hypoxic conditions rendered these neuroprotective
effects. The in vitro model of this study showed that strong inhibition of VEGF countered
HPC-mediated RGC survival, indicating that certain levels of HPC-induced VEGF may
play an essential role in promoting cell survival during hypoxia.
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