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Abstract: Aging is closely related to the occurrence of human diseases; however, its exact biological
mechanism is unclear. Advancements in high-throughput technology provide new opportunities for
omics research to understand the pathological process of various complex human diseases. However,
single-omics technologies only provide limited insights into the biological mechanisms of diseases.
DNA, RNA, protein, metabolites, and microorganisms usually play complementary roles and perform
certain biological functions together. In this review, we summarize multi-omics methods based on
the most relevant biomarkers in single-omics to better understand molecular functions and disease
causes. The integration of multi-omics technologies can systematically reveal the interactions among
aging molecules from a multidimensional perspective. Our review provides new insights regarding
the discovery of aging biomarkers, mechanism of aging, and identification of novel antiaging targets.
Overall, data from genomics, transcriptomics, proteomics, metabolomics, integromics, microbiomics,
and systems biology contribute to the identification of new candidate biomarkers for aging and novel
targets for antiaging interventions.

Keywords: aging; aging biomarkers; antiaging targets; multi-omics; aging clock

1. Introduction

In 2019, there were an estimated 702 million people aged ≥65 years according to
world population prospects 2019: Highlights, accounting for 9.1% of the world population.
The aged population also grows at approximately 3% per year. In addition, human life
expectancy rapidly increases, i.e., from 64.2 years in 1990 to 72.6 years in 2019, and is
predicted to increase further to 77.1 years in 2050 [1]. Thus, the risk of developing aging-
related diseases increases.

Aging is a physiological process in organisms in which multifactorial processes, in-
cluding genetic factors, external environmental stimuli, and lifestyle factors, determine a
progressive decline over time. Environmental factors may have a cumulative and multiple
impact on health and longevity. The idea of “healthy lifestyles and environments” comes
from the observation of geographical clusters of centenarians around the world, with five
identified “longevity hotspots” known as Blue Zones, which are located in Sardinia (Italy),
Okinawa (Japan), Loma Linda (California), Nicoya (Costa Rica), and Ikaria (Greece). Thus,
their lifestyles and environments are possibly more conducive to longevity than those of
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the rest of the world. The populations in these areas are characterized by having an active,
stress-free lifestyle, strong community bonds, and spirituality. Maybe these are exactly
what we in the “non-blue zone” want to learn. It is also subject to regional restrictions
such as lifestyle, economic conditions, and geography; they cannot necessarily be broadly
extrapolated. However, among tissues and organs, different individuals age at different
rates. The aging rate is highly variant, and these specific changes often affect organ func-
tions [2,3]. The aging of the physiological systems and the changes in their functions lead
to various chronic diseases and metabolism-related syndromes [4,5].

Therefore, the characterization of aging-related biomarkers is expected to pave the
way for the discovery of novel antiaging targets [6]. Understanding the causes of aging
and disease and the relationship between the two is important for aging biomarkers
that promote the development of geriatrics and clinical translation. To date, there is
no accurate independent aging biomarker that can accurately reflect the aging state or
aging rate of people. Aging can be characterized by biomarkers [7]. To achieve this goal,
studies at the multi-omics level, which integrates epigenomics, transcriptomics, proteomics,
metabolomics, and microbiomics data, can provide a more comprehensive overview [8].

Due to the rapid development of bacterial species resource banks and large biological
databases around the world, the use of bioinformatics has remarkably improved, and multi-
omics methods are the most promising [9]. Currently, various national projects for the
biobanking of samples obtained from many people for subsequent omics analysis exist. For
instance, biobanks of aging research omics projects include MARK-AGE [10], EUROBATS,
and UKBiobank [11]. Similarly, artificial intelligence will greatly deepen our understanding
of aging in the near future and transform the most reliable method of assessing biological
age into clinical practice. Previously, we have attempted to characterize the gut microbiota
of centenarians to determine whether a relationship between the gut microbiota and
human longevity exists. Using 16S rRNA gene and metagenomic sequencing methods,
we constructed the longest human gut microbiota trajectory of aging and analyzed the
composition and function of the gut microbiota in 247 healthy subjects aged 0–110 years.
We also conducted in vitro and in vivo experiments in mice.

The multi-omics approach has become the gold standard in different fields of biological
sciences. The multi-omics approach can increase the number of identified markers for aging
biomarkers with novel insights into aging and of novel targets for antiaging. In this review,
we summarize recent studies in the field of aging based on different multi-omics viewpoints,
i.e., genomics, transcriptomics, proteomics, metabolomics, and microbiomics. We integrate
aging biomarkers of different omics levels to better discover novel targets for antiaging
interventions. These promising aging biomarkers could be useful for clinical research.

2. The Necessity of Distinguishing Chronological Age and Biological Age

Without a method to assess the personal aging rate, determining preventive inter-
ventions for aging is impossible. Aging biomarkers show the changes in the molecules,
cells, and organs of the human body with age. Ideally, these biomarkers should slow
their progression with age or reverse to a young state [12]. Chronological age represents
a person’s actual age and is calculated based on the time elapsed in a person’s life [13].
Biological age refers to an individual’s overall health status at a certain point in time of
physiological age. Generally, the environment, diet, life, and psychological factors should
be considered. Biological age has been revealed as a better predictor than chronological
age, and its measurement can facilitate the assessment of colonoscopy-related colorectal
adenoma risk [14,15].

In aging research, it is common to use chronological age. However, due to the hetero-
geneity of aging, chronological aging is unpractical. There has been a discrepancy between
the predictions of biological age and chronological age. Considering the heterochronism of
aging, the measurement of biological age becomes complicated, as it involves the calcula-
tion of many target molecules that indicate the dynamics of different processes. The panels
of biomarkers can act as an integrated tool for measurements. Generally, special indicators
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are used to accurately indicate biological age. Klemera and Doubal used chronological age
as one of the biomarkers, which is the most popular biomarker [16,17]. The principal com-
ponent analysis method unites equation construction, correlation analysis, and redundancy
analysis [18,19]. The main problem with biological age assessment is that the function of
chronological age is unknown among the different available measurement methods. Some
people believe that it is a very important biomarker [20], while others consider that the
aging rate does not need to be measured by chronological age [21].

Advances in artificial intelligence and statistics provide opportunities to accurately
estimate biological age. However, they are not fully effective against heterogeneous popu-
lations, and there is no clinical certainty. The application of some aging biomarkers from
different sources leads to a reduction in the resolution of most biomarkers. Since the ideal
biological age estimation method should be comprehensive and complete, we suggest an
integrative approach based on multi-omics technologies for aging biomarkers and novel
antiaging targets. This multi-omics method is based on the multi-layered organizational
logic of life, thus making the prediction of biological age more accurate.

3. Multi-Omics for Aging Clocks
3.1. Epigenetics Aging Clocks

Biological age estimation based on DNA methylation has been accurately
discussed [22–24]. As an “age estimator”, the epigenetic aging clock is used to estimate
the epigenetic (biological) age of DNA. It also demonstrates that age-related diseases are
associated with higher biological age relative to the chronological age. This phenomenon is
called epigenetic age acceleration [22].

The discovery of some aging clocks can predict age-related pathologies, such as
cancers, heart disease, and diabetes [25]. There are other types of epigenetic clocks from
whole blood [26–30], skin [31], and saliva [32]. The aging clock known as DNA methylation
GrimAge is an instrument that allows us to view epigenetic acceleration of aging from a new
perspective. It can predict the time-to-death and comorbidity count, time-to-cancer, and
time-to-coronary heart disease [33]. In a biological aging clock based on DNA methylation,
the main indicator of biological age is the methylation of ribosomal DNA exclusively. It
can accurately characterize the biological age and show the organism’s response to the
treatment of aging and effective antiaging interventions [34].

3.2. Transcriptomics Aging Clocks

The positive increase in age reflects faster biological aging. Peters et al. conducted a
meta-analysis of 7074 individual peripheral blood samples, in which 11,908 genes were
characterized to create age-related predictors. They found that the average absolute error
between the chronological age and the predicted age was 7.8 years [35]. Another important
study focused on the aging of the transcriptome of skin cells served as a pioneering method
for determining the biological age of such datasets [36]. The age was predicted by linear
discriminant, and the median absolute error and average absolute error of 4 years and
7.7 years were obtained, respectively [36,37].

The aging rate varies greatly between individuals and groups and will be significantly
affected by factors such as genetics, environment, lifestyle, etc. Due to the data type,
transcriptome aging clocks have weaker correlations with the chronological age than DNA
methylation aging clocks [24,38]. To address this, a standardized cohort is needed. In
a study of 6465 individual blood samples collected from 17 datasets, the differences in
technical performance had a more significant effect on blood expression profiles than
disease and age itself [39]. Then, cross-platform normalization methods, normalization
through reference genes, distribution transformation, and quantile normalization were
used to successfully eliminate the batch processing effects. A deep neural network was
utilized as a predictive index to yield an average absolute error of 6.14 years and a Pearson
correlation accuracy of 0.91 [39].
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In summary, the biological age prediction technology based on transcriptomics has
developed rapidly, and its accuracy level has been continuously improved. Thus, transcrip-
tomics aging clocks will catch up with methylation aging clocks in the near future.

3.3. Proteomics Aging Clocks

To help optimize aging clocks and determine the potential novel targets for antiaging
interventions, proteomics aging clocks have been systematically reviewed and analyzed.
Proteins are studied, because they significantly change their expression levels with age
and represent functional products, unlike transcriptome changes, which are not always
associated with proteome changes [40,41]. Since previous proteomics studies have used
various proteomics techniques, sample sizes and types, and statistical methods, significant
differences in the results have been observed. Even when analyzing the same biological
sample, the findings can be quite different [42,43].

To achieve these goals, a systematic review of 36 different proteomic analyses was
performed, each of which identified proteins that changed significantly with age [44]. There
were 32 proteins that have been reported at least five times and 1128 at least twice. Each of
these 32 proteins is related to aging and age-related diseases. Furthermore, 1128 common
proteins associated with gene regulation, extracellular matrix, and inflammation were
analyzed based on bioinformatics enrichment. Finally, a new proteomics aging clock was
proposed, which is composed of three or more proteins in the plasma that change with age
in different studies. Using a large patient cohort of 3301, the proposed proteomics aging
clock was confirmed to accurately predict the age of a person [44].

Another study analyzed 2925 plasma proteins in a cohort of 4263 subjects and devel-
oped a new bioinformatics method. This study revealed significant nonlinear changes in
the human plasma proteome with age. Changes in the proteome reflect the different biolog-
ical pathways and reveal the various genome and proteome associations with age-related
diseases and phenotypic traits. This new method of studying aging may provide potential
novel targets for age-related diseases [45].

3.4. Metabolomics Aging Clocks

Hertel et al. [46] proposed the use of metabolomics for biological age prediction, called
the “metabolomic aging clock”. They based their analysis on urine data obtained through
1H-NMR spectroscopy. The metabolomics aging clock can predict the prognosis of weight
loss in bariatric surgery patients and can be applied to other fields of medicine. Similarly,
van den Akker et al. [47] developed an innovative, biological age measurement method
based on metabolomics and analyzed the 1H-NMR serum metabolomics data. To estimate
chronological age, they used a linear model trained with metabolomic variables. Finally,
they constructed a score reflective of an individual’s biological age called metaboAge and
showed that the excess of metaboAge over chronological age corresponded with a poor
cardiometabolic health.

3.5. Microbiomics Aging Clocks

Using the microbiome aging clock to predict biological age is a relatively new analyti-
cal method. However, this method has two problems: one is to find people with similar
lifestyles, and the other is to normalize the dataset. Under normal circumstances, the
structure and composition of the human gut microbiota will decrease with age; however,
the elderly occasionally exhibit a microbiota structure similar to that of adults. The gut
microbiome is mainly composed of four phyla: Firmicutes, Proteobacteria, Bacteroidetes,
and Actinobacteria [48]. During aging, the relative abundances of Bifidobacterium, Bac-
teroides, Lactobacillus, Ruminococcus, and Bacillus decrease, whereas those of Streptococcus,
Enterobacter, Clostridium, and Escherichia increase [49,50]. The results of studies on aging-
related microbial communities are similar to those in microbial communities. In addition
to transcriptomics studies, microbiology studies also heavily rely on methodology [51].
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In the transcriptional microbiology of aging, the concentration of short-chain fatty acid
products in the gut of aging people is low, and it is related to the increase in the number
of pathogenic and gas-tolerant bacteria, whose reproduction can lead to malnutrition
and age-related diseases [49]. Based on the metagenomic dataset and using deep neural
network methods to determine the biological age, including 1673 microbial taxa. An
average absolute error of 3.94 years, which is remarkably close to Horvath’s [38] 3.4 years,
and an R2 value of 0.81 were obtained. This is the first study to establish a quantitative
model of gut microflora aging [49].

4. Multi-Omics Approach for the Discovery of Aging Biomarkers

Aging is the main risk factor for chronic diseases that limits a healthy lifespan. There-
fore, the mechanism of aging is a potential therapeutic target. Age correlation analyses
involve large amounts of data obtained from various omics analyses, such as genomics
(epigenomics), transcriptomics, proteomics, metabolomics, and microbiomics. The main
advantages of this method include the analysis of all possible data pertaining to a single
person or a large group of people, as well as the common and individual characteristics
from a multi-dimensional perspective and the identification of aging markers and novel
antiaging targets. Machine learning methods based on deep neural networks are the latest
and most complex methods for identifying human aging biomarkers. They can utilize any
type of omics data to predict age.

4.1. Aging Genomics
4.1.1. Aging Epigenomics

Epigenetics is the study of changes in the biological phenotype without change alter-
ations in the intrinsic genotype [52], and these changes are mainly caused by the environ-
ment [53]. The DNAm model is the most studied epigenetic feature [54–56]. The epigenetic
aging clock is a useful predictor of age-related diseases. Most studies on DNAm patterns
analyzed peripheral blood samples and showed that the over- and undermethylation of
CpG sites are related to mortality. A total of 353 CpG sites can be used to estimate phys-
iological aging [56]. On the other hand, the immune system status can be characterized
by 73 CpG sites [23,24], and 10 CpG sites can be used as predictors of cancer and cardio-
vascular disease mortality [28]. DNAmGrimAg has been correlated with diseases and can
predict mortality [33].

The indicators of epigenetic aging are also related to neurodegenerative diseases.
For example, Parkinson’s disease (PD) is associated with the first acceleration of epige-
netic aging clocks [57]. Higher epigenetic age (increased DNAmAge) corresponds with
a higher risk for cancer and age-related cartilage degenerative diseases [58,59]. Exercise
can improve the DNAm of sarcopenia-related genes, in which the epigenetic aging clock
is lower [60]. In addition, the epigenetic aging clock increases with BMIs in patients with
obesity and metabolic syndrome [61], indicating the relationship between the epigenetic
clock and lifestyles.

4.1.2. Aging Gene Expression

Further, overexpression of the Forkhead box O3 gene (FOXO3) in model organ-
isms is related to a prolonged lifespan. FOXO3 overexpression in the adipose tissue of
Drosophila [62] and mice results in an extended lifespan [63]. Polymorphisms in the FOXO3
gene in humans are also associated with longevity [64]. Furthermore, the apolipoprotein E
gene (APOE) encodes a major cholesterol carrier that supports regulation of the cholesterol
and lipid metabolism and cell repair [65]. Furthermore, knocking out the tumor suppressor
gene P53 in mice results in premature aging, organ atrophy, osteoporosis, and a poor
antistress response [66].
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4.1.3. Telomere-Based Biomarkers

Telomeres are the protective caps of nuclear proteins at the end of eukaryotic chromo-
somes, composed of repeated TTAGGG. They have the functions of controlling cell and
human aging and protecting chromosomes [67]. Telomere length is a typical indicator of
biological aging, and telomerase is the main regulator of telomeres [68]. Cell division is
accompanied by the shortening of telomere and gradually leads to chromosomal instability
with age [69]. In one study involving the systemic knockout of mouse telomerase sub-
units, a decrease in telomere length, an acceleration of organ dysfunction, and a shortened
lifespan were observed [70,71]. The reintroduction of telomerase has great potential for
reversing aging [72].

Telomere wear may increase the risk of aging-related diseases [73]. A study on a large
population (n = 105,539) showed that women have longer telomeres than men and that
there are gender-related differences in biological aging [74], which may be due to hormonal
differences, such as estrogen levels and the role of the X chromosome [75,76]. There is also a
relationship between shorter telomeres and higher mortality [77,78]. Decreased age-related
immune surveillance and increased inflammation are associated with the shortening of
telomeres and decreased telomerase activity [79]. The telomere length of white blood cells
in patients with heart failure was reduced by nearly 40% [80] and, in AD patients, was
often shorter [81,82]. Telomere shortening is related to diseases caused by oxidative stress,
including Alzheimer’s disease [83], diabetes, and cardiovascular diseases, as well as the
proinflammatory cytokine tumor necrosis factor alpha [84,85]. An important factor of aging
may be the accumulation of reactive oxygen species (ROS) [86]. Notably, the oxidative stress
associated with mitochondria also plays an important role. Particularly, carbonyl cyanide-4
(trifluoromethoxy) phenylhydrazone, the uncoupling agent of oxidative phosphorylation in
the mitochondria, can depolarize the mitochondria. Mitochondrial dysfunction can increase
ROS production, telomere wear, and genome instability [87]. Moreover, cancer cells can
proliferate indefinitely due to their ability to maintain a telomere length [88]. However, the
relationship between telomere length and cancer susceptibility remains unclear, because
cancer types have distinct characteristics [89]. Additionally, it should be further studied
whether telomeres and telomerase can be used as direct biomarkers of aging diseases.
Specific drugs or nutraceutical methods that can maintain the great conditions of telomere
and telomerase without causing adverse reactions should also be explored [90]. In Table 1,
we summarize the main potential aging biomarkers identified in genomics studies.

Table 1. Potential aging biomarkers identified in genomics studies.

Omics Biomarkers Function/Application References

Genomics

DNA methylation aging clocks Biological age estimation method [38]

DNA methylation GrimAge Been correlation with diseases and can
predict mortality [57]

DNAm pattern of 353 CpG sites Estimate physiological aging [56]

73 CpG sites Immune system [23,24]

10 CpG sites Predictor of cancer mortality and
cardiovascular disease [28]

The increase in DNAmAge Cancer, age-related cartilage degenerative
diseases, and tumor tissues [58,59]

Forkhead box O3 gene (FOXO3) Related to prolonged lifespan [62–64]

The apolipoprotein E gene (APOE) Regulation of the cholesterol and lipid
metabolism and cell repair [65]
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4.2. Aging Transcriptomics
4.2.1. Transcriptomics-Based Biomarkers

Deep changes in the transcription profile occur in human aging processes. Another
typical example of agingomics is transcriptomics, which studies mRNA groups, including
lncRNAome, circRNAome, and exosomal RNAome. Due to the diversity of the methods
and goals in each field, there is no unified way to achieve a clear overall view. Visualiz-
ing the complete transcriptome also remains a challenge. Focus on research may affect
transcriptomics and assist doctors in selecting appropriate biomarkers from various RNA
types [91–94]. At present, the characteristics of six gene expression markers of cell senes-
cence have been identified by Frenk & Houseley [95].

As a regulator of lipid homeostasis, phospholipid transport, and macrophage activity,
ABCG1 mediates the pathway of endothelial cholesterol efflux and protects blood vessels
from chronic inflammation. Such alleles usually determine the human lifespan [96–98]. A
study of the human whole-blood transcriptome including 1016 people aged 70–80 years
showed that BIRC2 is an apoptosis regulator of inflammation, cell proliferation, and mitotic
kinase signal transduction and was the most downregulated during aging [99]. In another
study analyzing whole-blood samples, aging was positively correlated with the expression
of 11 genes, namely AMZ1, MANEAL, PARP3, KIAA0408, ISM1, CRIP1, NEFL, PHLDA3,
DDB2, CHN1, and CAPN2, whereas it was negatively correlated with that of four genes,
namely MXRA8, SLC4A10, CD248, and PLEKHA7 [100].

Five transcriptional biomarkers that can distinguish between <65 years old and
≥75 years old have been accurately determined, thereby demonstrating that transcrip-
tomics can classify the elderly [101,102]. The expression of age-related genes can be used to
identify aging biomarkers.

4.2.2. MiRNAs, lncRNAs, and circRNAs-Based Biomarkers

MiRNAs are 21–25 nucleotides in length that are involved in biological regulation
processes [103,104]. To identify transcriptome-specific biomarkers, the correlation between
microRNA expression profiles and chronological age is analyzed. For instance, the ex-
pression of miR-22-3p and miR-28-3p are positively correlated with age, whereas that of
miR-425-3p, miR-182-5p, and miR-99b-5p are negatively correlated [92]. MiRNA is related
to many diseases, such as cancer [105,106], cardiovascular diseases [107,108], hyperten-
sion [109], obesity [110], and diabetes [111]. Multiple studies on monocytes and the serum
of long-lived and elderly individuals have revealed age-related miRNAs [112–114].

Monitoring the changes in miRNA expression during aging may be useful in detect-
ing promising biomarkers [92]. In sarcopenia, biomarkers such as miR-181a, miR-434-3p,
miR-431, miR-29, and miR-126 are involved in IGF-1, senescence, and apoptosis signaling
in cells [115]. MiR-19a-3p has been recommended as a biomarker for ischemic stroke,
and the gene pathways targeted by miRNAs related to inflammation, coagulation, and
platelet activation have been identified [116]. Considering the association between stroke
and age and that the elderly population has a higher risk of stroke, the identification of
miRNAs can be used for various age-related diseases to subsequently discover biomark-
ers for disease treatment and prevention [117]. Similarly, human hearing loss is related
to the expression of miR-34a and miR-21, which may be potential biomarkers of inflam-
mation [118,119]. MiR455-3p has been proposed as a potential peripheral biomarker for
Alzheimer’s disease [120,121]. To elucidate the interaction among miRNA, aging diseases,
the aging process, and the underlying mechanisms, there is need for more longitudinal
studies and the integration into multi-omics methods.

LncRNAs are ≥200 nucleotides in length that are another type of noncoding RNA [122]
and act as signals, baits, and guides during transcription and affect gene expression on
different levels, including recombination, transcription regulation, and post-transcriptional
modification [123], thereby affecting the length of life and aging. The downregulation of
lncRNA induces decreased cell growth and senescence [94]. Telomere-lncRNA can regulate
cell telomerase activity during aging [124]. Age-related lncRNA expression disorders may
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affect neurogenesis and synaptic plasticity by promoting neuropathy via protein aggrega-
tion and neurodegeneration [124]. Meg3 has been thought to be related to cardiovascular
diseases of aging [125].

CircRNAs are RNA transcripts produced by the reverse splicing of protein-coding
exons. These transcripts may serve as useful biomarkers as they accumulate in the brain
during aging [126]. CircRNAs can be detected in the blood [127,128], serum [129], and
saliva [130]; they are very valuable biomarkers of aging [131,132]. A recent study has shown
that, in multiple system atrophy (MSA) patients, circRNAs are upregulated [133]. In Table 2,
we summarize the main potential aging biomarkers identified in transcriptomics studies.

Table 2. Potential aging biomarkers identified in transcriptomics studies.

Omics Biomarkers Function/Application References

Transcriptomics

Transcriptomics aging clocks Predictors of age [35]

Transcriptome aging of skin
fibroblasts Determining the biological age [36]

The number of ABCG1 Determines human lifespan [96,97]

BIRC2 gene
An apoptosis regulator of inflammation, cell

proliferation and mitotic kinase
signal transduction

[99]

The expression of 11 genes (AMZ1,
MANEAL, PARP3, KIAA0408, ISM1,

CRIP1, NEFL, PHLDA3, DDB2,
CHN1, CAPN2)

Positively correlated with aging [100]

The expression of 4 genes (MXRA8,
SLC4A10, CD248, and PLEKHA7) Negatively correlated with aging [100]

miR-22-3p and miR-28-3p Positively correlated with age [92]

miR-425-3p, miR-182-5p,
miR-99b-5p, etc. Negatively correlated with age [92]

miR-181a, miR-434-3p, miR-431,
miR-29, and miR-126 In sarcopenia [115]

miR-19a-3p A biomarker for ischemic stroke [116]

the expression of miR-34a Associated with human hearing loss [118]

miR-21 A potential biomarker of inflammation [119]

miR455-3p As early biomarkers of AD [120,121]

lncRNAs
Provide different regulatory layers in the cell
aging process, which can be used to intervene

in this process
[124]

Downregulation of lncRNA
Lung adenocarcinoma transcript 1 associated
with metastasis in proliferating cells induces

decreased cell growth
[94]

Telomere-lncRNA Can regulate the telomerase activity and
survival rate of neural stem cells during aging [124]

Age-related lncRNA
expression disorders

May affect neurogenesis and synaptic
plasticity processes [124]

Meg3 Related to cardiovascular aging [125]

CircRNAs May be valuable biomarkers in the aging brain [126]

Multiple circRNAs are upregulated In multiple system atrophy (MSA), which is a
sporadic neurodegenerative disease [133]
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4.3. Aging Proteomics
4.3.1. Proteomics-Based Biomarkers

Since it is closer to the phenotype than the genome or the transcriptome, the proteome
has become an attractive target for researchers studying aging biomarkers. Proteins usually
exert direct effects on information processing through signal transduction pathways. Based
on a plasma soma scan, 1301 proteins from 120 participants were analyzed, and 10 major
proteins related to aging were studied, i.e., GDF15, NPPB, CTSV, EFEMP1, ADAMTS5,
CHRDL1, FSHB, MMP12, SOST, and PTN [43]. In a large cohort of 3301 patients, the pro-
teomics aging clock was shown to accurately predict the age of a person [44]. Furthermore,
urine tests are another way to use biomarkers to assess the rate of aging. For instance,
urine collected from healthy people through the proteome is characterized by its higher
abundance of LGGS3BP, MASP2, DNASE1, ANPEP, and IGFBP1 [134].

Proteomics can be used as an effective method to link the genotype and pheno-
type [135]. The relationship between circulating peptides (such as GDF8 and GDF11
pro-peptides and GDF8 and GDF11 mature proteins) and proteins has been implicated in
accelerating aging phenotypes, and they are all involved in the inflammatory process [136].
The results are related to cardiovascular disease [137] and Alzheimer’s disease [138] pro-
cesses associated with proinflammatory cytokine profiles.

Therefore, proteomics is expected to decipher the aging process. The identified 11 dif-
ferentially expressed proteins in the elderly may be useful biomarkers and could provide a
basis for understanding the molecular mechanisms related to human health and aging [139].
In the plasma proteome of centenarians, the top 10 proteins related to nonhealthy aging
(CRTAC1, CDKL1, CD14, and AOPEP) and healthy aging (TGFBI, TAS1R3, IGFAS, CRISP3,
and CLEC3B) were revealed. These proteins can be used as aging biomarkers to develop
new targets for clinical interventions [140]. The proteomic characteristics of 244 serum
samples showed significant differences in the levels of 1312 proteins. Beneficial changes
in human gene regulation can also be linked to longevity [141]. Proteomic studies have
shown that serine protease inhibitors, SCT1, and GDF15 proteins can be used as biomarkers
of aging, and there is an overlap in content considered as effective biomarkers [142]. In
particular, GDF15, a mitogen involved in immune response and immune aging, is worthy
of further study, because its concentration increases in elderly people regardless of gender
or race [143].

Although some achievements have been made in aging proteomics, reliable proteomic
biomarkers are still lacking. The main reasons include the accessibility of mass spectrometry
technology, sample selection, maintaining the uniformity of preprocessing procedures, and
the lack of proteomic heterogeneity and nonspecific circumvention for different populations,
genders, and disease processes.

4.3.2. Senescence-Associated Secretory Phenotype-Based Biomarkers

SASP was first proposed by Coppe and colleagues [144]. Senescent cells can produce
and secrete some cytokines, including include growth factors, inflammatory factors, and
immunomodulators, to positively or negatively affect the surrounding cells and microenvi-
ronment [145]. Severe DNA damage can cause continuous DNA damage response signals
and trigger SASP [146]. The NF-κB signaling pathway plays an important role in regulating
the expression of IL-6 and IL-8 [147]. The activity of NF-κB is enhanced by mTOR activation
and p38 MAPK upregulation [148,149], resulting in a potent SASP.

Sirtuins alone or cooperatively participate in mitochondrial function, cell cycle regu-
lation, inflammation, DNA damage repair, and other biological processes, thus affecting
the genome stability, inflammation alleviation, metabolic homeostasis, lifespan, and health
maintenance [150,151]. Another protein beneficial for longevity and metabolic regula-
tion is AMP-activated protein kinase (AMPK), affecting animal and human lifespans and
health [152]. Besides, the overexpression of deacetylase family genes (Sirtuins) extends
the lifespans of yeasts, worms, and fruit flies [153]. According to a recent study, Sir2 pro-
longs the lifespan by maintaining gene silencing during aging [154]. As another example,
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telomerase repeatedly adds telomere DNA to chromosome ends to counteract telomere
shortening associated with the cell cycle [155]. Further, inhibition of the mammalian target
of the rapamycin (mTOR) signaling pathway [156] and mTOR regulatory signals has been
proposed as a major molecular mechanism that delays aging in various organisms, from
yeasts to mammals [157]. Finally, methionine sulfoxide is considered to be a marker of
biological aging [158]. Methionine sulfoxide reductase is a specific antioxidant enzyme
that removes this modification of proteins and, at the same time, acts as a general cel-
lular antioxidant to scavenge free radicals and protect the cell from biological oxidative
stress [159]. In Table 3, we summarize the main potential biomarkers of aging identified in
proteomics studies.

Table 3. Potential aging biomarkers identified in proteomics studies.

Omics Biomarkers Function/Application References

Proteomics

Proteomics aging clocks Accurately predict the age of a person [44]

GDF15, PTN, ADAMTS5, FSHB,
SOST, CHRDL1, NPPB, EFEMP1,

MMP12, and CTSV
Related to aging [43]

LGALS3BP, MASP2, DNASE1,
ANPEP, IGFBP1, etc. Assess the rate of aging [134]

Circulating peptides (GDF8 and
GDF11 pro-peptides and GDF8 and

GDF11 mature proteins)
and proteins

Be related to the accelerated dominant
aging phenotype, and they are all involved

in the inflammatory process
[136]

CLEC3B, CRISP3, IGFAS, TAS1R3,
and TGFBI Be related to healthy aging [140]

AOPEP, CD14, CDKL1,
and CRTAC1 Be related to nonhealthy aging [140]

Serine protease inhibitors, SCT1,
and GDF15 As biomarkers of aging [142]

GDF15 A promising biomarker of aging [143]

Sirtuins
Affecting genome stability, inflammation

alleviation, metabolic homeostasis, lifespan,
and health maintenance

[150,151]

The NF-κB signaling pathway Regulating the expression of IL-6 and IL-8 [147]

AMP-activated protein kinase
(AMPK)

Affecting animal and human lifespan
and health [152]

Telomerase Counteract telomere shortening associated
with the cell cycle [155]

Methionine sulfoxide A marker of biological aging [158]

Methionine sulfoxide reductase Protect the cell from biological
oxidative stress [159]

4.4. Aging Metabolomics

The biomarkers of aging metabolomics are the most useful tools for estimating aging.
Metabolomics yields a huge amount of information, especially when it is used in conjunc-
tion with other omics approaches. Biomarkers based on metabolomics can simultaneously
become the driving forces and signs of aging, which can then reveal the metabolic path-
ways related to the lifespan [160]. Changes in the metabolic profiles related to age can be
quantitatively analyzed, and the analytical techniques for metabolite detection are highly
sensitive and specific [161].
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Regarding their clinical application, the number of known metabolomics biomarkers
of aging is limited [162]. The use of multi-omics aging pipelines with transcriptomics or
other types of omics data makes the metabolome itself valuable [163]. It is necessary to
mention the “endophenotype” here. The aging process may be accompanied by different
genetic, environmental, and disease effects, which may affect the overall transcriptome,
proteome, and metabolome profiles. The multi-omics method based on the endophenotype
is a more flexible method to detect age-related metabolome changes [164,165].

In a metabolomics and epigenetic analysis investigating aging in the British popu-
lation, significant multi-directional changes in several metabolic pathways, such as CoA
catabolism, vitamin E metabolism, lysine metabolism, tryptophan metabolism, and tyrosine
metabolism, were detected [166]. In another study, 2678 plasma metabolites in a cohort
of 150 individuals (30–100 years old) were identified [167]. The levels of monoacylglyc-
erides, diacylglycerols, and phosphoserine decreased with age. On the other hand, the
product of proteolysis, i.e., L-γ-glutamyl-L-leucine, increased independently of gender
during aging. However, the levels of 25-hydroxy-hexanoic acid, eicosapentaenoic acid, and
phosphoserine showed a negative trend in the elderly. Therefore, the effect of aging on
lipid distribution can be detected [167].

Various molecular mechanisms underpin the genetic factors involved in longevity. The
main factors that affect longevity and aging are growth hormone (GH) and insulin/insulin-
like growth factor (insulin/IGF-1) pathways [168] in various organisms, from yeasts to
mammals (including humans) [169,170]. Nicotinamide adenine dinucleotide (NAD+)
plays a vital role in mitochondrial electron transport, and it decreases with age [171].
Dietary supplementation with NAD+ can help maintain health and extend the lifespan of
mice [172,173]. Nicotinamide ribose supplementation can induce muscle and intestinal
stem cells in aging mice to rejuvenate [174,175]. However, its potential antiaging effect has
to be balanced with the potential tumorigenesis risk [176].Chronic inflammation in tissues
is another cause of aging. It is triggered by signaling pathways related to the activity of
transcription factor NF-κB [177]. Inhibiting the activity of NF-κB extends the life of fruit
flies and mice [178]. Further, the autophagy–lysosomal signaling pathway eliminates toxic
and easily aggregating proteins to maintain the normal cell functions in nematodes [179],
fruit flies [180], mice [181], and other model organisms, and even human cells, to extend
their lifespan.

In addition, individuals with higher levels of advanced glycation end products (AGEs)
suffer from oxidative damage, leading to immune aging [182,183]. There are nine dif-
ferentially expressed metabolites in men and women, which may serve as biomarkers
of the aging process [184]. Another study of 44,168 individuals (18–109 years old) from
12 cohorts revealed that the metabolic profiles of polyunsaturated fatty acids/total fatty
acids, histidine, and leucine may be indirect predictors of long-term mortality in clinical
trials [185]. However, there are many challenges in clinical metabolomics [186]. In Table 4,
we summarize the main potential aging biomarkers identified in metabolomics studies.

4.5. Aging Microbiomics

The microbiota exists in all parts of the human body, including the gastrointestinal
tract, skin, respiratory tract, and so on. However, its abundance varies depending on tissue
and organ types. The human microbiota consists of trillions of coexisting microorganisms,
including bacteria, protozoa, archaea, viruses, and fungi [187,188]. The temporal change
in microbial diversity and composition [189,190] is essential to human development and
health [191]. Many factors affect the diversity and stability of the human microbiome, such
as diet, genetics, environment, and antibiotics [192]. During aging, changes in physiology,
diet, medications, and lifestyle can lead to changes in the gut microbiota [193].
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Table 4. Potential aging biomarkers identified in metabolomics studies.

Omics Biomarkers Function/Application References

Metabolomics

CoA catabolism, vitamin E metabolism,
lysine metabolism, tryptophan

metabolism, tyrosine metabolism, etc.
Related to aging [166]

Monoacylglycerides, diacylglycerols
and phosphoserine, etc. Show a decreasing trend with age [167]

The product of proteolysis and
L-γ-glutamyl-L-leucine

Increases independently of gender
during aging [167]

25-hydroxy-hexanoic acid,
eicosapentaenoic acid,

phosphoserine, etc.
Show a negative trend in the elderly [167]

Nicotinamide adenine dinucleotide
(NAD+)

Plays a vital role in mitochondrial electron
transport. can help maintain health and

extend the life of mice
[171–173]

Higher advanced glycation end
products (AGEs) levels

Suffered from oxidative damage, leading to
immune aging [182,183]

Metabolic profile (polyunsaturated
fatty acids/total fatty acids, histidine,

leucine, etc.)

May be an indirect predictor of mortality
related to clinical trials and medical

decision-making
[185]

Inhibiting the activity of NF-κB Extends the life of fruit fly and mouse [177,178]

The autophagy–lysosomal signaling
pathway

Maintain the normal cell functions and
extend the lifespan [179–181]

With the rapid development of high-throughput sequencing technologies, several
breakthroughs have been achieved by studies on the gut microbiota [194]. Generally, the
diversity of the microbiome decreases with age, especially in the elderly [195–197]. For
example, Bifidobacterium, which plays a role in maintaining human health, is an important
part of the gut microbiota [197]. However, the abundances of Bacteroides and Enterobac-
teriaceae increased [198]. The long-term supplementation of Bifidobacterium can enhance
the memory of aging rats [199]. The ratio between Firmicutes and Bacteroidetes can be
an indicator of metabolic health and decreases with age [200]. According to studies using
human and animal models, the composition of the gut microbiota is an important factor
related to longevity [201,202]. Some recent studies have shown that the composition of
the human gut microbiota is affected by host age, diet, and environment [203,204]. The
relationship of the human gut microbiota with metabolic disorders, obesity, inflammatory
bowel disease, and infections has also been investigated [205,206]. The gut microbiota can
produce various short-chain fatty acids, essential amino acids, peptides, vitamins, and
other organic compounds. These microorganisms are also involved in the digestion and
absorption of the gastrointestinal tract and regulate immune, metabolism, and other related
physiological processes [207,208].

Considering the abovementioned findings, the relationship between the gut microbiota
and healthy aging has been investigated [209,210]. In the elderly, the gut microbiota is
related to host immune homeostasis caused by inflammation [211], which may lead to
diseases and debilitating processes [212,213]. Chronic inflammation, neurodegeneration,
and metabolic syndrome are related to inflammatory aging [198,214]. Immune senescence
is usually accompanied by upregulation of the inflammatory response. During aging,
the continuous imbalance in the gut microbiota leads to an inflammatory response in the
intestinal mucosa [215]. Among the elderly, a specific microbiota phenotype has been
detected, and the number of bacteria with anti-inflammatory and immunomodulatory
effects, including Bacteroides, Ruminococcus, Faecalibacterium, Parabacteroides, and Clostridium,
is reduced, which may promote the development of common diseases and disorders related
to aging. [216,217].
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In one of our unpublished studies, using high-throughput sequencing tools (16S rRNA
gene amplicons and metagenomics), we obtained the longest trajectory of metagenomic
changes in the human gut microbiota with age and characterized the microbiome of Chinese
centenarians. The gut microbiota of Chinese centenarians was more diverse than that of
young people. We observed the enrichment of several potentially beneficial bacterial groups,
including those that produce SCFAs, in centenarians. However, some OTUs associated
with beneficial bacteria (Faecalibacterium) were reduced. Our data suggest that longer
lifespans are linked to health-related probiotics in centenarians. The relative abundances of
Akkermansia, Lactobacillus, and Christensenellaceae increased in the elderly and centenarian
groups. These bacterial families promote immune regulation, defend against inflammation,
and promote healthy metabolic homeostasis [218,219]; therefore, they could be markers of
the ecosystem of long-lived people.

In addition, we identified the taxonomy of “longevity-related strains” at the genus
level and accurately described the functional changes that occur with aging. To validate
these metagenomics results, we conducted in vitro screening and in vivo mouse experi-
ments. We observed high oxidoreductase activity in the microbiota of centenarians and
concluded that longevity-related strains play an antioxidant role in humans, thus contribut-
ing to healthy aging and longevity. In another study on the microbiome of centenarians,
decreased concentrations of Blautia, Coprococcus, Roseburia, and Faecalibacterium and high
concentrations of Christensenellaceae, Akkermansia, and Bifidobacterium, which are associated
with immunological and metabolic health, and a significant increase in concentrations of
Desulfovibrionaceae and Enterobacteriaceae were linked to longevity [220].

Combining at least two omics methods (genomics, transcriptomics, proteomics, and
metabolomics) in the study of the microbiome advances the discovery of microbiome
biomarkers of aging. A study analyzing the metabolites in human blood samples showed
that, with age, the bacteria associated with the metabolism of indole and tryptophan signifi-
cantly decreased in the gut microbiome. However, the downregulation of tryptophan trans-
port and metabolism is essential for cognitive function and T-cell differentiation [221–223].
Tryptophan plays a vital role in intestinal immune tolerance and maintaining the balance of
the gut microbiota [224]. The enhancement of tryptophan metabolism has been positively
correlated with age, which is consistent with the finding that the serum tryptophan level in
the elderly is low [225] and, in patients with dementia, is also reduced [226].

In summary, microbiomics is another promising field for diagnosing senile diseases,
discovering novel clinical interventions, and establishing biomarkers of aging. However,
future studies need to consider the effect of other species, such as archaea, fungi, and
viruses, as well as that of the environment and host. These factors play a vital role in the
overall regulation. Since aging is a complex and dynamic process, useful biomarkers in one
population may not be applicable to different, other populations. Therefore, longitudinal
research cohort studies should be conducted. The standardization of sample collection,
processing, and data analysis protocols should also be considered. In Table 5, we summarize
the main potential biomarkers of aging identified in microbiomics studies.

4.6. Early Biomarkers of Aging

Early biomarkers of aging are key, because it is unlikely that even the best antiaging
interventions will be effective in aged individuals, and it would be more important to
intervene earlier in life. The gut microbiota may influence the physiological mechanisms
of a wide range of age-related diseases and biological phenotypes. It is worth noting that,
compared with most age-related disease onsets and age-driven health declines, strategies
to repair or improve the dynamics of the gut microbial community at or before this life
stage may be useful ways to explore the prevention of premature aging, for example,
by supplementing probiotics, targeted dietary changes, or vaccines. In addition, some
different taxa may require further research on the physiological aging potential of the
microbiota in early to mid-adulthood. Future research will verify these findings through
richer interference factor controls, larger sample sizes, longitudinal follow-ups, and direct
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immunological measurements, which will further support the gut microbiota to help in the
early detection and prevention of accelerated aging and age-related diseases.

Table 5. Potential aging biomarkers identified in microbiomics studies.

Omics Biomarkers Function/Application References

Microbiomics

The abundance of Bifidobacterium,
Bacteroides, Lactobacillus, Ruminococcus, and

Bacillus decreased, while the number of
Streptococcus, Enterobacter, Clostridium, and

Escherichia increased

During the aging process [49]

The ratio of Firmicutes to Bacteroidetes Can be used as a criterion for metabolic
health, and the ratio will decrease with age [200]

Bacteroides, Ruminococcus, Faecalibacterium,
Coprococcus, Parabacteroides, Clostridium,

Alistipes, etc.

Bacteria with anti-inflammatory and
immunomodulatory effects [216,217]

Christensenellaceae, along with Akkermansia
and Lactobacillus

Promote immune regulation, defend
against inflammation, and promote healthy

metabolic homeostasis
[218,219]

Christensenellaceae, Akkermansia,
Bifidobacterium

Associated with immunological and
metabolic health [220]

Decrease in Blautia, Coprococcus, Roseburia,
and Faecalibacterium and significant
increase in Desulfovibrionaceae and

Enterobacteriaceae

Linked to longevity [220]

Akkermansia, Lactobacillus, and
Christensenellaceae

Longevity-related strains play an
antioxidant role in humans, which helps

achieve healthy aging and longevity
In our study

5. Integromics and Systems Biology

To promote the multidimensional analysis of data, advanced omics technology is
inseparable from advanced omics analytical tools. At present, large-scale, high-quality,
and high-throughput data from various omics methods can be efficiently and indepen-
dently analyzed. However, separate data analysis and interpretation ignore the correlation
and biological interference between different omics levels. Therefore, the integration of
single-omics methods is essential for an in-depth understanding of the aging process and
its mechanism.

Integromics, the comprehensive analysis of different omics data, and systems biology
have provided several breakthroughs in the study of aging and antiaging interventions.
Together, they have emerged as a more complex statistical method and combine the experi-
mental data obtained in multiple omics methods with computational models to provide a
holistic view of the aging landscape [227]. Considering the complexity and heterogeneity
of aging, integromics and systems biology not only provide static maps of molecules but
are also used to characterize the mutual changes of molecules over time. This helps de-
termine the optimal time point for aging biomarker measurements and specific antiaging
drug treatments. Each omics-level biomarker candidate based on integromics and systems
biology has biological relevance. Significant biomarker candidates can be preferentially
used as biomarkers of aging in medicine and as new antiaging targets.

Currently, data dimensionality reduction and normalization methods, such as a mul-
tifactor analysis or partial least square regression analysis, which can identify the main
sources of data differences, are used in aging research [228,229]. Similarly, the principal
component analysis method decomposes the data into several factors to facilitate the
identification of the factor that can best explain the differential phenotypes among aging
patients. Other multivariate analysis methods are used to study the overall correlation of
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multiple variables and, finally, determine the variables that are most likely to shed light
on the biological characteristics of specific differences. However, the combined influence
of multiple factors and the high variability of a single dataset may cause difficulties in
identifying biologically relevant and unrelated molecules [229].

Since aging is a multifactor, complex disease in which multiple physiological processes
are regulated simultaneously and change over time, a single regulation is not sufficient to
alleviate or reverse this pathological process. Thus, the use of integromics and systems biol-
ogy to identify biologically interconnected processes in aging, which can be simultaneously
regulated by combination therapy, is essential. Integromics and systems biology can also
play an important role in personalized therapy. In cancer, multi-omics methods have been
used for disease identification and personalized treatment [230,231]. In autism spectrum
disorders, along with integration with clinical data, they have been used to accelerate the
development of precision medicine and personalized medicine [232]. In addition, building
computer models that predict the occurrence of certain diseases based on multi-omics
could compare the biomarkers and pathways shared between diseases, thereby paving
the way for efficient drug use. In Table 6, we summarize the main potential biomarkers of
aging identified in integromics and systems biology studies.

Table 6. Potential aging biomarkers identified in integromics and systems biology studies.

Omics Biomarkers Function/Application References

Integromics and
systems biology

The method of comprehensive analysis of
different omics data

This method combines experimental data
of multiple omics levels with

computational models and analyzes them
as a whole to identify valuable data

[227]

Multi-factor analysis or partial least square
regression analysis

Can identify the main sources of
data differences [228,229]

Multi-omics methods Used for disease identification and
personalized treatment in cancer [230,231]

Multi-omics and integration with
clinical data

Used as a way to accelerate precision
medicine and personalized medicine [232]

6. Conclusions and Prospects

Rapid advances in science and technology have accelerated the arrival of the “omics
era”, thereby enabling researchers to collect and integrate data at different molecular levels.
The identification of biomarkers of aging and new targets for antiaging interventions is
crucial in aging biology and geriatrics. The multi-level information obtained through
multi-omics technology contributes to the increased understanding of the mechanisms
of aging and provides new opportunities for the diagnosis and treatment of aging and
aging-related diseases.

We have summarized the various omics techniques used to characterize aging biomark-
ers. Each screened biomarker is a promising candidate and can be integrated into an “aging
biomarker library” that can serve as a diagnostic and prognostic tool. Here, we mainly
categorized them based on the existing biomarkers of aging. We summarized the recent
omics methods used to discover biomarkers in genomics, transcriptomics, proteomics,
metabolomics, and metagenomics (Figure 1). In the field of geriatrics, discovering new
biomarkers from existing datasets and new biological age measurement methods are of
great value. At present, a more accurate biological age measurement method based on
the aging clock of DNA methylation is needed, which can also be analyzed and evaluated
through the transcriptome aging clock. The epigenetic clock from the comparative analy-
sis of actual age and biological age shows that the aging process is inherently related to
biological age. In addition, biological age can be measured using transcription profiles.
MiRNAs, lncRNAs, and circRNAs contribute to the discovery of novel biomarkers of aging.
Proteomics is receiving increasing attention in aging research, because their findings are
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the most reproducible and the easiest to verify. However, the application of proteomics
technology has some limitations, such as high costs and a lack of accurate clinical practice
applications. The biomarkers identified in metabolomics and microbiomics studies also
have great potential; however, their application in clinical practice is limited by the limited
number of longitudinal metabolomics studies available. The comparison of methods from
single-omics is the key aspect to better illustrate how integrating these methods will help.
This will serve as a synthesis of information rather than just data management. For example,
we can compare and analyze the genomics, transcriptomics, proteomics, and metabolomics
in microbiology and the substances that appear in the analysis of genomics, transcriptomics,
proteomics, and metabolomics in longitudinal populations. For example, we analyzed
the correlation between the properties of metabolites regulated by the gut microbiome of
healthy and long-lived people and the biomarkers analyzed from blood metabolomics of
healthy and long-lived people. This was a good way to show that the integration of what
we learned from each method was not just the sum of its parts.

Figure 1. Multi-omics-based technologies for characterizing aging clocks and biomarkers. Aging is a
comprehensive process affected by multiple factors that is associated with changes at the molecular,
cellular, tissue, and organism levels, thus requiring objective analytical research tools. The inte-
grated multi-omics approach is essential to achieve a comprehensive understanding of the biological
mechanisms of aging.

In the context of personalized and precision medicine, multi-omics methods have
attracted widespread attention, because they can provide an in-depth understanding of the
molecular patterns and cover a wide range of characteristics, such as participating in the
metabolic, genetic, and signal transduction pathways of complex aging [233]. Therefore,
we suggest that a combination of multiple biomarkers for a comprehensive diagnosis and
systematic analysis can objectively characterize the aging process (Figure 2). Integromics
and systems biology methodologies can provide insights into organ- and system-specific
functions; reflect the phenotype and the processes involved in metabolism, immunity, and
structure; and function in different physiological domains and their rates of change in an
individual’s lifetime [234]. It can correlate the results at different levels of complexity with
clinical profiles. Aging clocks and aging biomarkers and their combinations with multi-
omics are usually investigated in experimental studies. However, due to their practicality
and feasibility, they are becoming more popular topics in clinical medical research, which
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advances the knowledge on human aging. Biomarkers have great application prospects
in drug target screening, because biomarkers and targets can be the same substance, and
they have a high potential for mutual transformation [235]. Methylated aging can evaluate
antiaging interventions to develop new types of aging clocks [236]. Biological age is a
predictor of mortality in ischemic stroke [237]. In addition, the biological age of the brain
can serve as a prognostic tool [238]. Biomarkers are also used for drug discovery and
utilization. Designing studies based on biomarkers can help eliminate hidden errors in the
treatment process [239]. Recently, a novel biomarker-based miRNA therapeutic strategy
for hepatocellular carcinoma (HCC) was successfully applied [240]. Using noninvasive
biomarker-based methods, biomarkers contribute to a better understanding of the patho-
physiological mechanism of diseases [241]. This review not only focused on single-omics
methods to characterize aging biomarkers but, more importantly, integrated multiple omics
to evaluate the relevance of these biomarkers and maximized a systematic analysis of
the data.

Figure 2. Schematic diagram of an integrated multi-omics approach to the research and application of
aging biomarkers. Genomics, transcriptomics, proteomics, metabolomics, and microbiomics enable
the high-throughput quantitative profiling of molecules in biological systems to reveal aging-related
changes. Combining single-omics data with integromics and systems biology contributes to an
increased understanding of the mechanisms of aging and paves the way for the development and
utilization of aging biomarkers and novel antiaging targets.

Although multi-omics methods have great potential, limitations and challenges remain.
First, omics methods are expensive and require special equipment and highly qualified
data analysis personnel. Second, the data quality can be uneven, the data source can be in-
accurate, and nonstandard sampling can cause problems in data collection and verification.
To date, research platforms and bioinformatics methods for processing large-scale omics
data have not yet been standardized. For example, the biggest challenge in metabolomics
studies lies in data processing and analysis due to the thousands of metabolites present
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in biological organisms. Furthermore, the differences among individuals and inconsistent
data processing and analysis programs add to this difficulty. Therefore, it is necessary
to promote cross-disciplinary efforts and the standardization of procedures to increase
the relevance of metabolomics-based strategies in clinical research. Longitudinal cohort
studies with large samples should also be conducted. In addition, there is a lack of lon-
gitudinal samples and longitudinal studies. In order to delineate the sequence of events,
a longitudinal study of the microbiota with age is required. Model organisms with short
lifespans and less complex microbiota and established biomarkers of aging make this easier
to study. For example, in nematodes, fruit flies, and mice, the integrity of the intestinal
epithelium/barrier has been shown to decline with age and is also associated with human
aging. Since aging is a complex process that occurs at all levels of biological systems, the
impact of antiaging interventions on clinical practice requires a multi-dimensional and
systematic approach.

Cellular aging, leading to tissue dysfunction, is widely accepted as contributing to ag-
ing and the development of debilitating age-related diseases. Senolytics and bioflavonoids
are the key in anti-aging research. Endogenous defenses against ROS include the en-
zymes superoxide dismutase, glutathione peroxidase, catalase, and peroxiredoxins and the
nonenzymatic antioxidants, glutathione, thioredoxin, and uric acid. There are many nonen-
zymatic endogenous antioxidants. Cofactor coenzyme Q is present in cells and membranes
and plays an important role in cellular metabolism and in the respiratory chain. Vitamin
A combines with peroxyl radicals, thus preventing lipid peroxidation. Uric acid prevents
the lysis of erythrocytes and is also an important scavenger of singlet oxygen. Other small
molecular weight nonenzymatic antioxidants include vitamins E and C and many minerals
like selenium and zinc. Selenium is the integral part of the antioxidant enzyme glutathione
peroxidase. Flavonoids (i.e., flavonols, flavanols, anthocyanins, isoflavonoids, flavonones,
flavones, and phenolic acids) act as chelators of transition metal ions involved in Fenton
chemistry and ROS scavengers. Bioflavonoids can adjust blood lipids, extend the life of
red blood cells, effectively remove free radicals and toxins in the body, and prevent and
reduce the occurrence of diseases. Modern pharmacological research shows that curcumin
has anti-inflammatory, antioxidant, antitumor, and other pharmacological effects. Resver-
atrol is a natural antioxidant found in plants. Quercetin may reduce the consumption of
glutathione, increase the activity of antioxidant enzymes, and directly or indirectly exert an
antioxidant effect in the body after being absorbed by the intestine.

Advances in computer science, including meta-analysis and artificial intelligence, are
expected to remarkably increase the speed and efficiency of aging biomarker research [242].
However, before their application in the clinical setting, candidate biomarkers should be
verified. This verification process must include larger sample populations. Despite the
large gap between the identification of useful biomarkers and their application in clinical
practice, the integrated analysis of multi-omics data is a promising tool to identify new
candidate biomarkers that could be developed and used to identify pharmaceutical targets
and improve human health during aging, thereby advancing our understanding of the
pathophysiology of the complex and dynamic process of aging.
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