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Abstract: The identification of drug-target interaction (DTI) plays a key role in drug discovery and
development. Benefitting from large-scale drug databases and verified DTI relationships, a lot of
machine-learning methods have been developed to predict DTIs. However, due to the difficulty in
extracting useful information from molecules, the performance of these methods is limited by the
representation of drugs and target proteins. This study proposes a new model called EmbedDTI
to enhance the representation of both drugs and target proteins, and improve the performance of
DTI prediction. For protein sequences, we leverage language modeling for pretraining the feature
embeddings of amino acids and feed them to a convolutional neural network model for further
representation learning. For drugs, we build two levels of graphs to represent compound structural
information, namely the atom graph and substructure graph, and adopt graph convolutional network
with an attention module to learn the embedding vectors for the graphs. We compare EmbedDTI
with the existing DTI predictors on two benchmark datasets. The experimental results show that
EmbedDTI outperforms the state-of-the-art models, and the attention module can identify the
components crucial for DTIs in compounds.

Keywords: drug-target interaction; graph convolutional network; molecular representation

1. Introduction

The detection of drug-target interactions (DTIs) is a key step in drug development
and drug repositioning. In recent decades, high-throughput screening (HTS) experiments
have greatly accelerated the identification of DTIs. However, HTS experiments are costly
and laborious, which cannot meet the need for revealing DTIs for millions of existing
compounds and thousands of targets [1,2]. Therefore, there is a strong motivation to
establish computational tools for predict DTIs automatically [3].

The rapid increase of DTI data in public databases, such as ChEMBL [4] , DrugBank [5],
and SuperTarget [6], has enabled large-scale in silico identification of DTIs. The com-
putational methods mainly fall into three categories, namely docking-based, similarity
search-based and feature-based.

For docking-based methods, the three-dimensional structures of target proteins are
used to simulate the binding position and orientation by considering various transitions
and rotation of the ligands to gain different binding conformations [7–10]. These methods
minimize the binding free energy by designing a scoring function to predict effective
protein-ligand binding. The efficacy of docking methods depends on protein 3D struc-
ture information, while 3D structures of many target proteins are still unknown, such as
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GPCRs [11]. Moreover, the simulation of the docking process is relatively time-consuming,
and can only be used when the prediction scale is small.

The similarity search-based methods assume that small molecular compounds with
similar structures or physic-chemical properties can act on targets with the same or similar
properties [12–15]. Thanks to the rapid increase of drug information and target annotation
in public databases, similarity search-based methods have been widely used in recent years.
However, they only work for predicting the binding to proteins similar to known targets
and fail to recognize DTIs for novel targets.

In contrast to docking-based and similarity search-based methods, feature-based
methods use various types of features extracted from drug compounds and target proteins
and mainly adopt machine-learning models to predict DTI relationships. Feature-based
methods can be roughly divided into two types. The first type adopts collaborative matrix
factorization techniques [16–18]. This type of method decomposes the known drug-target
relationship matrix into two low-dimensional feature matrices representing drug and target
protein, respectively. Based on the drug and target feature matrices, similarity matrices of
drugs and targets can be estimated by taking the inner product of the feature vectors. Given
the drug-target relationship matrix as well as the two similarity matrices, potential DTIs
can be inferred. For instance, DTINet predicts novel drug-target interactions from hetero-
geneous networks [19], by integrating diverse drug-related information. DTINet focuses
on learning a low-dimensional vector representation of features, which accurately explains
the topological properties of individual nodes in the heterogeneous network, and then
makes a prediction based on these representations via a vector space projection scheme.

The second type of feature-based methods use extracted feature descriptors of drug
compounds and target proteins respectively, and models the DTI prediction as a binary
classification (interaction exists or not) or regression problem (the output is binding
affinity) [20–22]. Molecular fingerprints are commonly used as descriptors of drug sub-
structures, while composition, transition, and distribution (CTD) are commonly used as
protein descriptors.

Feature-based methods have been more widely used in recent years, as they have few
limitations on the input information source. However, their performance relies heavily on
feature representation. In the existing drug and target descriptors, molecular structural
information is often absent, thus leading to unsatisfactory prediction results.

As deep neural networks (DNNs) have achieved great success in automatic feature
learning for image and sequence data, some deep learning models have also been proposed
to predict the binding affinities between drugs and targets. By inputting raw drug and
target protein data, DNNs can extract useful information for prediction. For example,
DeepDTA employs a convolutional neural network (CNN) to extract local sequence pat-
terns as a high-level feature representation for drug-target binding affinity prediction [23].
Another method called DeepConv-DTI [24] also adopts CNNs. In contrast to DeepDTA,
which mainly focuses on protein kinases, DeepConv-DTI was trained on a larger scale
dataset with diverse types of proteins. Later, a DTI model named GraphDTA [25] was
proposed to predict drug-target binding affinities, which is a state-of-the-art method for
kinase-type target proteins. Compared with DeepDTA [23], WideDTA [26], PADME [27],
and MT-DTI [28], which represent drug compounds as strings to extract feature vectors,
GraphDTA represents drugs in the form of graph and use graph convolutional network
(GCN) for feature learning.

Despite the recent progress, there is still large room to improve the feature representa-
tion of drugs and target proteins to enhance DTI prediction. In this study, we propose a new
method, EmbedDTI, which leverages embedding vectors for protein sequences and graph
representations for both atoms and substructures of compounds to enhance the molecular
representations. We evaluate the performance of our model on two benchmark datasets,
the Kinase dataset Davis [29] and KIBA dataset [30], and compare results with a series
of the existing models, including KronRLS [14], SimBoost algorithms [15], DeepDTA [23],
WideDTA [26], and GraphDTA [25]. EmbedDTI obtains the lowest mean square error
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(MSE) and the highest concordance index (CI). Furthermore, we perform a case study of
inhibitor design for K-Ras target. The candidate compounds with high binding capability
identified by EmbedDTI show stable docking with K-Ras target.

2. Materials and Methods
2.1. Metrics of Binding Affinity

Binding affinity provides specific information about the interaction between drug-
target (DT) pairs. It can be measured by metrics such as the half-maximal inhibitory
concentration (IC50), dissociation constant (Kd), inhibition constant (Ki), and association
constant (Ka). IC50 represents the concentration of the drug or inhibitor required to inhibit
half of the specified biological process (or a component in the process such as enzymes,
receptors, cells, etc.). Ki reflects the inhibitor’s inhibitory strength to the target. The smaller
the value, the stronger the inhibitory ability. Kd reflects the affinity of the drug compound
to the target. The smaller the value, the stronger the affinity. In some cases, it is equivalent
to Ki. Ka is the reciprocal of Kd. Thus, the larger the value of Ka, the stronger the binding
affinity. Following the practice of previous studies [15], we adopt the log-transformed Kd
(Equation (1)) as the model output.

pKd = − log10 (
Kd
1e9

) (1)

2.2. Datasets

In this paper, we evaluate our model on two benchmark sets, the Kinase dataset
Davis [29] and KIBA dataset [30], which were used in DeepDTA [23], WideDTA [26],
PADME [27], MT-DTI [28], and GraphDTA [25]. Table 1 shows the overview of these
two datasets.

Table 1. Summary of Davis and KIBA datasets.

Dataset # of Compounds # of Proteins # of DT Interactions

Davis 68 442 30,056
KIBA 2111 229 118,254

The Davis dataset collects clinically related kinase protein families and related in-
hibitors with their respective dissociation constant (Kd) values, while KIBA is a more
general dataset and much larger than Davis. In Davis, only Kd is used to measure the
biological activity of kinase inhibitors; while KIBA combines Ki, Kd, and IC50 to obtain
KIBA scores of protein families and related inhibitors. The EmbedDTI model performance
is assessed on these two datasets, respectively.

2.3. Corpus for Pretraining Protein Embeddings

Instead of using traditional one-hot encoding for target proteins, EmbedDTI generates
a pre-trained amino acid embedding matrix to represent target proteins. Here we use
the UniRef50 database [31] as the corpus for pretraining, including 48,524,161 amino
acid sequences.

3. Methods
3.1. Model Overview

Figure 1 shows the architecture of EmbedDTI. It consists of three major components,
namely initial feature extraction, feature learning, and classification.
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Figure 1. Model architecture. For protein sequences, we leverage GloVe for pretraining the feature embeddings of amino
acids and feed them to a CNN model for representation learning. For drugs, we construct two levels of graphs to represent
compound structural information, namely the atom graph and substructure graph. Graphs of different levels provide
an embedding representation vector respectively through attention and several GCNs. Three embedding vectors are
concatenated to output the binding affinity of the drug-target pairs through several fully connected layers.

The raw inputs of EmbedDTI are amino acid sequences of target proteins and SMILES
of drug compounds. In the initial feature extraction part, the GloVe algorithm [32] is
employed to obtain the pre-trained embedding representations of amino acids. For drugs,
we convert their SMILES sequences into two graph structures to retain as much structural
information as possible for feature learning. One graph consists of atoms as nodes and
bonds between atoms as edges, which represents information about individual atoms
and their neighbors. The other one is a graph of substructures, i.e., each node denotes a
substructure in the compound instead of an atom. According to the graph structures, we
obtain the adjacency matrix. For each node of the graph, some chemical and data structural
features are extracted to form a feature matrix.

In the feature learning part, for target proteins, we input their pre-trained embedding
vectors into CNN blocks to obtain high-level abstract sequence representations. For each
drug, we obtain two feature embeddings from the two kinds of graphs. Each graph
corresponds to an adjacency matrix and the nodes’ feature matrix, which are fed into a
GCN network for training. A max-pooling layer is used to aggregate the features of every
node to obtain an embedding representation of the whole graph. In addition, we add a
scaled dot-product attention layer before the GCN network for atom and substructure
branch to help learn the relative importance of each node (atom or substructure).

After feature learning, we concatenate the three feature vectors into a whole vector
and feed it into several fully connected layers to obtain the binding affinity scores of
drug-target pairs.

Details of the three components are described in the following sections.
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3.2. Initial Feature Extraction
3.2.1. Input Features of Target Proteins

In EmbedDTI, the input features for proteins are extracted from amino acid sequences.
To obtain good representation for amino acid sequences, we leverage word embedding
techniques in natural language processing to perform a pretraining on a large protein
database, UniRef50, and obtain embedding vectors for amino acids. The GloVe [32] model
is used to obtain embeddings for amino acids. GloVe is an unsupervised model that can
learn a fixed-length feature vector representation from the variable-length text, which is
based on the aggregated global word-word co-occurrence statistics of the corpus. Here we
consider each amino acid as a word.

3.2.2. Input Features of Drugs

Chemical compounds are usually represented as graph-structured data in computers,
where the vertexes and edges correspond to atoms and chemical bonds, respectively.
An atom-based graph can represent structural information between atoms in short distances
but ignores functional groups in compounds, which play important roles in determining
the properties and reactions of compounds. For example, a single atom in a benzene ring
can learn information about its neighboring atoms, but it is difficult to learn about the
structure of the entire ring as a whole. Therefore, we define substructures and convert the
original chemical graph into a higher-level graph of substructures, in which the nodes and
edges correspond to substructures and connections between substructures, respectively.

EmbedDTI extracts information from both the atom graph and substructure graph and
then combines them for the final prediction. The two levels of graphs are described below.

Atom-Level Representation

Atom graphs can be converted from SMILES strings, a common description of chemi-
cal compounds (SMILES: simplified molecular input line entry specification, a specification
that uses ASCII strings to describe the molecular structure [33]), which are publicly avail-
able. To extract atom information, we use the open-source chemical information software
RDKit [34]. Each node is represented as a one-hot feature vector containing eight kinds
of information, i.e., the atomic symbol, the degree of the atom in the molecule, the total
number of Hs (explicit and implicit) the atom is connected to, the number of implicit Hs
the atom is connected to, the total valence (explicit + implicit) of the atom, the charge of
the atom, whether or not the atom is aromatic, and whether or not the atom is in a ring.
Finally, we obtain a 101-dimensional one-hot vector for each atom.

Substructure-Level Representation

A major limitation of the atom graph is that it treats all edges equally and extracts
information from individual vertexes, while atoms and related edges often function in
groups. Take Figure 2 as an example. The bond between blue nodes is important for
the entire molecule, while the bond between red nodes is meaningless if segmented out
separately from the ring structure.

Here we propose a segmentation method and obtain a complete set of substructures
to ensure that all compounds in the database can be composed of substructures in the
set. As illustrated in Figure 3, we segment the whole graph into a tree of substructures.
A substructure is either a cyclic substructure that has less than 3 atoms shared with other
rings, or a pair of atoms linked by a bond that does not belong to a ring [35]. In this way,
molecular compounds can be regarded as topological graphs connected by substructures.
The substructure segmentation algorithm is formulated in Algorithm 1. The molecule
objects are obtained by the Chem.MolFromSmiles function in RDKit. V1 and V2 involve
independent bonds and simple rings, respectively. Bonds are extracted from the GetBonds
function while simple rings are extracted from the Chem.GetSymmSSSR function. Finally,
we have a vocabulary of bonds that are not in any ring and independent rings with less
than 3 atoms shared with other rings.
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Algorithm 1 Segmentation of substructures for molecule G = (V, E)
Input: SMILES strings of compounds
Output: Vocabulary of substructures C

Get molecule object from SMILES
Number the atoms in the compound molecule
Initialize: vocabulary of substructures C = ∅
Construct V1 ← the set of bonds ∈ E
Construct V2 ← the set of simple rings of G
for each bond ei in V1 do

if ei does not belong to any ring then
add ei to the vocabulary of substructures C

end if
end for
for each ring ri in V2 do

for each ring rj in V2 do
inter = ri ∩ rj
if the length of inter ≥ 3 then

tmp←merge r1, r2 to one unique ring
ri ← tmp
rj ← tmp

end if
end for

end for
remove duplicate substructures from V2
add each substructure in V2 to the vocabulary of substructures C
return vocabulary of substructures C

Figure 2. Two different types of bonds. The red marked one is a bond in a ring, while the blue
marked one is a bond outside any ring.

Figure 3. An example of substructure segmentation. The left graph is the atom-level graph, where
substructures are marked by different colors. The right one is the substructure-level graph, where
each substructure is denoted by a single node in the graph.
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Similar to the atom-level graph, node information is also extracted in a substructure-
level graph. Here, we extract five kinds of structural information based on graph theory for
each substructure, (i) the number of atoms, (ii) the number of edges connected to the sub-
structure, (iii) the number of hydrogen atoms (explicit and implicit), (iv) whether or not it
contains a ring, (v) whether or not it contains a non-ring bond. And then, each substructure
is represented as a 35-dimensional one-hot vector which is the initial feature representation.

3.3. Feature Learning Using Deep Neural Networks
3.3.1. Target Feature Learning via CNN

As mentioned, we use GloVe to obtain pre-trained embeddings for each amino acid
ei (0 ≤ i ≤ L, where L represents the maximum length of the protein sequence), then we
feed the embedding matrix E into a deep convolutional neural network (CNN) for further
feature learning. We employ a three-layer 1D CNN. The CNN model extracts local sequence
features via convolution kernels operated in the neighborhood of residues. The CNN is
followed by two fully connected layers to yield a 128-dimensional representation vector P
for each protein sequence.

3.3.2. Drug Feature Learning via GCN

CNNs have not only achieved great success in computer vision and natural language
processing but also showed good performance in various graph-related learning tasks,
where the nodes are in non-Euclidean spaces. In particular, graph convolution networks
(GCNs) [36] aim to capture local correlations of signals on graphs. As drugs can be
represented in the form of graphs, GCNs are employed to learn features from drugs
in EmbedDTI.

Formally, for a graph G = (V, E), where V is a set of nodes and E is a set of edges.
Each node i has its characteristics xi, which can be represented by a matrix X ∈ RN×d,
where N represents the number of nodes and d represents the number of features of each
node, i.e., the dimensionality of the feature vectors. The connecting relationship between
nodes forms an N × N-dimensional adjacency matrix A. X ∈ RN×d and A ∈ RN×N are
the input of one GCN layer. The propagation between layers of GCN can be formulated in
Equation (2).

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)), (2)

where Ã is the adjacency matrix plus self-connected edges, D̃ is the degree matrix of Ã,
H(l) represents the characteristics of the l-th layer. σ is an activation function, such as ReLU.
For the input layer, H(0) is equal to X.

H(0) = W × X, (3)

where W is an attention weight matrix.
GCN model learns the node-level outputs Z ∈ RN×F, where F is the number of

filters. To obtain the graph-level representation, we add a max-pooling layer after GCN
layers. Similar to the pooling operation in traditional CNN, max-pooling is a reasonable
downsizing to a graph. Figure 4 shows the GCN learning process for an atom graph.

In addition, in the propagation step of GCN, we add a node-wise attention layer to
help learn the relative importance of each node (atom or substructure). At this time, H(0) is
shown in Equation (3). Figure 5 illustrates this process.
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Figure 4. The graph feature learning via GCN. Taking the adjacency matrix and feature matrix of
a graph as the input, the node-level representation is obtained after convolution operation. Then,
the node-level representation is passed through a max-pooling layer to obtain the graph-level
representation. Finally, the graph-level representation matrix is expanded, and a 128-dimensional
vector is obtained through several fully connected layers.

Figure 5. GCN forward layer with attention. The attention module will consider each pair of nodes
and assign them with attention weight αij, which indicates the node j has αij-weighted influence on
node i during the propagation.

3.4. Prediction Model

After feature learning, we have obtained three 128-dimensional feature vectors P,
Am and Cq, which are the representations for target proteins, atom-level drug molecules,
and substructure-level drug molecules, respectively. We concatenate them as a vector T
(Equation (4)) and pass them into three fully connected layers to obtain the binding affinity
scores of drug-target pairs.

T = P +©Am +©Cq ∈ R384 (4)

4. Results
4.1. Experimental Settings

We assess the performance of EmbedDTI on two benchmark sets, the Kinase dataset
Davis [29] and KIBA dataset [30]. For a fair comparison, we use the same data division
strategy as DeepDTA [23], which randomly divided the datasets into 6 equal parts. One for
independent test and others for training, where 5-fold cross-validation within the training
set is performed to search optimal hyper-parameters. For each hyper-parameter, we use a
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grid search to narrow the search range to the neighborhood of the optimal parameter and
then perform a refined search.

In the feature learning part, for proteins, we use three convolutional layers with
different filter sizes. And the GCNs for learning atom-based graphs and substructure-
based graphs of compounds also contain three graph convolutional layers. The parameter
settings are shown in Table 2.

Table 2. Parameter setting for EmbedDTI *.

Parameters Value

Batch size 512
Learning rate 0.0005
# epoch 1500
Dropout 0.2
Optimizer Adam
# filters of the 3 layers in CNN 1000, 256, 32
Filter sizes of the 3 layers in CNN 8, 8, 3
Input Dim. of the 3 layers in GCN N, N, 2N
Output Dim. of the 3 layers in GCN N, 2N, 4N
# hidden units in final FC layers 1024, 512
Max length of protein sequences 1000

* N represents number of features.

4.2. Evaluation Metrics

Since we consider DTI as a regression problem to predict binding affinity between
drug-target pairs, we use mean squared error (MSE) as the loss function. MSE measures
the difference between the predicted value (P) and the true value of the target variable (Y).
The smaller the MSE, the closer the predicted value to the true value, and vice versa. Let N
denote the number of samples, the MSE is defined in Equation (5).

MSE =
1
N ∑N

i=1(yi − pi)
2 (5)

Another metric we use to evaluate the performance is the concordance index (CI),
which was proposed by [14]. CI is used to calculate the discrimination between the
predicted value and the true value of the model, as defined in Equation (6),

CI =
1
Z ∑

δx>δy

h(bx − by), (6)

where bx is the predicted binding affinity relative to the real larger binding affinity δx, by is
the predicted binding affinity relative to the real smaller binding affinity δy, h(x) is a step
function shown in Equation (7), and Z is a normalization constant used to map the value to
the interval [0, 1]. The CI indicator measures whether the predicted affinity values of two
randomly selected drug-target pairs maintain a similar relative order in the real dataset.
The larger the CI value, the better the result.

h(x) =


0 if x < 0

0.5 if x = 0

1 if x > 0

(7)

In addition, we compute two correlation coefficients, Pearson and Spearman, for cor-
relation analysis, as formulated in Equations (8) and (9).

ρX,Y =
cov(X, Y)

σXσY
, (8)
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where X and Y represent the true value and predicted value, respectively. cov(X, Y)
represents the covariance matrix of X and Y. σX and σY are the standard deviations of X
and Y, respectively.

ρspearman = 1−
6

n
∑

i=1
(xi − yi)

2

n(n2 − 1)
, (9)

where xi and yi denote the ranks of X and Y in the true values and predicted values for the
i-th sample, respective, and n is the number of elements.

4.3. Results on Davis Dataset

To assess the performance of EmbedDTI, we compare it with five state-of-the-art
models as listed below.

• KronRLS [14]. It adopts Smith-Waterman algorithm to compute similarity between
proteins and the PubChem structure clustering server to compute similarity between
drug compounds. Then it uses a kernel-based method to calculate Kronecker products
and integrates multiple heterogeneous information sources within a least squares
regression (RLS) framework.

• SimBoost algorithms [15]. Its representation of proteins and drug compounds is the
same as that of KronRLS. It constructs features for drugs, targets, and drug-target
pairs, and extracts the feature vectors of drug-target pairs through feature engineering
to train a gradient boosting machine to predict binding affinity.

• DeepDTA [23]. It encodes the original one-dimensional protein sequences and SMILES
sequences. The encoded vector is passed through two independent CNN blocks to
obtain the corresponding representation vector, and after concatenating, the predicted
binding affinity is output through the fully connected layer.

• WideDTA [26]. It adds protein domains and motifs, and maximum common sub-
structure words based on DeepDTA, a total of four parts of the original information
training model.

• GraphDTA [25]. It uses TextCNN to perform feature learning on one-dimensional
protein sequences. For the SMILES sequence, it uses four models of GCN, GAT, GIN,
and GAT_GCN to obtain the representation vector of SMILES sequence.

In addition, we perform an ablation study on EmbedDTI by comparing three variants
of EmbedDTI, i.e., EmbedDTI_noPre, EmbedDTI_noSub, and EmbedDTI_noAttn.

• EmbedDTI_noPre: no pretraining for protein sequences.
• EmbedDTI_noSub: no substructure graph representation for drug compounds.
• EmbedDTI_noAttn: no attention module in the GCN.

Table 3 shows the MSE and CI scores on the independent Davis test dataset compared
with 5 baseline models. As can be seen, EmbedDTI achieves the lowest MSE and the
highest CI, which decreases MSE by 9.5% and increases CI by 2.3% compared with the
start-of-the-art method GraphDTA. The performance gain can be attributed to the following
three factors.

First, we use graphs to represent compounds, which retain more structural information
compared with the methods based on raw sequences. Moreover, we represent compounds
by two kinds of graphs, involving both structural and functional information on the atom
and substructure levels, rather than only one graph that is used in most existing methods
like GraphDTA.

Second, the attention mechanism in GCN helps learn important information of nodes
(atom or substructure). By outputting the attention score for each node, we can observe the
focus of the model for predicting DTI.
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Table 3. Comparison of MSE and CI scores on Davis test set *.

Models Protein Rep. Drug Pep. MSE CI

Baseline Models

KronRLS Smith-Waterman Pubchem-Sim 0.379 0.871
SimBoost Smith-Waterman Pubchem-Sim 0.282 0.872
DeepDTA 1D 1D 0.261 0.878
WideDTA 1D + PDM 1D + LMCS 0.262 0.886
GraphDTA_GCN 1D Graph 0.254 0.880

Our Proposed Models

EmbedDTI_noPre 1D Graph + Graph 0.236 0.892
EmbedDTI_noSub 1D Graph 0.235 0.896
EmbedDTI_noAttn 1D Graph + Graph 0.233 0.898
EmbedDTI 1D Graph + Graph 0.230 0.900

Note: Rep. is short for representation. The best results are shown in bold.

Third, pretraining is used to improve the representation of target sequences by intro-
ducing some prior background knowledge, which also improves the overall performance
of EmbedDTI. The predicted binding affinities and true binding affinities are plotted in
Figure 6. It can be observed that most points are close to the line x = y.

Figure 6. Predicting scores VS. Real scores on Davis test dataset.

4.4. Results on KIBA Dataset

For the KIBA dataset, we compare the performance of EmbedDTI with the same
baseline models described in the previous section. Table 4 shows their MSE and CI scores.
As can been seen, the performance of these models has the same trend as on Davis dataset,
although KIBA is much larger than Davis. The graph-based representation of drugs
improves the performance greatly (0.268 vs. 0.058 comparing WideDTA and GraphDTA on
MSE). The benefit of two-level graphs is not as obvious as on Davis, while CI is increased
by 0.013 in EmbedDTI compared with GraphDTA.
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Table 4. The MSE and CI scores of the KIBA test dataset comparision.

Models Protein Rep. Drug Rep. MSE CI

Baseline Models

KronRLS Smith-Waterman Pubchem-Sim 0.411 0.782
SimBoost Smith-Waterman Pubchem-Sim 0.222 0.836
DeepDTA 1D 1D 0.194 0.863
WideDTA 1D + PDM 1D + LMCS 0.179 0.875
GraphDTA_GCN 1D Graph 0.139 0.889

Our Proposed Models

EmbedDTI_noPre 1D Graph + Graph 0.134 0.896
EmbedDTI_noSub 1D Graph 0.134 0.893
EmbedDTI_noAttn 1D Graph + Graph 0.131 0.901
EmbedDTI 1D Graph + Graph 0.133 0.897

Note: Rep. is short for representation. The best results are shown in bold.

The predicted scores and true scores are plotted in Figure 7, which shows that the
predicted values of EmbedDTI are close to the real values.

Figure 7. Predicting scores vs. Real scores on KIBA test dataset.

In summary, on both the two datasets, EmbedDTI achieves the lowest MSE value and
the highest CI value. In particular, the comparison with baseline models suggest that both
protein and drug representations contribute to the performance enhancement.

5. Case Study: Inhibitor Design for K-Ras Target
5.1. Molecular Evaluation Metrics

We use the following metrics of molecules to evaluate the results.
(i) Quantitative estimate of drug-likeness (QED) [37]. Quantitative estimate of drug-

likeness (QED) is a widely used metric in drug discovery based on eight important proper-
ties that were previously used to assess drug-likeness of candidate molecules, including
molecular weight (MW), octanol–water partition coefficient (ALOGP), number of H-bond
donors (HBD), number of H-bond acceptors (HBA), molecular polar surface area (PSA),
number of rotatable bonds (ROTB), number of aromatic rings (AROM), and number of
structural alerts (ALERTS). The QED score (scaled between 0 and 1) was designed for
molecular evaluation that to what extent a candidate is close to the corresponding average
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values in the QED benchmark set of 771 approved oral drugs. A higher QED score indicates
more similar to the properties of drugs.

(ii) Synthetic accessibility (SA) [38] is the assessment from the structural perspec-
tive, which quantifies the synthetic accessibility of drug-like molecules by examining the
fragment or submolecular features. Penalty will be added if the given molecules contain
complex ring and too many atoms compared with normal drugs.

(iii) Docking score. In our experiment, the complex of interest is formed by compound
ligand and protein receptor. The docking prediction is thus the binding affinity between
ligand and receptor. Current docking can achieve good accuracy of affinity prediction and
can replace unnecessary biomedical assays to reduce overheads. Here, the docking is used
as an assessment tool for candidates after virtual screening based on the belief that docking
can provide accurate computational approximation of ground truth binding affinity. This
serves as the bioactivity evaluation of candidate molecules.

5.2. Implementation Details and Results

In this section, a case study is performed to design inhibitors of K-Ras target by
molecule generation and virtual screening. K-Ras protein is made by KRAS gene and relays
the signals from outside the cell to inside the cell, i.e., the nucleus. The K-Ras protein can be
classified into the GTPase family. Small mutation of K-Ras may lead to serious illness such
as colorectal cancer and lung cancer, as K-Ras is related to oncogene and somatic KRAS
mutations are found at high rates in these cancers. K-Ras is an important drug target, while
the lack of binding site information has hindered the pharmaceutical development. This
case study implements a computational pipeline of drug design for K-Ras target using the
proposed EmbedDTI that has been trained on the KIBA dataset in Section 4.4, because KIBA
dataset is much larger than the Davis dataset.

First, we employ generative model MARS to obtain a set of molecules {xi}N
i=1

(N = 5000) to be screened. The number of heavy atoms (non-hydrogen atoms) of these
molecules are controlled to be within 40. In this work, we use a molecular generative
model called MARS (MArkov MoleculaR Sampling) [39] to sample candidate molecules for
further virtual screening. MARS employs Markov chain Monte Carlo (MCMC) sampling
to perform several edition over chemical structure. We choose the generative model due to
its good evaluation performance to generate diverse and novel species with good coverage
of chemical space. In terms of run time configuration, we choose to generate a set of
molecules {xi}N

i=1 (N = 5000) after 1000 steps of edition. Other settings are used by default.
Large molecular structure can lead to extra bias, and it is unrealistic for commonly used
drugs. These molecules are in the format of SMILES sequence representation. For the set
of molecules, we feed them and the sequence of K-Ras protein into the model EmbedDTI
to make prediction of possible interaction. Then each molecule will be attached with a
prediction score Pi, indicating the binding affinity with K-Ras receptor by EmbedDTI. Then
we perform virtual screening to the molecular set. Specifically, the molecular population is
ranked by their prediction score Pi and only the top 10 molecules with highest affinity score
(predicted pKd, the higher the better) and docking score (computed by SMINA) below a
threshold are selected for further analysis. After that, we use the RDKit software to embed
these molecules into three-dimensional space using conformer embedding methods.

For each generated molecule, we filter out its molecular conformers with very high
energy (beyond the energy scale of normal molecules) as they are bad embedding results
to exist in real case. Most of these bad cases are due to impossible bond angle, too short
distance of non-bond pair of atoms, or illness of dihedral. Then the embedding process is
repeated until acceptable structure appears. Otherwise, we discard this molecule.

Finally, the embedded molecular structures are saved in SDF format files and fed
into the SMINA docking simulation. We download the crystal structure of K-Ras target
from Protein Data Bank (PDB) with PDB ID: 6FA2. And the binding pocket is kept the
same as the ligand in complex of chain A: the center of search box is at (64, 108, 0) with
size of each direction as (25, 30, 22). The unit is angstrom (10−10 m). During docking,
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the ‘EXHAUSTIVENESS’ of search is set to be 16 and hydrogen atoms are added for
docking. The best docking mode (with lowest affinity energy) is output as candidate
binding pose for given molecule. We obtain a docked structure for each candidate molecule
in the specified binding pocket of K-Ras receptor chain A, along with the binding affinity
energy (in kcal/mol) output by SMINA (shown in Figure 8). The visualization is based on
these coordinate files of receptor and candidate compounds using Chimera. SMILES and
candidate molecules are shown in Table 5 as well as their corresponding scores in Table 6.

Figure 8. Crystal structure of ligand: phosphoaminophosphonic acid-guanylate ester binding into
chain A of K-Ras. Protein sequences are colored as grey ribbon and its hydrophobic surface are also
shown around the ribbon.

Table 5. List of candidate SMILES sequences after virtual screening by EmbedDTI. Compounds are
ranked by the prediction score Pi (from low to high, the lower the better).

Rank Index Canonical SMILES

1 Oc1ccc(-c2cncc(C(c3nc4c(C5NC6CCC5C6)cccc4[nH]3)c3cccc4ocnc34)c2)cc1
2 NC1CCCN(c2ccccc2S(=O)(=O)c2cc(C=Cc3ccccc3)cc(Cc3ccc4c(c3)OCO4)c2)C1
3 [O-]C1CNCCC1C1COc2ccc(CN3CCOCC3c3cnc4ccc(F)c(C(F)(F)F)c4c3)cc2O1
4 C=Cc1ccc(-c2cc(NC(=O)[O-])nc(-c3ccc(C4CC(=O)N(F)C4c4ccc(F)cc4)cc3)n2)cc1F
5 CC(=O)N1CCC(c2cccc(NNc3cc(Cl)cc(C4OCCC(C(=O)N5CCCCCC5)C4F)c3)c2)CC1
6 Oc1cnc(C2COC(c3ccc(Cl)c4c3OCC(c3cc(F)c(F)c5c3OCO5)O4)C(F)C2O)c(F)c1
7 O=C(C1CCc2cc(Nc3cc([O-])c(F)c(C4CN(c5ccc(F)cc5)CCO4)c3)cc(F)c21)N1CCNCC1
8 Fc1cc(Cc2ccc(-c3nc4ccc(F)c(F)c4s3)cc2)ccc1Nc1ccccc1-c1ccccc1
9 [O-]c1ccc(Nc2ccc(Cc3nc(-c4cccnc4)no3)c(Cc3cc(F)cc(-c4nnc([O-])o4)c3)c2)cc1
10 OC1C=C(c2cccc(C(F)(F)F)c2)CC(C2CCNC(C3CCOC(c4ccccn4)C3)C2)C1

We use three performance metrics, i.e., quantitative estimate of drug-likeness (QED),
synthetic accessibility (SA), and docking score. The QED score (ranging from 0 to 1) was
designed for molecular evaluation that to what extent a candidate is close to the correspond-
ing average values in the QED benchmark set of 771 approved oral drugs. A higher QED
score indicates a larger similarity to the property of these drugs and thus more drug-like.
The synthetic accessibility (SA) is an assessment metric from the structural perspective by
quantifying the synthetic accessibility of drug-like molecules by examining the fragment or
submolecular features. Penalty will be added if given molecules contain complex ring and
too many atoms way more than normal drugs. Docking score approximates the binding
affinity between ligand compounds and receptors, which serves as a bioactivity evaluation
for candidate molecules.

As shown in Table 6, all the drug-target complexes have acceptable free energy de-
crease. The QED scores seem not very high, perhaps because the QED benchmark set is a
relatively small set, covering only 771 approved oral drugs, while both the SA score and
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docking score look good. The high SA scores suggest that the candidate molecules are very
similar to real molecules, and the low docking scores show a stable binding state.

Table 6. Metric list of candidate compounds after virtual screening by EmbedDTI. Compounds are
indexed following the ranking order (prediction score Pi from low to high, the lower the better).

Rank Index Prediction Score QED Score SA Score Docking Score (by SMINA)

1 −6.68 0.24 0.55 −12.44
2 −6.59 0.29 0.76 −12.68
3 −6.20 0.50 0.61 −12.38
4 −6.06 0.34 0.67 −12.68
5 −5.97 0.40 0.68 −12.42
6 −5.89 0.45 0.56 −12.62
7 −5.86 0.50 0.66 −12.43
8 −5.59 0.24 0.84 −12.32
9 −5.44 0.30 0.73 −12.31

10 −5.30 0.57 0.61 −12.34

In addition, we visualize the binding pose of candidate molecules into K-Ras receptor.
We use UCSF Chimera as the visualization tool and display possible interaction between
ligand and receptor. Chimera is open-sourced and functional for chemical or biological
analysis. Visualizations of ten candidate molecules are shown in Supplementary Materials
Figures S1–S10. From these figures, good shape complementarity can be observed between
the candidate drug compounds and the K-Ras protein.

These results show that the candidate molecules are approachable and promising to
put into assay validation in synthesis sense, and also suggest that EmbedDTI can be a
useful tool for drug screening.

6. Investigation on the Model Attention

As mentioned in Section 3.3.2, there is an attention layer in GCN to learn importance
of each node (atom or substructure). By outputting the attention score for each node,
we can observe the focus of the model for predicting DTI. Figure 9 shows an example.
The atoms with the highest attention scores are highlighted. The two atoms, C (id = 13)
and N (id = 14) obtain normalized attention scores of 1.0 and 0.958, respectively. Moreover,
their belonging substructure also received a very high score, 0.945. Note that there exists
quinazoline scaffold where these two atoms are located, in the molecule structure. Accord-
ing to [40], quinazoline ring system is considered to be the ‘master key’ in anticonvulsant
therapy, because it constitutes the basic scaffold of many common anticonvulsant drugs.
In fact, many structures bearing such quinazolinone scaffold exhibit potent anticonvulsant
property, as shown in [40].

Furthermore, it is also mentioned by [41] that 4(3H)-Quinazolinone (with a carbonyl
attached next to the marked atom N) with its derivatives possess a wide range of biological
properties viz. anticancer, antibacterial, antitubercular, antifungal, anti-HIV, anticonvulsant,
anti-inflammatory and analgesic activities. In this case, discovery of new antibacterial
agents can be accelerated by effectively using quinazoline scaffold.

This result suggests that besides prediction, our model may reveal important bio-
chemical properties of interactions between nodes or substructures, which could provide
helpful insight and guidance in drug discovery.
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Figure 9. A fused nitrogen heterocyclic compound molecule with 29 atoms and 17 substructures
(processed by partition algorithm). By attention output, the two atoms, C(id = 13) and N(id = 14)
with highest normalized attention scores (1.0 and 0.958) are highlighted in the figure (we perform
min-max normalization on the scores). The substructure containing the two nodes is assigned with
an attention score of 0.945.

7. Discussion

In this paper, we propose a new model called EmbedDTI for the prediction of drug-
target interactions. The major goal of EmbedDTI is to enrich the representation of input
target and compound information, to improve the prediction performance. The contribu-
tions of this study can be summarized in the following.

• To exploit abundant structural information from drugs, we model each drug molecule
as both a graph of atoms and a graph of substructures (groups of nodes). And we
propose algorithms for segmenting out the substructures and extracting their features.
The experimental results show that the two-level graph representation contributes to
the performance improved significantly.

• To fully use protein sequence information, we pre-train amino acid sequences via a
large database using word embedding methods from natural language processing.
The pre-trained embeddings are dense continuous vectors, which can represent the
latent semantic correlation between amino acids. Moreover, a deep CNN is further
employed to learn high-level abstract features of proteins. The enhanced protein
representation also improves model performance.

• To interpret the learning ability of EmbedDTI, we add an attention mechanism to
the GCN for learning atom-based graphs and substructure-based graphs. Different
attention weights are assigned to the nodes in the molecule graph to evaluate their
contributions. It can recognize important nodes as well as their interactions in the
graphs, which provide useful hints in drug discovery.

As a result, two levels of molecule representation have better performance than
single graph representation. Benefiting from the pretraining method, the word embedding
method captures abundant amino acid information. In addition, we further discuss the
interpretability of attention mechanism in drugs bearing the quinazolinone ring.

Although our proposed model has a better performance on the DTI prediction problem,
there is still room for improvement. As a future work, we will design more effective
algorithms incorporated with prior knowledge in the field of biochemistry to identify
substructures with chemical properties. In addition, we will consider a better combination
strategy of different levels of representation information instead of a simple concatenation.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biom11121783/s1, Figure S1: Visualization of the first candidate molecule binding into
specific pocket in chain A of K-Ras, Figure S2: Visualization of the second candidate molecule
binding into specific pocket in chain A of K-Ras. Hydrogen bonds are highlighted by green lines,
Figure S3: Visualization of the third candidate molecule binding into specific pocket in chain A
of K-Ras. Hydrogen bonds are highlighted by green lines, Figure S4: Visualization of the fourth
candidate molecule binding into specific pocket in chain A of K-Ras. Hydrogen bonds are highlighted
by green lines, Figure S5: Visualization of the fifth candidate molecule binding into specific pocket
in chain A of K-Ras. Hydrogen bonds are highlighted by green lines, Figure S6: Visualization of
the sixth candidate molecule binding into specific pocket in chain A of K-Ras. Hydrogen bonds
are highlighted by green lines, Figure S7: Visualization of the seventh candidate molecule binding
into specific pocket in chain A of K-Ras. Hydrogen bonds are highlighted by green lines, Figure S8:
Visualization of the eighth candidate molecule binding into specific pocket in chain A of K-Ras.
Hydrogen bonds are highlighted by green lines, Figure S9: Visualization of the ninth candidate
molecule binding into specific pocket in chain A of K-Ras. Hydrogen bonds are highlighted by green
lines, Figure S10: Visualization of the tenth candidate molecule binding into specific pocket in chain
A of K-Ras. Hydrogen bonds are highlighted by green lines.
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