
biomolecules

Article

Fitness Shifts the Balance of BDNF and IL-6 from Inflammation
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Abstract: Physical sedentarism is linked to elevated levels of circulating cytokines, whereas exercise
upregulates growth-promoting proteins such as brain-derived neurotrophic factor (BDNF). The shift
towards a ‘repair’ phenotype could protect against neurodegeneration, especially in diseases such
as multiple sclerosis (MS). We investigated whether having higher fitness or participating in an
acute bout of maximal exercise would shift the balance of BDNF and interleukin-6 (IL-6) in serum
samples of people with progressive MS (n = 14), compared to matched controls (n = 8). Participants
performed a maximal graded exercise test on a recumbent stepper, and blood samples were collected
at rest and after the test. We assessed walking speed, fatigue, and maximal oxygen consumption

(
·
VO2max). People with MS achieved about 50% lower

·
VO2max (p = 0.003) than controls. At rest, there

were no differences in BDNF between MS and controls; however, IL-6 was significantly higher in

MS. Higher
·
VO2max was associated with a shift in BDNF/IL-6 ratio from inflammation to repair

(R = 0.7, p = 0.001) when considering both groups together. In the MS group, greater ability to
upregulate BDNF was associated with faster walking speed and lower vitality. We present evidence
that higher fitness indicates a shift in the balance of blood biomarkers towards a repair phenotype in
progressive MS.

Keywords: multiple sclerosis; rehabilitation; fitness; neurodegeneration; inflammation; biomarkers;
neurotrophins; brain-derived neurotrophic factor; cytokines; interleukin-6

1. Introduction

Globally, more than 2.3 million people live with multiple sclerosis (MS), and of those,
over one million people have a progressive form of MS, a type with fewer inflammatory
relapses but more prominent neurodegeneration [1]. Why some people remain stable and
others progress is not clear, and experts in the field have prioritised research to accelerate
the development of effective therapies for people with progressive MS [2–4]. One of these
efforts is to create novel rehabilitation strategies that combine the reparative, neuroplastic,
cardiorespiratory, and metabolic benefits of aerobic exercise in order to promote brain
repair [5].

Physical sedentarism is linked to elevated levels of circulating inflammatory markers,
such as interleukin-6 (IL-6), a cytokine that increases brain inflammation [6]. A recent study
reported that heightened levels of IL-6 in cerebrospinal fluid were associated with blunted
capacity for neuroplasticity in 150 people with MS [7]. These inflammatory cytokines are
toxic to the brain [8] but can be inhibited by participation in physical exercise [9]. While
IL-6 is pro-inflammatory and linked to neurodegeneration, the neurotrophin brain-derived
neurotrophic factor (BDNF), produced by both glial cells and contracting muscle, regulates
synaptic change and use-dependent brain plasticity [10]. Aerobic exercise, by upregulating
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neurotrophins [11–13] and altering cytokine levels [14–17], could be neuroprotective in MS,
thereby facilitating neuroplasticity and protecting against functional decline [11,13,18].

In people with MS, studies have demonstrated a dose-response relationship on serum
concentrations of neurotrophin BDNF [11–13] and cytokine IL-6 [11] after a graded exercise
test (GXT), supporting that aerobic training interventions could have direct effects on the
neuro-immune axis [11,18]. For example, combined aerobic and Pilates training increased
resting serum BDNF levels, while simultaneously improving walking endurance, balance,
and fatigue in people with relapsing-remitting MS [19]. A systematic review reported that
among people with MS, aerobic training significantly altered peripheral levels of cytokines
IL-6, IL-10, interferon-γ, and tumor necrosis factor (TNF) [20]. Whether neurotrophins and
cytokines remain responsive to exercise among people with greater disability and with a
more progressive form of MS is not clear [20,21]. Despite established reciprocal actions
of BDNF and IL-6 to promote neuronal survival [22], representing inflammation and neu-
rotrophic markers as a ratio, for example, BDNF/IL-6 ratio, has never been reported in
MS. A recent study of 1833 older people with diabetes suggested that a shifting of the
ratio between BDNF and dipeptidyl peptidase-4 (inflammation) could be an important
biomarker of cognitive impairment [23]. Analysing the relationships between potential
biomarkers such as resting and exercise-induced levels of neurotrophin (BDNF) and cy-
tokine (IL-6) and functional measures (walking speed [24–27], fatigue [28,29], and aerobic

fitness (maximal oxygen consumption (
·

VO2) [30–32]) may help determine whether the
neurotrophin BDNF and cytokine IL-6 are appropriate rehabilitative targets and surrogate
markers of recovery and neuroplasticity in progressive MS [33–36].

As a first step, we investigated to what extent GXT would change the circulating levels
of BDNF, IL-6, and their ratio, in a group of people with similar levels of MS-related walking
disability, compared to matched controls. Next, we examined whether these resting and
exercise-induced serum blood markers were associated with important outcomes, i.e.,

walking speed, fatigue, and aerobic fitness (maximal
·

VO2 and heart rate).

2. Materials and Methods
2.1. Participants

The study was approved by the Health Research Ethics Board (HREB #20162300).
Following informed written consent, we recruited patients who attended outpatient phys-
iotherapy or the MS clinic. Patients were eligible if they (1) had a confirmed diagnosis
of progressive MS by a neurologist using McDonald criteria [37], (2) had an expanded
disability status scale (EDSS) score of 6 or 6.5 (used bilateral walking aids), (3) were sta-
ble without any relapse or other health event in the previous 90 days, (4) did not have
comorbid cerebrovascular and lung conditions, and (5) were not receiving glucocorticoids.
Healthy controls were matched for sex and age (±3 years) and recruitment of controls
ceased once all the MS participants were matched. All participants completed the physical
activity readiness questionnaire (PAR-Q) to ensure safety during exercise [38,39]. Those
participants who failed PAR-Q were referred to a physician for a physical activity readiness
medical examination (PARmed-X) [40]. With the alpha set at 5% and a power of 80%,
the minimum sample size was estimated to be between 13 and 37 to detect the effects of
exercise-induced serum BDNF in people with MS [11,13].

2.2. Performance Outcomes

We measured comfortable walking speed by asking participants to walk overground
on a 15-feet long path for 5 min. The distance was divided by the time to complete and repre-
sented as m·s−1. Self-reported fatigue was measured using the vitality/energy/fatigue sub-
scale of the 36-item short-form health survey (SF-36) [41,42]. The vitality/energy/fatigue
sub-scale of SF-36 rates feelings of energy/fatigue as a unidimensional construct on a
continuum capturing both negative (fatigue) and positive (energy) states [43]. Values were
weighted/transformed according to published procedures to obtain a score ranging from
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0 to 100 with lower scores indicating worse fatigue and higher scores indicating greater
energy levels [43].

All participants were assessed to determine their maximal
·

VO2 and heart rate during
GXT. The participants were advised not to consume food for at least four hours preced-
ing the GXT. We used a total body recumbent stepper as per protocol adapted by Kelly
et al. [44], wearing a face mask connected via tubing to a breath-by-breath metabolic cart
(Moxus Metabolic Systems, AEI Technologies, Inc., Pittsburgh, PA, USA). Participants were
instructed to maintain 80 steps per minute during GXT and the workload was increased in
~20-watt increments every 2 min, starting from load level 3 (21 watts) until exhaustion [44].

They were considered to have attained maximal
·

VO2 if at least two of the following criteria

were met: (1)
·

VO2 plateau (failure to increase
·

VO2 by 150 mL·min−1) [45] with increasing
workload (inability to maintain workload/stepping frequency of 80 per minute) [44], (2)
respiratory exchange ratio > 1.10 [45], (3) >90% age-predicted maximal heart rate [45], and
(4) >8.0 modified Borg’s rating of perceived exertion [45].

2.3. Blood Samples

Blood samples were drawn from the median cubital vein immediately before and
following GXT in two 5 mL serum vacutainers [46]. Samples were left to clot for 30–60 min,
centrifuged at 2200 g for 10 min, and the collected serum was stored frozen at −80 ◦C.
Serum levels of BDNF and cytokine IL-6 were measured using enzyme-linked immunosor-
bent assay sets for human BDNF (R&D Systems Inc. Minneapolis, MN, USA) and IL-6 (BD
Biosciences, San Diego, CA, USA) as per the manufacturer’s protocols. Serum levels of
TNF were also measured in all samples (BD Biosciences, San Diego, CA, USA), and the
levels were below the detectable range.

2.4. Data Analysis

The assumptions of normality were checked for all variables by inspecting the distribu-
tion visually using histograms and box plots, and through Shapiro-Wilk tests (p > 0.01) [47,48].
To examine whether exercise changed BDNF, IL-6, and BDNF/IL-6 ratio, we used repeated-
measures ANOVA (2 (Groups: MS and control) × 2 (Time: pre- and post-exercise)) or
non-parametric equivalent if assumptions of normality were violated. Effect sizes were
expressed as partial eta squared (η2), where η2 of 0.01 was considered a small effect, 0.06 a
moderate effect, and 0.14 a large effect [49].

Group differences at baseline were examined using independent t-tests for continuous
variables, after checking the homogeneity of variance using Levene’s tests (p < 0.05). If
assumptions of normality and equal variances were not met, independent samples Mann-
Whitney U tests were used to detect the difference between groups. Pearson χ2 test was
used for categorical variables to examine group differences at baseline, whereas if one or
more of the cells had an expected frequency of five or less, Fisher exact test was used. The
relationships between the potential biomarkers (resting and GXT-induced BDNF, IL-6, and
BDNF/IL6 ratio) and the functional measures in MS (comfortable walking speed, fatigue,

and maximal
·

VO2) were analysed using Spearman’s rank correlation coefficient (rs).
The minimum detectable concentrations of BDNF and IL-6 in serum were determined

to be 0.0234 ng·mL−1 and 0.0031 ng·mL−1, respectively. The values below the detection
limit were replaced by half the lowest concentration recorded for the respective analyte
within each group [50–52]. The serum concentrations of potential biomarkers were ex-
pressed as a ratio to characterise the shift in the balance of blood biomarkers before and
after GXT.

3. Results
3.1. Participant Characteristics

A total of 38 individuals were contacted for this study (22 with definite MS, 16 age/sex-
matched controls). Of those, 16 participants were excluded, four subjects with MS who
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did not use walking aids, one subject with MS who did not wish to complete the exercise,
six controls who did not match for age, and five others who were unable to be contacted
after their first telephone call (three MS, two controls). We, therefore, recruited 14 people
with MS and 8 age/sex-matched controls. One control subject dropped out after enrolment.
There were no statistically significant differences between the MS group and controls in
terms of age, sex distribution, and body mass index (Table 1). In the MS group, the total
number of years lived with a confirmed diagnosis of MS ranged from 3 to 31 years old. All
participants but two (1 MS and 1 control subject) passed the PAR-Q [38,39], however, they
were included in the study after the completion of PARmed-X [40].

Table 1. Participant characteristics.

Parameters Characteristic
MS Controls p Values

Mean (SD) Mean (SD)

Demographics

Age (in years) 54.07 (8.46) 50.71 (12.08) 0.585
Sex Females/Males 10/4 4/3 0.513

Body mass index (in kg−1·m−1) 27.74 (7.56) 27.44 (3.76) 1.0
Years since MS diagnosis 16.57 (9.69) NA NA

Ambulatory assistive device used Cane 6 0 NA
2 Canes or Walker 8 0 NA

Type of MS (n) SPMS 11 NA NA
PPMS 3 NA NA

Biomarkers †

BDNF (ng·mL−1) At rest 56.56 (25.12) 57.63 (9.48) 0.967
Post-Pre −0.09 (18.99) −0.43 (14.79) 0.837

IL-6 (ng·mL−1) At rest 0.0015 (0.002) 0.0003 (0.0004) 0.010
Post-Pre 0.0007 (0.0007) 0.0005 (0.0007) 0.384

BDNF/IL-6 ratio At rest 119808.50 (116307.59) 393501.90 (188730.57) 0.004
Post-Pre −70038.97 (95439.75) −7787.75 (278552.43) 1.0

Functional measures

Comfortable walking speed (m·s−1) ‡ 0.32 (0.13) 0.96 (0.26) <0.001
SF-36 (Vitality/Energy/Fatigue) 37.14 (18.16) 87.14 (9.06) <0.001

Maximal
·
VO2 (mL·min−1·kg−1) 16.35 (6.39) 33.04 (8.95) <0.001

Duration of GXT (s) 793.29 (259.84) 1087.71 (207.95) 0.046
Maximal workload (Watts) 99.69 (33.84) 271.43 (127.46) <0.001

Maximal heart rate (beats·min−1) 131.57 (23.16) 168.26 (16.83) 0.002

kg: kilogram; m: meter; NA: not applicable; SPMS: secondary-progressive MS; PPMS: primary-progressive MS; BDNF: brain-derived

neurotrophic factor; ng: nanogram; mL: milli-liter; IL-6: interleukin-6; s: second; SF: short form;
·

VO2: oxygen consumption; min: minute;
GXT: graded exercise test; † Unable to draw blood samples from two MS participants; ‡ One MS participant was not able to walk over
ground more than few steps, and hence, we were unable to measure walking speed.

Participants with progressive MS achieved about 50% lower maximal
·

VO2 (Z = −3.283,
p = 0.0003) (Table 1). The maximal workload achieved by participants with progressive
MS during GXT was about 37% of that achieved by controls (Z = 3.209, p = 0.00049). All
participants reported performing the test to maximal volitional exhaustion, and there was
no significant difference in the rating of perceived exertion measured immediately after
GXT between groups (Z = −0.684, p = 0.585).

Blood samples were collected at rest and again within 7 min (246.89 ± 137.04 s) of
GXT termination. The mean blood collection time after GXT was not significantly different
(Z = −0.517, p = 0.616) between MS (259.08 ± 113.18 s) and controls (222.5 ± 186.0 s). Serum
BDNF levels in both participants with progressive MS and matched controls were within
the detectable ranges. IL-6 was detectable in 60.5% of samples tested (<0.0001 ng·mL−1).
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3.2. Resting and Post-Exercise Serum BDNF

In terms of serum BDNF, there was no significant main effect of group (F(1,17) = 0.007,
p = 0.93, ηp

2 = 0.0004), time (F(1,17) = 0.004, p = 0.95, ηp
2 = 0.0002), or group X time in-

teraction (F(1,17) = 0.002, p = 0.97, ηp
2 = 0.0001), indicating similar serum BDNF levels

before and after GXT in MS and controls (Table 1, Figure 1a,b). Considering MS and
controls together, resting serum BDNF did not correlate with walking speed, fatigue,
and fitness (p values > 0.05) (Figure 2a–c). When considering only the MS group, higher
exercise-induced elevation in serum BDNF was significantly related to faster walking speed
(rs = 0.62, p = 0.043) and lower vitality measured using vitality/energy/fatigue subscale of

SF-36 (rs = −0.58, p = 0.046), but not fitness (maximal
·

VO2, rs = 0.45, p = 0.138, or maximal
heart rate, rs = 0.22, p = 0.484) (Figure 3a–d).

Figure 1. Blood marker responses to graded exercise test. Data presented as individual values.
(a,b): Serum levels of brain-derived neurotrophic factor (BDNF) (ng·mL−1) in MS and controls; (c,d):
serum levels of interleukin-6 (IL-6) (ng·mL−1) in MS and controls; (e,f): BDNF/IL-6 ratios in MS and
controls; p values are from related-samples Wilcoxon signed-rank tests.



Biomolecules 2021, 11, 504 6 of 14

Figure 2. Relationships between biomarkers and functional measures when considering MS and controls together. Data
presented as individual values. (a) Relationship between self-selected walking speed and resting BDNF; (b) relationship

between vitality subscale on short form–36 and resting BDNF; (c) relationship between maximal oxygen consumption (
·
VO2)

during graded exercise test (GXT) and resting BDNF; (d) relationship between self-selected walking speed and resting IL-6;

(e) relationship between vitality subscale on short form–36 and resting IL-6; (f) relationship between maximal
·
VO2 during

GXT and resting IL-6; (g) relationship between self-selected walking speed and resting BDNF/IL-6 ratio; (h) relationship

between vitality subscale on short form–36 and resting BDNF/IL-6 ratio; (i) relationship between maximal
·
VO2 during GXT

and resting BDNF/IL-6 ratio; r and p values are from Spearman’s rank correlation coefficient.
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Figure 3. Relationships between exercise-induced BDNF (in ng·mL−1) and functional measures in participants with MS.
Data presented as individual values. (a) Relationship between self-selected walking speed and exercise-induced BDNF; (b)

relationship between vitality subscale on short form–36 and exercise-induced BDNF; (c) relationship between maximal
·
VO2

during GXT and exercise-induced BDNF; (d) relationship between maximal heart rate during GXT and exercise-induced
BDNF; the r and p values are from Spearman’s rank correlation coefficient.

3.3. Resting and Post-Exercise Serum IL-6

In terms of serum IL-6, there was no significant main effect of group (F(1,17) = 2.45,
p = 0.14, ηp

2 = 0.13) or group X time interaction (F(1,17) = 0.24, p = 0.63, ηp
2 = 0.014);

however, there was a significant main effect of time (F(1,17) = 12.51, p = 0.003, ηp
2 = 0.42).

The participants with MS had significantly higher IL-6 than controls measured at rest
(Z = 2.57, p = 0.01). GXT elicited a significant elevation in serum levels of IL-6 in MS
(Z = 2.83, p = 0.005), but not in controls (Z = 1.36, p = 0.17: Table 1, Figure 1c,d). Higher
resting IL-6 was significantly related to slower walking speed (rs = −0.51; p = 0.03), lower
energy levels (higher fatigue) (rs = −0.48; p = 0.04), and poorer fitness (rs = −0.56; p = 0.01)
(Figure 2d–f). Exercise-induced IL-6 did not correlate with walking speed, fatigue, and

fitness (maximal
·

VO2 and maximal heart rate) (p values > 0.05).

3.4. Resting and Post-Exercise Serum BDNF/IL-6 ratio

There was a significant main effect of group on BDNF/IL-6 ratio (F(1,17) = 13.69,
p = 0.002, ηp

2 = 0.45). BDNF/IL-6 ratio scores were significantly lower in MS before GXT
(p = 0.004), but not after GXT (p = 0.12) when compared to controls. Although there was no
significant main effect of time on BDNF/IL-6 ratio (F(1,17) = 0.81, p = 0.38, ηp

2 = 0.045), one
bout of GXT resulted in a significant decrease in BDNF/IL-6 ratio in MS (p = 0.01), but not
in controls (p = 0.74, Table 1, Figure 1e,f). Additionally, there was no significant interaction
between time and group in terms of BDNF/IL-6 ratio (F(1,17) = 0.52, p = 0.48, ηp

2 = 0.03).
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Lastly, higher resting BDNF/IL-6 ratio was significantly related to faster walking speed
(rs = 0.57; p = 0.013), higher energy levels (lower fatigue) (rs = 0.55; p = 0.015), and higher
fitness (rs = 0.57; p = 0.011) (Figure 2g–i). Exercise-induced changes in BDNF/IL-6 ratio did

not correlate with walking speed, fatigue, or fitness (maximal
·

VO2 and maximal heart rate)
(p values >0.05).

4. Discussion

Recent research supports that exercise could provide neuroprotection in MS by in-
teracting with the neuro-immune axis [53–55]. Therefore, the main aim of this study was
to compare serum levels of BDNF, IL-6, and their ratio, at rest and after GXT between
people with progressive MS and matched controls and determine relationships to walking
speed, fatigue, and aerobic fitness. We report four main findings. Firstly, people with
progressive MS were severely deconditioned, with fitness levels well below that required
to comfortably carry out everyday activities [56,57] (Table 1). Secondly, other than IL-6
which was higher in MS subjects and was further increased with exercise, there were no
differences in resting and exercise-induced levels of BDNF, IL-6, and BDNF/IL-6 ratio
between groups. Thirdly, considering MS and controls together, we found that higher
resting BDNF/IL-6 ratio was significantly related to faster walking speed, lower fatigue,
and higher fitness. Lastly, in participants with MS, greater exercise-induced levels of serum
BDNF were associated with faster walking speed and higher fatigue.

4.1. Aerobic Fitness, Disability, and Expression of Neurotrophins

In our study, all participants performed GXT on a total body recumbent stepper until
maximal voluntary exhaustion was achieved (100% of their capacity); yet, we did not detect
statistically significant increases in serum BDNF levels. Despite reporting comparable
levels of exhaustion at the end of GXT, participants with MS achieved significantly lower
maximal workload and peak heart rate. Previous research supports that the release of
BDNF in the blood is proportional to the intensity of the exercise [58,59]. It is likely that our
MS participants, having extremely low levels of fitness, had blunted capacity to upregulate
BDNF. In people with MS with minimal disability (EDSS 2.3 ± 0.2), Gold et al. [13] reported
a significant increase in serum BDNF (approximately 1.4 times more) after cycling at a

moderate intensity (60% of maximal
·

VO2) for 30 min. Similarly, Briken et al. [11] reported
1.2 times increase in BDNF in a group of people living with progressive MS with moderate
disability (EDSS 4.9 ± 0.8) after 10–20 min of exercise during standardised maximal bicycle
ergometer test achieving a peak workload of 97.5 watts. Although our participants with
progressive MS achieved 99.7 watts after 7–22 min of exercise on the recumbent stepper,
they had, on average, a 0.2% decrease in BDNF after exercise. Lack of BDNF responsiveness
to exercise could be related to the fact that our participants had more severe disability
(EDSS 6.0–6.5) and lower levels of fitness than that previously reported; they also had 15%

lower maximal
·

VO2 than subjects recruited by Briken et al. (1490.18 mL vs. 1260.9 mL) [11].
However, it is important to note that there were also no increases in serum BDNF in
age/sex-matched control subjects who exercised (37.1%) longer than MS participants
during GXT, suggesting that the stimulus (GXT) was of insufficient duration (60.4% of
Gold et al. [13]) to upregulate BDNF in serum.

4.2. Skeletal Muscle and Serum BDNF Induction

Although the brain contributes to almost 75% of the circulating BDNF [58], skeletal
muscle is increasingly being recognised as a secretory organ and an important source of
BDNF [60,61]. BDNF, in turn, is thought to be transported across the blood-brain barrier to
influence brain plasticity [62]. Although we did not measure muscle integrity, our findings
support the notion that the ability to upregulate serum BDNF may be related to skeletal
muscle. We report that exercise-induced BDNF levels were related to walking speed which
is determined by the leg muscle’s ability to propel the body forward [63–69]. Similarly,
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among healthy adults who had high fat-free (skeletal muscle) mass, there was greater
release and faster recovery of serum BDNF after GXT [70]. Our cohort’s average walking
speed was 0.32 m·s−1; about one-third of typical gait speed [63] and half that reported
among people with MS who walked using a cane [71]. This suggests that, in the slowest
walkers (<0.3 m·s−1), their muscles were unable to release BDNF. Our findings point to
the importance of targeting deconditioning and muscle weakness among people with
progressive MS to improve walking and potentially enhance exercise-induced BDNF which
could have important benefits on brain health [5].

4.3. Factors Influencing Cytokine Responses in MS

We showed that both resting- and exercise-induced levels of IL-6 were greater in
MS subjects than in controls. Research suggests that the two measures, resting levels of
IL-6 and exercise-induced levels of IL-6, are indicative of entirely different processes. For
instance, at rest, B cells derived from people with MS secrete higher than typical levels of
IL-6 which appears to contribute to inflammatory-mediated pathogenesis [72]. However,
exercise-induced IL-6 may be beneficial. In healthy volunteers, IL-6 released from skeletal
muscle with exercise is purported to downregulate TNF, an important mediator of inflam-
mation [73]. Exercise-induced IL-6 is essential for maintaining homeostasis [74]; mediating
some of the systemic benefits of exercise [75,76]. For example, in a study examining the
acute effects of exercise on IL-6 and macrophages in obese mice, exercise-induced increases
in IL-6 were associated with the weakening of M1 phenotype (less inflammatory) in adipose
tissue macrophages [77]. Briken et al. [11] reported that following nine weeks of endurance
training, people with progressive MS experienced greater elevation (36.2%) in serum IL-6
levels after GXT compared to a wait-list control group (10.3% increase) (p = 0.06). In our
untrained study group, participants with progressive MS had a 40% increase in serum IL-6
levels after GXT. Taken together, exercise-induced IL-6 seems to have some biological plau-
sibility as a potential rehabilitation biomarker. On the other hand, previous research has
shown that serum cytokines in humans are influenced by many lifestyle and behavioural
factors, including stress [78], gut microbiome [79], diet [80,81], sleep quality [82,83], diurnal
variation [84–86], smoking [87], alcohol [88], etc. Despite the variability in IL-6, it appeared
that both resting- and exercise-induced levels were responsive to perturbation. Future
research should examine whether these levels change longitudinally and whether they
align with progression or improvement in MS symptoms.

4.4. Pattern of Serum BDNF/IL-6 Ratio

We found that a higher BDNF/IL-6 ratio was associated with faster walking speed,
lower fatigue, and higher fitness when considering MS and controls together. We propose
that the pattern of resting serum levels of BDNF and IL-6 represent the effort of the immune
system to induce repair and restore normalcy. Findings from previous research showed
that an imbalance between pro- and anti-inflammatory cytokines demonstrated through a
higher ratio of TNF-α/IL-10 and IL-6/IL-10 in the brain of animals exposed to chronic mild
stress, may contribute to mood disorders [89]. A study examining 66 patients undergoing
hematopoietic stem cell transplantation showed that those with depression had a higher
ratio of IL-6/IL-10 than controls [90]. More studies are needed to investigate the role of
the ‘inflammation to repair balance’ in individuals who are living with neuroinflammatory
conditions such as MS.

5. Limitations

Our study has several limitations that must be acknowledged. Firstly, we did not
collect information about diet or physical activity patterns to examine whether these

factors influenced the measurement of blood biomarkers and
·

VO2. Secondly, there was
substantial variability in resting and exercise-induced levels of BDNF and IL-6. Some
of this variability could be related to the fact that the exercise stimulus was of different
intensities and durations depending on the person’s level of fitness. We also had a small
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number of controls. Even though all persons with MS were matched, future research
should increase sample sizes in order to account for this variability. Furthermore, we
noted an inverse relationship between exercise-induced BDNF and vitality in MS. This
counterintuitive finding suggests that future research should examine these blood levels
acutely after a standardised exercise session and then longitudinally as a result of long-term
training. Lastly, IL-6 is a pleiotropic cytokine that takes part in a wide range of biological
activities including inflammation, immune regulation, metabolism, hematopoiesis, and
oncogenesis [91]. Considering the fact that IL-6 can take part in multiple, potentially
overlapping signaling mechanisms, the interpretation of data related to IL-6 from our study
must be limited to the specific context of this research.

6. Conclusions

People with progressive MS using walking aids achieved about 50% lower
·

VO2max
than controls. At rest, there were no significant differences in BDNF between MS and
controls, however, IL-6 was significantly higher in MS. In the MS group, greater ability to
upregulate BDNF during maximal exercise was strongly associated with faster walking

speed and higher fatigue. Higher
·

VO2max was strongly associated with a shift in BDNF/IL-
6 ratio from inflammation to repair when considering both groups together. We present
evidence that fitness and exercise indicate a shift in the balance of blood biomarkers
towards a repair phenotype even among people who have accumulated significant MS-
related disability. How exercise-induced BDNF may influence the neuro-immune axis and
interact with the blood-brain barrier is an important area of future research.
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