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Abstract: For any molecule, network, or process of interest, keeping up with new publications on
these is becoming increasingly difficult. For many cellular processes, the amount molecules and their
interactions that need to be considered can be very large. Automated mining of publications can
support large-scale molecular interaction maps and database curation. Text mining and Natural-
Language-Processing (NLP)-based techniques are finding their applications in mining the biological
literature, handling problems such as Named Entity Recognition (NER) and Relationship Extraction
(RE). Both rule-based and Machine-Learning (ML)-based NLP approaches have been popular in this
context, with multiple research and review articles examining the scope of such models in Biological
Literature Mining (BLM). In this review article, we explore self-attention-based models, a special type
of Neural-Network (NN)-based architecture that has recently revitalized the field of NLP, applied to
biological texts. We cover self-attention models operating either at the sentence level or an abstract
level, in the context of molecular interaction extraction, published from 2019 onwards. We conducted
a comparative study of the models in terms of their architecture. Moreover, we also discuss some
limitations in the field of BLM that identifies opportunities for the extraction of molecular interactions
from biological text.

Keywords: text mining; self-attention models; biological literature mining; relationship extraction;
natural language processing

1. Why Text Mining?

Text mining techniques used for extracting information from text have been popularly
used since 1992. Famous applications of text mining include IBM’s Watson program,
which performed spectacularly when competing against humans on the nightly game
show Jeopardy [1]. Such techniques have played a significant role over the years in
extracting and organizing information from biological texts. For example, the popular
STRING database [2] uses automated text mining of the scientific literature to integrate all
known and predicted associations among proteins, including both physical interactions
and functional associations [2].

Biological systems are complex in nature. Years of research have produced a large vol-
ume of publications on the key molecular players involved in numerous cellular processes,
disease phenotypes, and diseases. For example, a PubMed search for the molecule “p53”
produces more than a hundred thousand hits; a PubMed search for the disease “colorectal
cancer” produces more than two-hundred thousand hits. For cell-level and tissue-level pro-
cesses such as “apoptosis” and “metastasis”, there are more than four-hundred thousand
hits.

In the five-year span of 2016–2020, the average number of PubMed article hits per year
for “p53”, “colorectal cancer”, “apoptosis”, and “metastasis” were 4974, 13,548, 29,812, and
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22,305, respectively. One obvious application for text mining is the search for information
from the literature, as part of research projects. Since there are various databases and
disease map projects that map out molecular interactions relevant to chosen diseases,
the maintenance of such repositories requires substantial effort. A motivation for text
mining is then also to assist the updating of data in repositories with new information from
publications.

Modeling biological systems can have diverse motivations: investigating molecu-
lar interactions and their nature to understand regulatory mechanisms, investigating
associations among molecules and diseases or broader disease phenotypes, investigating
the consequences of genetic mutations and perturbations to cellular processes. Clearly,
molecules such as genes, proteins, and drugs play a crucial role in such investigations.
Rather than attempting to describe complex biological processes as a function of a handful
of molecules, systems biologists increasingly appreciate the complexity of these systems,
trying to visualize these processes as functions achieved through interactions among nu-
merous molecular entities. These molecular entities (genes, proteins, or drugs) interact
in harmony inside biological systems for each phenotype to be realized, be it a cellular
process (e.g., cell signaling, metabolism, apoptosis), a disease phenotype (e.g., acute in-
flammation, metastasis), or even a disease (e.g., cancer, gaucher disease). However, a
comprehensive systemic understanding requires extracting and integrating knowledge
acquired from existing and new publications. In many cases, this results in large-scale
models that require much manual effort from the modelers, who laboriously hand-pick
knowledge from hundreds of publications [3].

Text mining and Natural-Language-Processing (NLP)-based techniques are finding
their applications in reducing the efforts of biologists to mine the biological literature for
tasks such as the creation of large-scale models and keeping databases updated. This recent
field of research focused on automatic knowledge extraction and mining from biomedical
literature is known as Biomedical Literature Mining (BLM). In this review article, we
focus on recent developments in BLM for the extraction of molecular interactions from
biological texts.

BLM consists of several types of tasks, combinations of which can be realized as
complex workflows to achieve the goal of knowledge extraction. An elementary task, for
instance, is Named Entity Recognition (NER), which aims to identify biomedical concepts
from given text corpora. State-of-the-art models can perform this task with high accuracy.
This upstream task is usually followed by Relationship Extraction (RE). Approaches for
the RE task can be broadly categorized as rule-based approaches and Machine Learning
(ML) approaches. Rule-based approaches depend on predefined rules based on inherent
textual patterns in biomedical texts. The success of such approaches depends on the
quality of the designed rules. In ML approaches, RE is usually posed as a classification
problem. However, the design of the classification problem can vary with the motivation
of the modeler. For example, there can be a binary classification problem that aims to
model merely whether there exists an interacting pair of proteins in a document. More
complicated multiclass classification problems investigate the nature of interactions among
entities [4]. A general workflow for BLM is provided in Figure 1.

ML-based approaches that are used for RE have several broad categorizations such as
feature-based approaches, kernel-based approaches, and neural-network-based approaches.
Feature-based approaches involve the extraction of expert annotated lexical and syntactic
features and use the same for modeling. Kernel-based approaches aim to map syntactic
trees to higher-dimensional feature spaces by the proper choice of kernels. Neural-Network
(NN)-based approaches can learn latent feature representations from labeled data. Neural
network architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRUs)
have been widely explored in this domain. Recent advances in the field of NLP are due
to the introduction of a new class, known as self-attention-based models. These models
account for long-range dependencies in text data and can learn contextual associations
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in text data better than previous neural-network-based models [5]. Using transformer
architectures as the basis, several context-specific pretrained models such as BERT and
BioBERT have been built, aimed at facilitating learning from biomedical texts [4,6,7].

Text Corpora
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• Results
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Public Databases
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Structured Data
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• Sentence word sequence 

generation
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Data Wrangling Training and Testing Implementation

Literature Mining

Named Entity Recognition

Relationship Extraction

Relationship 
Classification

Database Curation

Large Scale MIMs

Machine Learning
Classical

Support Vector Machine
Bayesian Models

Decision Trees
Neural Networks

CNN
RNN
LSTM
GRU

Attention models
Transformers

BERT
BioBERT

A collection of text
extracted from different
sources such as articles,
databases and pdfs.

Generally involves pre-
processing steps that are
required enables machine
interpretation.

Several methods are
available ranging from
rule-based algorithms to
deep learning methods.

Different tasks that are
performed for a variety of
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Figure 1. Workflow for Biological Literature Mining (BLM). Starting with a collection of texts from different sources to
processing them into structured data for modeling. Choosing from a plethora of NLP models such as BioBERT to perform
BLM tasks such as NER and RE to extract information from the text.

Rule-based text mining approaches have been reviewed comprehensively by Zhao et al. [4].
Several deep-learning-based approaches were covered by Zhang et al. [6], covering publi-
cations until 2019. Self-attention-based models entered the stage around 2017; pretrained
networks for the extraction of molecular interactions at an abstract or sentence level, from
biomedical texts, such as BERT and BioBERT, were published after 2018. In this review, we
therefore focus on self-attention-based models, both novel architectures and pretrained
networks, published from 2019 onwards. For mining recent works on self-attention-
based models, we searched for published articles and preprints that were publicly avail-
able. We searched for well-known databases for publications such as https://arxiv.org/
arXiv, https://www.biorxiv.org bioRxiv, https://pubmed.ncbi.nlm.nih.gov/ PubMed,
https://www.semanticscholar.org/ Semantic Scholar, etc. In addition to these, we also
searched for publication databases on recent issues of several related journals and confer-
ences. We only surveyed research articles that involved a self-attention mechanism for
biological literature mining. We first give a brief description of the philosophy behind
self-attention. Next, we discuss the architectural aspects and compare the performances of
some recent models proposed in the context of BLM. Finally, we discuss the pros and cons
of using such models in the context of BLM before concluding our article.

Note that, given that there are many abbreviations for the terminologies relevant to
this article, we provide some important abbreviations in Table 1, for the convenience of the
readers.

https://arxiv.org/
https://www.biorxiv.org 
https://pubmed.ncbi.nlm.nih.gov/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
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Table 1. Key abbreviations for text mining. Rows with text mining problem names are marked in blue; model names are
marked in red; biological interaction database names are marked in green.

Abbreviation Full Name Description

BLM Biological Literature Mining Mining information from biological literature/publications

NLP Natural Language Processing Ability of a computer program to understand human language

RE Relationship Extraction Extracting related entities and the relationship type from
biological texts

NER Named Entity Recognition NLP-based approaches to identify context-specific entity names
from text

CNN Convolutional Neural Network A type of neural network popularly used in computer vision

RNN Recurrent Neural Network One of the neural network models designed to handle sequential data

LSTM Long Short-Term Memory A successor of RNN useful for handling sequential data

GRUs Gated Recurrent Units A successor of RNN useful for handling sequential data

BERT Bidirectional Encoder
Representations from Transformer A pretrained neural network popularly used for NLP tasks

KAN Knowledge-aware Attention Network A self-attention-based network for RE problems

PPI Protein–Protein Interaction Interactions among proteins, a popular problem in RE

DDI Drug–Drug Interaction Interactions among drugs, a popular problem in RE

ChemProt Chemical–Protein Interaction Interactions among chemicals and proteins, a popular problem in RE

2. Evolution of Deep Learning Models for NLP

Sequence-to-sequence models typically receive a sequence as the input and generate a
sequence as the output. Input and output sequences can be numerical, time-dependent
data, or string data. The Recurrent Neural Network (RNN) is a deep-learning-based model
designed for learning from sequence data. At every learning step, RNNs take elements of a
sequence as the input, generate an output for that time step, and update a hidden state that
can be associated with the “memory” of the network. For text-based data, RNNs once used
to be the state-of-the-art models. However, RNNs proved to be less effective to learn from
longer sequences, that is to create associations among elements of long sequences. This
means that if there is a long sequence of text (a long sentence) and there is an association
between two words, one located at the beginning of the sentence and the other towards
the end, RNNs are unlikely to capture that information. LSTMs and GRUs were designed
to mitigate this “memory” problem. The extremely popular LSTM model, for example,
is designed to retain or forget information that is stored in the hidden state sequentially.
Transformers, in contrast to the previous models, receive the whole sequence as the input
rather than taking elements of a sequence sequentially as inputs. To allow the model to
recognize the sequential nature of the data, it employs the concept of positional encoding.
The attention mechanism is then used to learn associations among elements of the sequence,
which in turn are used to make decisions. Taking the entire sequence as the input helps this
model learn relatively long-range associations among elements of a long sequence, which
makes it apt for text data and thus applicable to NLP. Since the introduction of the attention
model by Bahdanau et al. for machine translation in 2015, it has found applications in
a wide range of NN-based architectures [8], while it received more recognition after the
introduction of transformer models in 2017 [5]. However, apart from NLP, the attention
mechanism has been applied in computer vision, time series analysis, and reinforcement
learning [9–11]. In the NLP domain, attention models have helped improve machine
translation, question-answering problems, text classification, representation learning, and
sentiment analysis [12–16]. In what follows, we discuss some interesting aspects of the
self-attention-based models. We briefly visualize the evolution of sequence-to-sequence
models in Figure 2.



Biomolecules 2021, 11, 1591 5 of 18

RNN LSTM/GRU Self Attention Pre-trained

Designed for learning
from sequential data.

Obtains the sequence
entities sequentially as
input.

Uses several gates to
either retain or forget
the information during
the learning.

Uses positional encoding
and the self-attention
mechanism.

Examples: BERT, BioBERT

Obtains the sequence
entities sequentially as
input.

Obtains entire sequence
as input.

Uses the principle of
self-attention.

Early effective deep
learning sequence to
sequence model.

Can learn long range
associations in input text
better than RNN.

Further improves lear-
ning long range associ-
ations in input text.

Can be optimized to
domain-specific tasks.

Cannot learn long range
associations in input text
well.

Relatively ineffective for
longer input sequence.

Attention matrix can be
too large for very long
sequences increasing
computational cost.

Computationally most
expensive among all the
discussed models.

Figure 2. The evolution of sequence-to-sequence models for relationship extraction. Some pros and cons of the models are
marked in green and red, respectively.

2.1. Self-Attention and Its Advantages

A typical sequence-to-sequence model consists of an encoder–decoder architecture [17].
The traditional encoder–decoder framework used in RNN, LSTM, or GRU has two main
limitations, as mentioned in Chaudhari et al. [18]:

• The encoder compresses all input information into a vector of fixed length, which is
passed to the decoder, causing significant information loss [18];

• Such models are unable to model the alignment between input and output vectors.
“Intuitively, in sequence-to-sequence tasks, each output token is expected to be more
influenced by some specific parts of the input sequence. However, decoder lacks any
mechanism to selectively focus on relevant input tokens while generating each output
token” [18].

The attention model tackles this issue by enabling the decoder to access the whole
encoded sequence. The attention mechanism assigns attention weights over the input
sequence, which captures the importance of each token in a sequence and prioritizes them
for generating output tokens at each step.

The concept of self-attention came into prominence after the introduction of the trans-
former model. “Intra-attention, also known as self-attention, is an attention mechanism
relating different positions of a single sequence to compute a representation of the se-
quence” [5]. Vaswani et al. demonstrated that the transformer architecture has a shorter
training time and higher accuracy for machine translation without any recurrent compo-
nent [5]. Transformers have become a state-of-the-art approach for NLP tasks, and they
have been adopted for a variety of NLP problems such as the Generative Pretraining
Transformer (GPT, GPT-2) for language modeling, the universal transformer for ques-
tion answering, and Bidirectional Encoder Representations from Transformer (BERT) for
language representation [15,19,20]. The transformer model has two key aspects:

1. Positional encoding: Given an input sentence in a transformer model, the model
first creates a vectorized representation of the sentence S, such that each word in
the sentence is represented by a vector of a user-defined dimension. The vectorized
version of the sentence S is then integrated with positional encoding. Recall that,
unlike sequence-to-sequence models such as RNNs and LSTMs, which would feed the
sequence elements (words in a sentence) as the input sequentially, self-attention-based
models feed the entire sequence (sentence) as the input at a time. This requires a mech-
anism that can account for the sequential structure of the input sequence/sentence.
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This is achieved through positional encoding. The formal expression for positional
encoding is given by a pair of equations:

P(pos,2i) = sin

(
pos

10000
2i
d

)
(1)

P(pos,2i+1) = cos

(
pos

10000
2i
d

)
(2)

In Equations (1) and (2), the expression pos is used to denote the position of a
word in a sentence and d denotes the dimension of user-defined dimensions for
the word embeddings, that is each word is essentially perceived by the model as a d-
dimensional vector. The index i runs over the dimensions of these word embeddings
and take values in the range [1, d]. Note that Equations (1) and (2) propose two
different functions over the vector, depending on whether one is calculating an odd
index or even index of the word-embedding vector. The dependence of the positional
encoding functions on 2i

d , given that these functions are periodic functions by design,
ensures that several frequencies are captured over several dimensions of the word-
embedding vectors. “The wavelengths form a geometric progression from 2π to
10,000 · 2π” [5]. Intuitively, proximal words in a sentence are likely to have a similar
P value in a lower frequency, but can still be differentiated in the higher frequencies.
For far apart words in a sentence, the case is just the opposite. Equations (1) and (2)
also ensure the robustness and uniformity of the positional encoding function P, over
all sentences, independent of their length [5];

2. The self-attention mechanism: Once the positional encoding is integrated with the
word embedding of an input sentence S, the resultant vector W is fed into the mech-
anism of self-attention. There is a popular analogy used by many data scientists to
explain the concepts of Query (Q), Key (K), and Value (V), which are central to the
idea of self-attention. When we search for a particular video on YouTube, we submit
a query to the search engine, which then maps our query to a set of keys (video title
and descriptions), associated with existing videos in the database. The algorithm then
presents to us the best possible values as the search result we see. For a self-attention
mechanism [5],

K = Q = V = W (3)

A dot product between Q and K in the form Q · KT can measure the attention between
pairwise words in a sentence, to generate attention weights. The attention weights
are used to generate a weighted mean over the word vectors in V, to obtain relevant
information from the input as per the given task. As these vectors are learned through
the training procedure of the model, the framework can help the model retrieve
relevant information from an input, for a given task. The equation governing the
process is given by [5]:

A(K, Q, V) = softmax

(
K ·QT
√

d

)
V (4)

In practice, however, a multiheaded attention mechanism is used. The idea of mul-
tiple heads is again often compared to the use of different filters in CNNs, where
each filter learns latent features from the input. Similarly, in multiheaded attention,
different heads learn different latent features from the input. The information from all
heads is later integrated by a concatenation operation. To account for multiple heads,
Equation (3) is violated of course, and the dimension of the positionally encoded
word vector W is distributed over the multiple heads. Equation (4) is also adjusted

accordingly by replacing the denominator of K·QT
√

d
by dk, where dk is the dimension of
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the keys considering multiple heads. Several other concepts such as layer normaliza-
tion and masking are also used in transformer models, which we will not discuss in
detail here. A representation of the transformer architecture and attention map over a
sentence is provided in Figure 3 [5].

Input 
Embedding

Output 
Embedding

Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm

Multi-Head 
Attention

Add & Norm

Multi-Head 
Attention

Add & Norm

Feed Forward

Add & Norm

Linear

Softmax

Positional 
Encoding

Positional 
Encoding

Nx

xN

Inputs Outputs
(shifted right)

Output 
Probabilities

K Q V

K Q V K Q V

Figure 3. Left: A schematic of the transformer model architecture with attention-based encoder–decoder architecture. The
encoder’s output is passed into the decoder to be used as the key and query for the second attention layer. The symbol
N× next to the transformer blocks in the encoder and the decoder represents N layers of the transformer block. Right: An
example heat map of the attention mechanism. The heat map shows pairwise attention weights between pieces of strings in
a sentence for a trained model. A hotter hue for a block in the heat map corresponds to higher attention between the string
in the row and the string in the column, respective to the block.

2.2. Pretrained Models

Pretraining models has been in existence for a long time. The idea behind pretrained
language models is to create a black box that can understand a language and can be
used for specific tasks in that language. These language models are usually pretrained
on very large datasets to generate embeddings, which are used in various NLP models.
These learned word embeddings are generalized and do not represent any task-specific
information. Hence, to utilize them properly, they are fine-tuned on task-specific datasets.
Using these pretrained language representations can help decrease the model size and
achieve state-of-the-art performance.

BERT was introduced in 2019 by Devlin et al., which is a bidirectional pretrained
transformer network, trained on unlabeled texts. BERT aims to generate a language
representation by utilizing the encoder network of the transformer model. BERT can be
used in a variety of NLP tasks such as question-answering, text classification, language
inference, sentiment analysis, etc. The pretrained BERT model can be fine-tuned with one
additional output layer to create NLP models without requiring task-specific architecture
engineering [15].
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The BERT’s authors presented two BERT models, BERTBASE and BERTLARGE. BERTBASE
consists of 12 transformer blocks, 12 self-attention heads, hidden units of size 768, and a
total of 110M trainable parameters, whereas BERTLARGE has 24 transformer blocks, 24 self-
attention heads, with a hidden unit size of 1024 and a total of 340M parameters. BERT
can take as the input both a single sentence and a pair of sentences as one token sequence,
allowing it to handle a variety of NLP tasks. The first token of every sequence is a clas-
sification token ([CLS]). To separate sentence pairs, a token ([SEP]) is used. Moreover, a
learned embedding is added to every token, indicating that it belongs to a sentence. The
input representation is obtained by adding token embeddings, sentence embeddings, and
positional embeddings.

Devlin et al. used two pretraining strategies for BERT: the first is the Masked Language
Model (MLM), and the second is Next Sentence Prediction (NSP). The masked language
model randomly chooses 15% of the input tokens and masks them by replacing the chosen
tokens with the [MASK] token. These masked tokens are then predicted by BERT based on
the context of other nonmasked tokens. The MLM task enables bidirectional transformer
pretraining, which allows the model to learn the context of a word based on both its left
and right surrounding words [15]. In the next sentence prediction task, the model receives
pairs of sentences as an input and predicts whether the first sentence is followed by the
second sentence. When choosing sentences A and B for the NSP pretraining task, 50% of
the pretraining examples are chosen such that A is followed by B and labeled as IsNext.
The other 50% of pretraining examples are chosen such that A is not followed by B and
labeled as NotNext. For the pretraining corpus, the authors used BooksCorpus having
0.8 B words and text passages of English Wikipedia having 2.5 B words [21]. WordPiece
embedding was used to create a vocabulary of 30,000 words [22]. BERT obtained state-of-
the-art performance on eleven NLP tasks including the General Language Understanding
Evaluation (GLUE) benchmark, the Stanford Question Answering Dataset (SQUAD), and
the Situations With Adversarial Generations (SWAG) dataset [23–25].

Since BERT’s release, several BERT-based models have been released for domain-
specific tasks, for example ALBERT, BERTweet, CamenBERT, RoBERTa, SciBERT, and
BioBERT. BioBERT, presented by Lee and Yoon et al., is a pretrained language model
for biomedical text mining [26–31]. During pretraining, BioBERT was initialized with
weights from BERT and then trained on biomedical domain corpora. The biomedical
corpora consisted of PubMed abstracts having 4.5B words and PMC full articles having
13.5B words. To ensure BERT’s compatibility with BioBERT, the original vocabulary of
BERT was used. WordPiece tokenization was applied for words that were not present in
BERT’s vocabulary (for example, immunoglobulin was tokenized as I ##mm ##uno ##g ##lo
##bul ##in) [22]. BioBERT outperformed BERT and other state-of-the-art models in three
biomedical NLP tasks: NER, RE, and QA. BioBERT achieved state-of-the-art performance,
requiring only minimal architectural modification. Since its introduction, BioBERT has
been used in various NLP tasks [30].

3. Applications of Self-Attention-Based Models in BLM
3.1. Commonly Used Datasets

Interactions among genes, proteins, chemicals, and drugs is a well-explored field.
These types of studies have been one of the cornerstones of systems biology, as they help
visualize complex biological processes at a higher level of complexity. As a result, there are
quite a few well-maintained and organized databases in these directions. As we observed
in our review, the most popular ones used for self-attention-based models are the BioGRID,
IntAct, DrugBank, and ChemProt datasets. In addition, many other PPI-based databases
such as STRING, MINT, BIND, TRRUST, and AIR are publicly available [32–37]. These
databases contain annotations for numerous proteins and interactions. Interestingly, how-
ever, these datasets are all annotated differently. For example, for the BioGRID database,
there are fifteen types of annotated interactions: direct interaction, synthetic lethality, phys-
ical association, association, colocalization, dosage lethality, dosage rescue, phenotypic
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enhancement, phenotypic suppression, synthetic growth defect, synthetic rescue, dosage
growth defect, negative genetic interaction, synthetic haploinsufficiency, and positive ge-
netic interaction [32]. In contrast, for datasets such as TRRUST or AIR, there are only three
types of mentioned interactions: activation (positive), repression (negative), and unknown
(undefined). Some works also prefer to curate customized datasets for their studies [3,38].
Elangovan et al. considered the IntAct database as the basis of their training data creation.
Their annotation was based on chemical characterizations of the interactions [33,39]. They
designed their study as a classification problem on eight classes: acetylation, methylation,
demethylation, phosphorylation, dephosphorylation, ubiquitination deubiquitination, and
negative. Su et al. and Giles et al., on the other hand, used two and five types of anno-
tations respectively for PPIs. Moreover, as Giles et al. explored in their study, even for
human-annotated data, ambiguities persist [40].

3.2. Architectural Comparison of Some Recent Attention-Based Models

A summary of all discussed models is provided in Table 2. We now discuss the
architectural aspects of the models in detail.

Table 2. Table summarizing several aspects of the compared studies. Several publications investigated different variants of
the proposed models. We present the performance of only the best models among them.

Work Datasets Model Tasks Performed Performance

Elangovan et al.
(2020) [39]

Processed version of
the IntAct dataset with

seven types of
interactions

Ensemble of fine-tuned
BioBERT models; no
external knowledge

used

Typed and untyped RE
with relationship types

such as
phosphorylation,
acetylation, etc.

Typed PPI: 0.540;
untyped PPI: 0.717;

metric: F1 score

Giles et al. (2020) [40] Manually curated from
the MEDLINE database

Fine-tuned BioBERT
model; used STRING
database knowledge

during dataset curation

Classification problem
with classes

coincidental mention,
positive, negative,

incorrect entity
recognition, and

unclear

Curated data and
BioBERT: 0.889; metric:

F1 score

Su et al. (2020) [41]

Processed versions of
the BioGRID,

DrugBank, and IntAct
datasets

Fine-tuned the BERT
model integrated with

LSTM and additive
attention; no external

knowledge used

Classification tasks on
PPI (binary), DDI
(multiclass), and

ChemProt (multiclass)

PPI: 0.828; DDI: 0.807;
ChemProt: 0.768;
metric: F1 score

Su et al. (2021) [42]

Processed versions of
the BioGRID,

DrugBank, and IntAct
datasets

Contrastive learning
model; no external
knowledge used in

dataset curation or as a
part of the model

Classification tasks on
PPI (binary), DDI
(multiclass), and

ChemProt (multiclass)

PPI: 0.827; DDI: 0.829;
ChemProt: 0.787;
metric: F1 score

Wang et al. (2020) [43]
Processed versions of
the BioCreative VI PPI

dataset

A multitasking
architecture based on

BERT, BioBERT,
BiLSTM, and text CNN;
no external knowledge

used

Document triage
classification, NER

(auxiliary tasks), and
PPI RE (main task).

NER task: 0.936, PPI RE
(exact match

evaluation): 0.431;
metric: F1 score

Zhou et al. (2019) [44]
Processed versions of
the BioCreative VI PPI

dataset

KAN; TransE used to
integrate prior

knowledge from the
BioGRID and IntAct
datasets on triplets to

the model

PPI-RE classification
task from BioCreative

VI

PPI RE (exact match
evaluation): 0.382 PPI

RE: (HomoloGene
evaluation): 0.404;
metric: F1 score
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Elangovan et al. (2020) [39]: The motivation of the work by Elangovan et al. lied in
the fact that in popular PPI databases such as IntAct, despite containing a large amount
of information on PPIs, only 4% of these interactions are functionally annotated. The
functional annotations of two interacting proteins can however be found in relevant
publications. Given relevant text data (e.g., abstracts of publications), Elangovan et al.
focused on extracting functional annotations of interacting proteins [39].

For this particular work, the authors selected PPIs from the IntAct dataset having seven
types of functional annotations, namely: phosphorylation, dephosphorylation, methylation,
demethylation, ubiquitination, deubiquitination, and acetylation. The task addressed in
the article was, therefore, to determine the type of PPIs, rather than solely to determine
whether two proteins interact. PPIs for which the type of interaction is explicitly mentioned
in the abstract of a relevant article were termed as typed interactions [39].

Assuming that the type of the interaction of a PPI can appear anywhere in the abstract,
possibly across multiple sentences, the authors used an abstract-level annotation of the
PPIs. Due to this coarse-grained annotation method, where the data are labeled as per
the co-existence of the PPI and the interaction type word in an abstract and not by precise
causation between the two entities, the model was described by the authors as a “weakly
supervised” one [39].

The authors were also careful to state their assumption that the annotated PPI be
described in the abstract of the article, although in practice, this information may prevail
in any part of the text. It was further assumed that if, for an annotated PPI in the IntAct
database, the type of interaction does not appear in the abstract, then it is annotated some-
where in the full text. Such data instances motivated the authors to define negative samples
in the training data. Given a protein pair (p1, p2), if there is no associated interaction word
in the abstract against the IntAct annotation(s) of the pair, then the protein pair and the
IntAct annotation form a negative sample. Note that this implies that a negative sample
does not necessarily mean that the protein pair does not interact with each other, but merely
that the abstract of the relevant article does not mention this interaction. This rather strong
assumption also makes the data noisy, as mentioned by the authors. This, on the other
hand, implies that untyped interactions, or interactions whose type is not known, would also
be a subset of the negative samples [39].

The model used by the authors for this paper was a fine-tuned version of the BioBERT
model. The fine-tuning process enabled BioBERT to adapt to the typed PPI classification
task. The authors referred to this model as PPI-BioBERT in the article. To further improve
the probability estimate of each prediction, the authors used an ensemble of 10 PPI-BioBERT
models for decision-making [39].

Giles et al. (2020) [40]: While conventional string matching is used to search for
co-occurrences of entities (gene or protein names) in a sentence, this results in the inclusion
of large amounts of noise in the results. For instance, as the authors of this particular
research work pointed out, in the case of the PPI detection problem, about 75% of the
sentences containing co-occurring names of possibly interacting proteins do not describe
any causal relationship among them. With this motivation, the authors investigated the
possibility of using fine-tuned BioBERT to analyze these co-occurrences and thereby to
accurately determine the functional association among the co-occurring proteins in a given
sentence [40].

An interesting experiment conducted by the authors during the data preparation was
the investigation of interannotator agreement. Three independent expert curators curated
PPIs from 925 sentences identified by NER tagging within papers drawn from MEDLINE.
Surprisingly, concordance among all three curators was observed in only 48.8% of the cases,
which demonstrated the complexity of the problem [40].

Moreover, the authors experimented with the need for a semisupervised preprocessing
step for training data curation. This experiment was necessary due to an inherent class
imbalance between positive protein interactions and the coincidental mention of proteins.
The authors repeated the data curation step after filtering the sentences such that only those
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that contained two genes identified to have a strong likelihood of interacting, signified
by a high combined StringDB score, were retained. Even with high reliability scores from
StringDB, no improvement in the rate of identification of positive interactions was found.
However, for some other cases, such as the drug–drug interaction problem, this step proved
to be more effective. The authors concluded that this type of preprocessing approach can
assist in cases of balanced training data curation in specific problems.

As far as predictive models are concerned, the authors compared some rule-based
approaches with a fine-tuned version of BioBERT [40].

Su et al. (2020 and 2021) [41,42]: We now discuss two research papers that are
related to each other and share two common authors. The first paper investigated the
scope of the BERT and BioBERT model in general BLM problems. The second paper
improved on the result of the first one by improving the performance of the pretrained
BERT model by using a pretraining step involving contrastive learning. Both papers
used very similar study designs. The effectiveness of the models was demonstrated by
applying them to three types of RE tasks from the biomedical domain: chemical–protein
(ChemProt, using the BioGRID database), drug–drug (DDIs, using the DrugBank database),
and protein–protein interactions (PPIs, using the IntAct database). The PPI classification
task is considered a binary classification, indicating that the authors refrained from a more
function-oriented classification, as explored by Elangovan et al., whereas the ChemProt and
BioGRID classification tasks are multilabel classification tasks with five and four annotated
interaction types in the respective databases [41,42].

In the first paper, Su et al. (2020) proposed some new fine-tuning mechanisms for the
BERT model. They pointed out that the RE problems are posed as classification problems
and pretrained models such as BERT rely on a specific [CLS] token from the last layer to
make decisions. “The [CLS] token is used to predict the next sentence (NSP task) during
the pretraining, which usually involves two or more sentences, but the inputs of our
relation extraction tasks only contain one sentence. This indicates that the [CLS] output
might ignore important information about the entities and their interaction because it is
not trained to capture this kind of information [41]”. As a solution to this, the authors
proposed to add a new module that could summarize all outputs from the last layer and
concatenate that information with the [CLS] output as an extra fine-tuning step. The
authors experimented with the choice of the new module used to summarize information
using LSTM and additive attention [41].

In the second paper, Su et al. (2021) proposed a contrastive-learning-based approach
to improve the performance of the pretrained models. The term contrastive learning is
used for a family of methods to construct a discriminative model comparing pairs of inputs.
The training process for such models is designed such that similar input instances have
“positive” labels, whereas dissimilar input instances are labeled as “negative” instances.
The goal is to learn a text representation by maximizing the agreement between inputs
from positive pairs via a contrastive loss in the latent space, and the learned representation
can then be used for relation extraction. The authors pointed out the lack of exploitation
of the potential of such contrastive models for text data in general and RE problems
from biomedical natural language processing specifically. The reason behind this, as
explained by the authors, is that it is more challenging to design a general and efficient
data augmentation method to construct positive and negative pairs necessary to train such
models [42].

Moreover, in Su et al. (2021), the authors proposed a new metric, “prediction shift”,
to measure the sensitivity degree to which the small changes of the inputs will make the
model change its prediction, thereby arguing that the proposed model is more robust
compared to simply using BERT for the classification of interaction words [42].

To generate a positive pair of samples compatible with the training design of the
contrastive model, the authors resorted to simplistic data augmentation techniques. The
goal was to slightly alter the original sentence using methods such as synonym replacement,
the random swap of words, or the random deletion of words. Given a sentence s, two entity
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mentions (chemical or gene names) e1 and e2 in s and a relation type r also mentioned in
s, the authors hypothesized that the Shortest Dependency Path (SDP) between the two
entity mentions (e1 and e2) in the sentence s captures the required information to assert the
relationship of the two entities. Keeping the SDP fixed, the authors therefore altered the rest
of the word tokens in the text to generate augmented data, to ultimately generate positive
samples. The hypothesis related to SDP is not novel in itself and has been explained in
related research articles: “If entities e1 and e2 are arguments of the same predicate, then
the shortest path between them will pass through the predicate, which may be connected
directly to the two entities, or indirectly through prepositions.” Given a training batch of
N sentences, the authors created an alternative “view” of each sentence (making a pool of
2N sentences), and then for every sentence s, they considered < s, s′ > as a positive pair.
The other 2N − 1 sentences were considered to be a negative sample, each compared to the
sentence s [42].

The general architecture of the model is fairly similar to the general structure of
Siamese neural networks. Training samples (sentences) are fed into the neural network in
pairs (labeled positive or negative), and each input sentence in the pair goes through two
independent channels of an identical architecture. The final output is then generated by
combining the outputs from these two independent channels, which are used to calculate
the loss, which is optimized to be less for similar sentences (positive pairs). Each indepen-
dent channel has a neural network encoder used to create encoding for the input sentences
corresponding to the channel and a projection head (a multilayered perceptron) to trans-
form the encoding to a desired dimension, which is known to improve the representation
quality during training [42].

Wang et al. (2020) [43]: RE among proteins is affected by mutations, implying that
interactions among proteins may vary from one study to another depending on these
mutations, as well as the context of the study. To this end, the Biocreative VI challenge
consists of two subtasks:

• Identifying documents describing mutations affecting PPI;
• Extracting relevant PPI through RE.

The first task, also referred to as document triage by the authors, clearly improves
the practicality of using NLU-based models for RE in the context of PPI. The second
task can extract interacting protein pairs from documents containing a triage. The term
“triage” refers to a tuple of a source protein, a target protein, and their relevant interactions.
Although RE is the main task addressed in this research article, the authors argued that the
introduction of auxiliary tasks, such as document triage classification (whether a document
describes genetic mutations affecting protein–protein interactions) and the gene recognition
task (NER), significantly improves the RE task [43].

The experiments for triage and RE tasks were performed on the BioCreative VI Track
4 corpus, containing 4082 articles in the training set, of which 1729 were relevant to PPIs
involving mutations. Standard preprocessing approaches such as replacing mentions of
gene names by predefined strings were employed [43].

The architecture of the model is compatible with the multitask (main and auxiliary
tasks) learning strategy as proposed by the authors. For creating meaningful vector
representation of the input text, the authors used the BERT and BioBERT models. The BERT
layer was shared as an embedding layer for all downstream layers. For the main RC task
and auxiliary document triage task, a downstream text CNN model was added to the model.
Independent BiLSTM layers were used as a downstream layer for the gene recognition
auxiliary task. The authors argued that the introduction of the auxiliary learning tasks
improved the classification performance of the main RE task [43].

Zhou et al. (2019) [44]: In this research work, the authors proposed the Knowledge-
aware Attention Network (KAN) for PPI extraction. The motivation of this work, published
in 2019, was the fact that pre-existing methods needed extensive feature engineering
and could not make full use of the prior knowledge available in the form of knowledge
bases [44].
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Experiments with the model were conducted on the BioCreative VI Track 4 PPI extrac-
tion task corpus. PPI relation triplets were extracted from two knowledge bases, IntAct and
BioGRID, both of which contain 45 relation types. A total of 1,518,592 triples and 84,819
protein entities were obtained for knowledge representation training, i.e., they were fed
as prior knowledge to the model during training. As other approaches, the KAN model
has elaborate preprocessing protocols. Some assumptions adopted during the preprocess-
ing seem to be rather strict. For example, the authors wrote: “To reduce the number of
inappropriate instances, the sentence distance between a protein pair should be less than
three.” In addition to this, other general protocols such as replacing gene/protein names
and context-specific words (interactions) by predefined strings were also employed [44].

As far as the model architecture is concerned, KAN is innovative. A schematic
representation of the model is shown in Figure 4. KAN has two architectural components
that are identical in structure, one for processing information relevant to a source protein
and the other for processing information relevant to the corresponding target protein,
given a source–target protein pair in a sentence. The information on the positions of the
source and target proteins is encoded along with the sentence while the input is fed into
the model. This is performed by modifying the general idea of positional embedding that
is employed in the self-attention-based model in general. In this case, position encoding is
encoded with respect to the positions of the source and target proteins in a given sentence.
Respective positional encodings for the source and target proteins are fed into the respective
architectural components along with the encoded sentence. Next, these inputs are passed
through a diagonal-disabled multiheaded attention layer in each architectural component.
Generally, self-attention-based processes are represented as some mathematical operations
among a Query (Q), Key (K), and Value (V) vector. The same vector (vectorized form of
the word sequence in a sentence added to the positional encoding) is considered for Q,
K, and V. The multiplication of K and V produces a square attention matrix, which is
then multiplied by Q. In the KAN model, however, the authors used a different form of
Q. As the model aims to exploit the entity relation triplets recorded in triplets as prior
knowledge, TransE (a typical knowledge representation approach, which represents the
relation between two entities as a translation in a representation space) was used to create
vector representations of these triplets. The vector representations of the source and target
(e1 and e2) proteins were used as a part of Q in the respective architectural components.
After passing the outputs of the attention layers through a feed-forward network and a
multidimensional attention layer in each architectural component, the outputs from two
architectural components were concatenated to obtain the final feature representation.
At this stage, the vector representation of the relation between the source and the target
proteins (er) was also concatenated with the vector representation of the proteins to take
advantage of prior knowledge. The results from this layer were then passed through a
softmax activation to obtain the final outputs for the classification task. The authors also
experimented with several variations of the KAN model [44].
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Figure 4. Architecture of the Knowledge-aware Attention Network (KAN). The symbol N× next to the marked blocks
represents N copies of the respective blocks, where N can be defined by the modeler. The architecture has two parallel input
channels, taking information on the source and target entity as the input along with the relevant text. External knowledge
is integrated into the model in the form of entity-specific representations e1 and e2 and a representation of their known
relationship er.

3.3. Performance Comparison among the Discussed Models

The models we discussed in the previous section were designed to perform diverse
tasks varying from document triage finding to RE problems (PPI, DDI, ChemProt, etc.)
to detection of “typed” PPIs. Moreover, they operate on different datasets and have
different preprocessing approaches involved. In addition to these factors, they are also
often evaluated on different performance measures. It is therefore difficult, if not impossible,
to come up with a fair way of comparing their performances. However, one can still observe
patterns in the results, which can be of significance.

The results of Wang et al. and Zhou et al. are comparable. Both of them addressed
the same dataset, that is the BioCreative VI dataset. An evaluation criterion called “exact
match evaluation” was also similar in both cases. It is defined as: “A predicted relation
only counts when the GeneIDs are the same as human-annotated GeneIDs.” In this regard,
Wang et al.’s model with an F1 score of 43.14 clearly outperformed the KAN model by
Zhou et al., with an F1 score of 38.23, which confirms that learning auxiliary tasks along
with the principal task could play a role in improving model performances. It is also
noteworthy that the preprocessing protocols of Wang et al. were comparatively simpler.
Although these two papers dealt with the extraction of interacting protein pairs from
documents, they did not emphasize specifying the type of interaction. Knowing the type
of interaction can be extremely useful while creating a large-scale disease map such as the
Atlas of Inflammation Resolution [3] or the Parkinson’s Disease Map [45].
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Elangovan et al., on the other hand, addressed the type of interaction among protein
pairs. Their “typed” classification problem deals with seven different kinds of interac-
tions: phosphorylation, dephosphorylation, methylation, demethylation, ubiquitination,
deubiquitination, and acetylation. Thus, their model is a multiclass classification model
PPI-BioBERT, which produced an F1 score of 35.4%. Interestingly, an ensemble of 10
PPI-BioBERT models improved the F1 score to 54%, which shows that there is a scope for
ensemble-based models in RE-based problems [39].

Su et al. (2020 and 2021) explored the same three BLM-based problems, PPI, DDI, and
ChemProt. The first article written in 2020 compared several variations of the BioBERT
model (such as using LSTM and attention layers and utilizing the classification token [CLS]
in their model). Using their models, they achieved F1 scores of 82.8, 80.7, and 76.8 for
the PPI, DDI, and ChemProt tasks, respectively. However, from the results, it is difficult
to conclude which kind of architecture (using LSTM or attention layers) in particular is
beneficial. Perhaps that is why, in the follow-up article in 2021, the authors used none
of the ideas of attention or LSTM layers. Rather, they focused on contrastive learning.
The best results were produced by a model that used contrastive learning in addition to
adding information from external knowledge bases. In this case, they achieved F1 scores of
82.7, 82.4, and 76.9 for the PPI, DDI, and ChemProt tasks, respectively, which was not a
significant improvement on the previous work [41,42].

4. Discussion

The classification approach popularly used for RE hinders the transfer of knowledge
across databases and corresponding datasets. This is due to the different annotations used
in different databases. Knowledge transfer and integration across databases, in accordance
with the classification approach, therefore requires the amalgamation of corresponding
datasets with different annotations. This can create a multilabel classification problem
with multiple classes, making a model difficult to train. We observed that the F1 score
is naturally less in classification problems with multiple classes. For example, Su et al.
had a binary classification task for PPI and thus had a superior F1 score compared to
Elangovan et al., who considered multiple classes in their classification problem [39,41,42].
Furthermore, F1 scores are low for models that use exact match evaluation for measuring
their performance. Intrinsic imbalance persistent in such datasets along with ambiguous
manual annotations across datasets make it even harder to effectively train classification
models. This reduces the practical usability of the classification models as a modeler
cannot customize these models as per his/her modeling needs, and he/she have to rely on
pre-annotated databases to train his/her models.

Moreover, modeling directed interactions requires knowledge on the source entity,
the target entity, and the relationship between them. Usually, this used to be designed as a
relationship-triplet-finding problem. Most classification models for RE do not consider the
sense of directionality that is associated with the related entities. Only a few models, such
as the KAN, consider taking the source and target entities as a part of the input and try
to predict the corresponding interaction. However, still, the KAN is not trained in such a
way that it can differentiate between a source and a target entity in the case of a directed
interaction.

Even if such a classification model exists that can differentiate between a source and
target entity of a directed interaction, while practically using such a model to extract
relationships from new data, a modeler has to know from a relevant text which entity
is the source and which entity is the target. Without knowing this information, directed
interactions cannot be modeled. While NER-based models can identify the entity names
from new literature, the issue of annotating source and target entities was not addressed in
the discussed approaches, in general. This again hinders the practical applicability of such
models in knowledge extraction.

What makes the practical use of many of these models difficult are the diverse pre-
processing protocols and strict assumptions adopted by the models. Almost every model
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that we discussed replaces protein or chemical names by specific strings (e.g., Su et al.,
Wang et al., Elangoven et al., Zhou et al.) [39,41–44]. The model by Zhou et al., for example,
adopted elaborate protocols while curating training data such as [44]:

• Reducing the number of inappropriate instances; the sentence distance between a
protein pair was assumed to be less than three;

• Selecting the words among a protein pair and three expansion words on both sides as
the context word sequence with respect to the protein pair;

• Removing protein names from the input string;
• Replacing numeric entries by predefined strings;

For attention-based models, even though there have been some attempts at making
the models explainable by observing the attention matrices, such attempts are rare in the
case of BLM. For example, Su et al. (2020) and Zhou et al. made some limited efforts to
explain the behavior of their models [41,44].

In the field of computer vision, the concept of explainable models is quite popular.
Being able to explain decisions made by a model can be important in the case of BLM as well.
A byproduct of explainability could be, for example, a knowledge graph, which is a compact
way of summarizing much information, as well as discovering new information [46].
Biological information can be represented in its most general form as knowledge graphs.
A model that can be used to curate and represent from new literature entities such as
genes, proteins, phenotypes, etc., and their relationships in the form of knowledge graphs
can address some issues of the classification approach discussed before. The nodes of the
knowledge graph represent the entities, and the edges are the annotations of the directed or
undirected relations among the entities. Customized edge annotations, as per the interest
of the modeler, can be fed into a model, making the model adaptable to the need of the
modeler. Given the positional information on a word representing an edge annotation (e.g.,
activation, repression, phosphorylation) in a sentence, self-attention-based models can be
used to predict the positions of the source and target node entities (e.g., source gene, target
gene) for that particular edge annotation. In case a modeler is not interested in modeling
interentity relationships in particular and is simply interested in modeling whether there
is an association between two entities (gene–phenotype association), such a model can
account for this by learning the position of the target entity, given the position of the source
entity or vice versa.

A knowledge-graph-based model, as discussed above, could be used in a pipeline
with other NLP tasks to develop an end-to-end approach for customized knowledge
extraction and knowledge discovery. For example, NER and document triage can be used
as preceding tasks in a pipeline. The discovery of relationships among new entities can
be achieved through models operating on knowledge graphs generated by the model.
For example, Liu et al. proposed a model for the discovery of new relationships among
compounds and diseases from knowledge graphs using a reinforcement learning approach
on knowledge graphs [46].

5. Conclusions

Clearly, attention-based models, both novel architectures and pretrained networks, are
being explored widely in the domain of BLM. Complex algorithms have been constructed to
handle a wide variety of tasks such as NER, RE, document classification, and triage mining.
Some publications have proposed coherent workflows attempting to make the algorithms
more practically usable. However, challenges such as diversely annotated datasets, the
transfer of knowledge for trained models across datasets, the lack of explainability, complex
preprocessing protocols, and the large amount of computational power required to tune
pretrained models reveal the scope of further research in this domain with the goal of a
more generalistic and practically useful approach.
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