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Abstract: GAGs exhibit a high level of conformational and configurational diversity, which remains
untapped in terms of the recognition and modulation of proteins. Although GAGs are suggested to
bind to more than 800 biologically important proteins, very few therapeutics have been designed
or discovered so far. A key challenge is the inability to identify, understand and predict distinct
topologies accessed by GAGs, which may help design novel protein-binding GAG sequences. Recent
studies on chondroitin sulfate (CS), a key member of the GAG family, pinpointing its role in multiple
biological functions led us to study the conformational dynamism of CS building blocks using
molecular dynamics (MD). In the present study, we used the all-atom GLYCAM06 force field for
the first time to explore the conformational space of all possible CS building blocks. Each of the
16 disaccharides was solvated in a TIP3P water box with an appropriate number of counter ions
followed by equilibration and a production run. We analyzed the MD trajectories for torsional space,
inter- and intra-molecular H-bonding, bridging water, conformational spread and energy landscapes.
An in-house phi and psi probability density analysis showed that 1→3-linked sequences were more
flexible than 1→4-linked sequences. More specifically, phi and psi regions for 1→4-linked sequences
were held within a narrower range because of intra-molecular H-bonding between the GalNAc
O5 atom and GlcA O3 atom, irrespective of sulfation pattern. In contrast, no such intra-molecular
interaction arose for 1→3-linked sequences. Further, the stability of 1→4-linked sequences also arose
from inter-molecular interactions involving bridged water molecules. The energy landscape for both
classes of CS disaccharides demonstrated increased ruggedness as the level of sulfation increased.
The results show that CS building blocks present distinct conformational dynamism that offers the
high possibility of unique electrostatic surfaces for protein recognition. The fundamental results
presented here will support the development of algorithms that help to design longer CS chains for
protein recognition.

Keywords: chondroitin sulfate; conformational analysis; glycosaminoglycans; hydrogen bonding;
molecular dynamics; potential energy surface

1. Introduction

Sulfated glycosaminoglycans (GAGs) are increasingly being recognized as contributing
to biological functions in either their covalently-bound form, as a part of proteoglycans on
cell surfaces, or in free solution form, as endogenous polysaccharides or oligosaccharides
in biological fluids [1–3]. Structurally, multiple features make GAGs unique, including a
high level of sulfation, a variable sulfation pattern, and different inter-glycosidic linkages. In
addition, GAGs exhibit a large number of conformational states arising from inter-glycosidic
bond flexibility as well as occupancy of different saccharide ring puckers [4–6]. In combination,
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GAGs exhibit massive structural and conformational diversity that presumably is the key to
their interaction with proteins.

As of 2020, more than 800 biologically important proteins are known to bind to
GAGs [7,8]. These proteins contribute to fundamental cellular processes such as growth,
differentiation and morphogenesis [9–11]. Their roles in the modulation of neuronal func-
tions are particularly intriguing and exciting. On the pathological side, GAGs have been
shown to play a role in Alzheimer’s disease, tauopathies, and amyloid diseases [12,13].
A key member of the GAG superfamily is chondroitin sulfate (CS), which is present in
the brain and has been associated with neuronal development and dysfunction [14–16].
In fact, a specific type of CS, called chondroitin-4,6-disulfate (also called CS-E), has been
shown to stimulate neuronal growth and differentiation [16,17]. Likewise, a specific type of
CS, called dermatan sulfate (also called CS-B), has been implicated in binding to heparin
cofactor II, a human plasma protein involved in inhibiting arterial thrombosis [18,19].

The family of CS polysaccharides has approximately nine members, including CS-A
through CS-E and CS-K through CS-M [20], of which CS-B is typically referred to as dermatan
sulfate (DS), rather than CS. Of these, CS-A through CS-C are more commonly observed in
nature, whereas the remaining are rare biopolymers. The different classes of CS arise due to
variations in the sulfation pattern and epimerization state of its building blocks. The two building
blocks of CS polysaccharides are D-glucuronic acid (GlcA) and N-acetyl-D-galactosamine
(GalNAc). For DS, i.e., CS-B, the former may also be present as L-iduronic acid (IdoA). The
diversity of information presented by CS polysaccharides is so large that it has remained
difficult to harness these molecules for therapeutic purposes. One reason for this is that
computational studies on CS in particular, and GAGs in general, are difficult. The large number
of building blocks, e.g., 16 in the case of CS, which does not include DS building blocks, imposes
significant challenges in terms of computational time and analysis [21–24]. In fact, no examples
of computationally designed CS sequences that have reached a high level of clinical development
are available in the literature. Yet, the area of CS sequence design is promising, as indicated by
our recent studies, which implicated distinct CS sequences in binding to transforming growth
factor beta (TGFβ) [25].

It is important to perform fundamental computational studies on CS building blocks
to evaluate their conformational preferences and dynamism in the free solution state.
Understanding their structural and energetic preferences may offer better insight into
designing oligomeric CS sequences that selectively bind proteins of interest. The literature
contains several reports on the atomistic characterization of CS building blocks using X-ray
crystallography [26], NMR [27–29], molecular modeling (MM) [30] and molecular dynamics
(MD) [31–33]. Insights from the NMR and crystallographic studies have shown that the
backbone orientations of the polymeric scaffold changes as sulfate groups are introduced
at various positions. The MM3 force field-based adiabatic mapping of CS disaccharides
revealed that the four-sulfated sequences (i.e., CS-A) are more rigid in contrast to non-
sulfated or six-sulfated sequences (i.e., CS-C) [34]. Two studies have independently shown
the importance of inter- and intra-molecular interactions in stabilizing the secondary
structure of CS [31,32]. A recent study concluded that the TIP3P water model is better
than four- or five-charged water models in revealing direct intra-molecular hydrogen
bonding (H-bonding) in CS [35]. A report based on a biased sampling method studied 10 CS
disaccharides in water and counter ions [36] to inform about conformational transitions and
energy minima using the CHARMM C36 force field. Another report on 16 CS disaccharides
explored their free energy surface using the CHARMM C36 force field and identified
conformational dynamism based only torsional angle analysis [37].

Unfortunately, none of these investigations explored conformational dynamism as
a function of the nature of inter-glycosidic linkage and the role of water molecules in
modulating this dynamism. Additionally, the investigations did not present insights on
the possibility of designing CS oligosaccharides that bind to protein targets in a selective
manner. We undertook this project with the goal of understanding the conformational
dynamism of CS building blocks. We sought to answer the question of whether CS build-
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ing blocks access distinct conformational states, which may be possible to harness in an
oligosaccharide design project. We used an all-atom GLYCAM06 force field to explore the
conformational space of all possible CS building blocks. Based on our studies and analy-
sis, including torsional space, inter- and intra-molecular hydrogen bonding (H-bonding),
bridging water, conformational spreading (entropy) and energy landscapes, we conclude
that CS building blocks present distinct inter-glycosidic bond-based topologies that offer a
high possibility of unique electrostatic surfaces for protein recognition. The fundamental
results presented here will support the development of algorithms that help in the design
of longer CS chains for protein recognition.

2. Methods

CS Disaccharide Library Construction—The library of 16 CS disaccharide structures
was built and minimized in SYBYLX 1.3 (Tripos Associates, St. Louis, MO, USA). The initial
structures had inter-glycosidic angles set to the average of the available crystal structures
in the protein data bank (Table S1). Of the 16 disaccharides, eight had β1→3-linked GlcA
and GalNAc residues and eight had β1→4-linked GalNAc and GlcA residues with varying
numbers of sulfate groups at the 2, 4 and 6 positions (Figure 1). The coordinates of these
structures were taken and the atoms and the residue types were changed to GLYCAM06
notations. The molecules were loaded in AMBER18 Xleap (https://ambermd.org) (accessed
on 22 November 2021) with GLYCAM06 force field for simulations. Bonds and notations
were rigorously checked and the total charge on the molecule was calculated. The charges of
sulfate atoms were modified according to the GLYCAM documentation (https://glycam.org)
(accessed on 22 November 2021) to ensure a formal charge of −1 for the sulfate group [38].

Figure 1. Structures of the two disaccharide classes of CS, i.e., Acid-Amine or β1→3-linked (A) and
or β1→4-linked Amine-Acid (B), studied in this work. Each class consisted of 8 disaccharides with
varying sulfation levels, indicated by the R2, R4 and R6 groups. The structures were generated in
SYBYL with pre-defined experimental torsion angles marked phi (ϕ) and psi (ψ) based on structures
available in the PDB (protein data bank). The definitions of torsional angles ϕ and ψ for each
disaccharide of the two classes are provided in (C,D).

https://ambermd.org
https://glycam.org
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Preparations for MD Experiments—The schematic workflow of the methodology and
the analysis are described in Figure S1. Our reviews on the topic also provide additional
details for an interested reader [4,39]. Briefly, the total charge of the system was brought to
zero by adding the appropriate numbers of the counter ions (Na+) (https://ambermd.org/
tutorials/advanced/tutorial8/loop4.php) (accessed on 22 November 2021). The sodium
cations were not treated any differently in our MD simulations, which implies that the
movements of these ions were unconstrained, as would occur in nature.

To mimic the experimental condition, the system was placed at the center of a three-
point charged triangulated water molecules (TIP3P) box with minimum distance of 8 Å
between the wall and any solute atom. The initial coordinates were generated and saved
as corresponding parameter and coordinate files for consecutive processes. The system
was relaxed by performing energy minimization in two steps. In the first step, the solute
atoms were restrained with a force constant of 500 kcal/(mol·Å2) and solvent atoms were
relaxed to remove steric hindrance. In the second step, the whole system was minimized
without restraint using 2500 iterations of conjugate gradient minimization to achieve a local
minimum energy state with a non-bonded cut off of 10 Å.

Following minimization, the system was equilibrated to the required temperature
and pressure in three phases with 2 fs integration time steps. The initial velocities were
assigned from the Maxwell distribution at the defined temperature using a random number
generator. In phase one, the temperature was brought to 300 K using the Berendsen
temperature coupling. This was followed by the establishment of a constant pressure using
isotopic position scaling in the second phase. All the solute atoms were restrained in the
above two phases. In the third phase, the temperature and pressure of the entire system
were held constant using NPT ensemble with 2 fs integration time steps. Once the system
equilibration setup for NPT was performed and completed, RMSD analysis was performed
to ensure that the system was equilibrated well (not shown). This equilibrated system was
used to perform production runs.

MD Simulations—Each disaccharide was studied in an identical manner. MD produc-
tion runs were performed for 20 ns on a VCU cluster (https://chipc.vcu.edu) (accessed on
22 November 2021) of 16 cores. SHAKE constraints were used for all the bonds with the
hydrogen atoms throughout the entire process. The trajectory of each MD simulation was
recorded every 1 ps, which generated a total 20,000 frames for each disaccharide. Analysis
was performed using all 20,000 frames. The tools used to perform these analyses included
CPPTRAJ, Visual Molecular Dynamics (VMD), and some in-house scripts in MATLAB and
python. RMSD fluctuations during the trajectory were calculated using the rms tag in cpptraj
with reference to either the initial structure, the lowest-energy structure or the crystallographic
structure. Torsional analysis, performed using VMD, was used to understand backbone move-
ments in the solution. An in-house script based on python was developed for plotting the
torsional probability density. Interactions of inter- and intra-molecular H-bond types were
calculated using the cpptraj hbond tag. Likewise, bridging water molecules between donor
and acceptor atoms of a disaccharide were identified using the cpptraj hbond tag. Confor-
mational subspace analysis was performed for the entire trajectory using in-house MATLAB
code. Likewise, principal components analysis (PCA) to view the conformational entropy and
potential energy surface (PES) of each disaccharide was carried out using in-house MATLAB
code. The in-house scripts will be made available to any researcher interested in using them
for their system of interest.

3. Results and Discussion

MD Experimentation and Validation—Although MD simulation of polymeric GAGs
is challenging because long, linear and dynamic chains sample a huge conformational
space, simulations of oligomeric chains have been performed with relative ease [4,21,40].
Yet, it is important to ascertain that essentially the entire conformational space is sampled
within the simulation timeframe. To ensure this, MD experiments on GAG oligosaccharides
have been performed over a wide range (ns→µs) [22,23,36,37,41]. It is important to use an

https://ambermd.org/tutorials/advanced/tutorial8/loop4.php
https://ambermd.org/tutorials/advanced/tutorial8/loop4.php
https://chipc.vcu.edu
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appropriate simulation time that ensures optimal sampling without extending the duration
unnecessarily. For the smallest oligosaccharides, such as disaccharides, this could be in
the nanosecond range. However, it is important to validate the selection. We used MD
simulation runs of 20 ns with trajectories being recorded every 1 ps and analyzed various
parameters including torsions, hydrogen bonds, water-mediated interactions, and potential
energies (Figure S1).

To ascertain that MD experimentation is rigorous, we used four parallel analyses.
(1) Three independent simulations were performed for a representative CS disaccharide
(GlcA (β1→3) GalNAc6S) using different initial velocities. The trajectories were analyzed for
the presence structural nearest neighbors based on the hierarchical agglomerative clustering
method, where the minimum distance between clusters is 2 (ε = 2.0), which is recommended
for small molecules [42,43]. This affords balanced analysis of clusters and is recommended
when the size of clusters is not known. Convergence in clustering is also important to affirm
that sampling of the conformational space is good. Figure S2A shows that the three simu-
lations followed a rather identical trend with a small deviation of <10%. (2) The reliability
of MD results was also supported by a principal component analysis (PCA) of the three
trajectories for the GlcA(β1→3)–GalNAc6S disaccharide. Figure S2B shows the correlation
of the first two principal components for each three MD runs. The overlaid data show that
each MD run yielded an essentially identical pattern in the PCA subspace, suggesting an
equivalent sampling of conformational space. (3) Another established way of validating MD
experimentation is to test for convergence with crystal structure geometry. For this, we used
the GalNAc4S–GlcA sequence, which is the internal disaccharide of the sequence reported in
the protein data bank (ID: 1C4S; Figure S3A) [26]. The comparison of each frame of the trajec-
tory to the geometry in crystalline state showed an excellent convergence of less than 2.28 Å
(Figure S3B). Likewise, comparison with the initial and minimum energy geometries showed a
deviation of no more than 1.8 Å to 2.2 Å (Figure S3C,D). (4) Finally, we also performed a 400 ns
MD simulation for a model disaccharide GlcA–GalNAc6S. This simulation was 20-fold longer
than the 20 ns simulations used earlier. Figure S4 shows the phi–psi comparison of the two
simulations. Both are essentially identical with minimal changes in the distributions as well as
the probability densities (discussed more below). Thus overall, the results indicated that our
experimental setup sufficiently sampled the conformational space within the MD timeframe.

MD of 16 CS Disaccharides and Conformational Heterogeneity—Using the validated
MD experimental setup, we performed simulations of 16 CS disaccharides, which represent
all possible building blocks that give rise to all variants of CS polysaccharide, except for
CS-B (DS) (Figure 1). As a group, this library represents sequences carrying no sulfates to a
maximum of three sulfate groups. The library also enables the study of chain directionality,
i.e., GlcA→GalNAc (Figure 1A) or GalNAc→GlcA (Figure 1B). This is not only important
because the terminal residues are different but also because the inter-glycosidic linkages are
different (β1→3 for Acid–Amine and β1→4 for Amine Acid sequences). Additionally, GlcA2S
is a rare modification in polymeric CS and likely enhances the selectivity of interactions, as
demonstrated earlier for heparan sulfate [44]. Finally, we studied only the β-variant of the free
reducing end substituent because the α-variant is not present in polymeric CS. The definitions
of torsional angles used in this study are presented in Figure 1C,D. These are identical to
studies reported in the literature, especially for MD works [31,32,36,37].

We first reviewed the range of conformational space sampled by each CS building block
using the hierarchical agglomerative clustering method described above. Figure S5 shows the
number of distinct clusters displayed during the MD of all 16 disaccharides. To assess whether
these distinct conformational structures arise from any changes in ring pucker, we used the
BFMP tool in GLYCAM [45]. Figure S6 shows the proportion of the GlcA and GalNAc puckers
for all 16 disaccharide pairs over 20 ns. Both residues preferred 4C1 puckering throughout the
trajectory, as expected on the basis of known conformational preferences [46,47]. Thus, the
large number of distinct clusters observed for each disaccharide arose from distinct structural
geometries that were apart from each other by ε units (=2.0 Å). Overall, irrespective of the
directionality of the disaccharides (Acid→Amine or vice versa), the sequences occupied a
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wide range of conformations and geometries. This was inferred earlier on the basis of first
principles but not rigorously documented.

Yet, it is important to note that the structural diversity was highly varied among differ-
ent sequences, e.g., a range from ~220 to ~380 clusters. Figure 2A–C present examples of the
GalNAc–GlcA, GalNAc6S–GlcA, and GlcA2S–GalNAc6S sequences. The three examples
appeared to convey that structural heterogeneity increased with sulfation level; however,
the results for all 16 disaccharides revealed a slightly different conclusion. The correlation
between structural heterogeneity and number of sulfate groups on a disaccharide was
partial at best (R2 = 0.247; Figure 2D). When the library was segregated into its two classes,
the data revealed that the correlation was non-existent (R2 = 0.084) for the GlcA–GalN
sequences (Figure 2E), whereas it was fairly strong for (R2 = 0.700) for the GalNAc–GlcA
sequences (Figure 2F). Because sulfation increases the conformational diversity of GAGs,
the result for GalNAc–GlcA sequences was to be expected. Alternatively, the GlcA–GalNAc
sequences displayed an abnormal sulfation–structural heterogeneity correlation.

Figure 2. Distinct cluster-based analysis of conformational diversity. Plots of population of clusters
as a function of distinct clusters observed in MD simulations of GalNAc–GlcA (A), GalNAc6S–
GlcA (B), and GlcA2S–GalNAc6S (C) (see Figure S5 for plots of all 16 disaccharides). Hierarchical
agglomerative clustering with the epsilon of 2 was implemented in cpptraj to derive information on
distinct clusters observed in MD. Profiles of numbers of distinct clusters observed in MD simulations
as a function of the number of sulfate groups on (D) all disaccharides, (E) 1→3-disaccharides, and
(F) 1→4-disaccharides. (G–I) Profiles of the variation in the number of distinct clusters as a function
of different sequences.

To better compare the structural diversity, we performed three types of analysis including:
(1) Comparison of the number of distinct clusters observed for four classes of disaccharides in
which GalNAc sulfation increased from 0 to 2. These four classes arose from Acid–Amine
(1→3-linkage) and Amine–Acid sequences (1→4-linkage) containing either GlcA2S or GlcA
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(Figure 2G). For the two Amine–Acid classes, an increase in the number of sulfates on GalNAc
resulted in more clusters (i.e., higher structural diversity). In contrast, for the two Acid–Amine
classes, this trend was not maintained. (2) Comparison of pairs of Acid–Amine and Amine–
Acid sequences carrying an identical number of sulfate groups shows that except for the
pair of disaccharides with the most sulfate groups, each Acid–Amine sequence displayed
higher structural diversity than the corresponding Amine–Acid disaccharide (Figure 2H).
(3) A comparison of the pairs of disaccharides that differed only in GlcA sulfation showed that
except for the most sulfated pair, structural diversity was higher for sequences with GlcA2S
than for those with GlcA (Figure 2I).

Compilation of these results indicates that the Acid–Amine sequences displayed higher
structural diversity that the Amine–Acid sequences, except for the case when sulfation
was highest, i.e., GlcA2S–GalNAc4S6S and GalNAc4S6S–GlcA2S. Even here, the anomaly
rested with the GlcA2S–GalNAc4S6S sequence, which displayed unusually lower structural
diversity (Figure 2G–I). Here, it is instructive to note that whereas the former sequences
were found to have 1→3-linked glycosidic bonds, the latter have 1→4-linked glycosidic
bonds. This implicates the role of the base inter-residue glycosidic linkage in structural
diversity. This base diversity was further enhanced by sulfation, except for the case of
GlcA2S–GalNAc4S6S. Although the precise reason for reduced diversity of this sequence
remains to be identified, it is possible that the sequence presented reduced degrees of
freedom owing to the higher electrostatic repulsion of its four negatively charged groups.

Torsional Angle Analysis and Structural Diversity—A systematic conformational
analysis of biomolecules relies heavily on torsional angle analysis [48]. We used the standard
IUPAC definition of torsional angles, which defines Φ and Ψ as O5-C1-O3′-C3′ and C1-O3′-
C3′-C4′ for GlcA–GalNAc sequences, respectively, and O5-C1-O4′-C4′ and C1-O4′-C4′-C5′

for GalNAc–GlcA sequences, respectively. Each frame of the trajectory was analyzed for Φ
and Ψ values, which were used to assign structures to unique bins of 3.6◦ each. The number
of structures present in each bin was used to calculate the probability density, which was
plotted in a form similar to the Ramachandran plot [48].

Figure 3 and S7 show the probability distribution plots for all 16 disaccharides. Overall,
for 1→4-linked sequences, higher probability of occupancy was found to be in the region
of −67.2◦→−74.5◦ (Φ) and −114.5◦→−121.8◦ (Ψ). The average spread of Φ and Ψ was
found to be 32.5◦ and 44.7◦, respectively, which correlates well with recent studies [36].
For 1→3-linked sequences, these regions were −63.6◦→−85.4◦ (Φ) and +96.3◦→+140.0◦

(Ψ), with an average spread of 21.2◦ and 61.6◦ (Φ and Ψ, respectively). These values and
ranges are similar to a recent report using the adaptive biased sampling (ABF) simulation,
which reported values of 30◦ and 60◦ in the presence of sodium [37]. These values are also
similar to a recent report using the CHARMM force field [40]. Likewise, these ranges also
encompass the torsional preferences displayed by CS oligosaccharides in experimental
structures available through the protein data bank (Table S1) [26,27,34,49].

A quick review of probability distributions showed high consistency of profiles for
most disaccharides. Yet, interesting variations were evident. For example, the 1→3-linked
sequences showed multiple higher probability regions, whereas the 1→4-linked sequences
essentially presented a uni-modal distribution (Figure S7). For example, GalNAc4S6S–GlcA
and GalNAc4S6S–GlcA2S showed preferences to Φ and Ψ of (−74.5◦,−121.8◦) and (−70.8◦,
−118.2◦), respectively. In contrast, GlcA–GalNAc4S6S and GlcA2S–GalNAc4S6S showed
minimal preferences for (−60.0◦, 120.0◦) and (−90.0◦, 140.0◦), respectively (Figure 3) In-
terestingly, with the 1→3 class of sequences, the sulfation of GlcA (i.e., GlcA2S) induced
an additional high-density region (Figure S7). This implies that 1→3-linked sequences
containing GlcA2S present distinct conformational heterogeneity.
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Figure 3. Visualization of torsional populations (phi and psi) within individual bins of identical size
(3.6 Å2). (A–D) shows representative disaccharides from the group of 16 (see Figures S7 and S8 for
others). The contours shown in the Ramachandran plots refer to probability densities with the blue
corresponding to higher probability, while red refers to lower density. (E,F) present the preferred torsional
angles of each disaccharide, which were derived from the high-density regions of corresponding torsional
population plots.

The probability density plot could be used to identify the preferred torsional angle(s),
which corresponded to maximum probability bin(s). As a group, the variation in the preferred
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Φ and Ψ for the library of 16 disaccharides was not huge, i.e., >±90◦ (Figure 3E,F and S13). Yet,
significant variations were observed for the 1→3-linked sequences, especially in the case of Ψ.

A question arises regarding the foundational reasons for this structural similarity or
variation in Φ and Ψ, especially for the latter. It is well established in the literature that
1,3-diaxial interactions dictate the conformational preferences of the pyranose rings, i.e., ring
puckering. In CS, the flexibility of Ψ will likewise be impacted by the bulky groups flanking
the torsional angle. For the Acid–Amine (1→3-) sequences, these happened to be axially and
equatorially oriented (see Figure 1C), whereas for the Amine–Acid (1→4-) sequences, these
were both equatorial (see Figure 1D). In contrast, for Φ, the flanking groups were equatorial
and lone pairs of electrons for both the 1→3- and 1→4-linked sequences. This difference
could account for the higher flexibility associated with the 1→3-sequences. However, our
studies on H-bonding interactions, presented below, indicated another foundational reason
for the interesting conformational diversity difference between the two groups of sequences.

Intra-Molecular Hydrogen Bonds and Conformational Dynamism—The number and
nature of intra-molecular hydrogen bonds (H-bonds) formed during MD simulations were
analyzed using cpptraj. H-bonds were defined using 3.0 Å and 135◦ cut offs between appropri-
ate donor and acceptor atoms, respectively, as described earlier [23,34,50,51]. Figure S9 shows
the formation of H-bonds, if any, in conformations corresponding to the global minimum for
all 16 disaccharides. As a group, only a limited number of intra-molecular H-bonds were
observed, suggesting that the global minima tend to exhibit open topologies.

Yet, interesting differences were observed when considering intra-residue H-bonds
formed in the 1→3- and 1→4-linked disaccharides. Only two 1→4-linked sequences
displayed intra-residue H-bonds (Figure 4A,B). Both these sequences presented a H-bond
between the O5 of GalNAc6S and O3 atoms of GalNAc6S and GlcA, respectively. These
bonds have been observed in two earlier studies of CS oligosaccharides using adiabatic
mapping with the MM3 force field [34] and a biased sampling method with the CHARMM
force field [36]. As is evident from Figure S9 (Panels I→P), the global minima of the
1→3-linked disaccharides did not display any inter-residue H-bond.

Outside the global minimum of each disaccharide, inter-residue H-bonds arose in
many other conformational states. Table S2 and Table S3 list these for GalNAc–GlcA
(1→4-linkage) and GlcA–GalNAc (1→3-linkage), respectively. Both tables show that all
inter-residue H-bonds were transient in nature and none existed 100% of the time. Several
H-bonds of 1→4-linked disaccharides were fairly stable and existed in 20–50% of the MD
frames (Table S2). In contrast, the inter-residue H-bonds of 1→3-linked sequences existed
no more than 8.5% of the time (Table S3).

Figure S10 shows the occurrence of the number of intra-molecular H-bonds as a
function of MD simulation time for each disaccharide sequence. The data reveal that at any
given time, more intra-molecular H-bonds were observed for 1→4-linked disaccharides
(Panels A→H) than for 1→3-linked sequences (Panels I→P). This represents a fundamental
difference between the two types of sequences. In fact, the average number of H-bonds
increased with level of sulfation for the two classes of disaccharides. For the GalNAc–GlcA
(1→4-linked) class, the intra-molecular H-bonds increased from 0.56 to 1.81 as the level of
sulfation changed from 0 to 4 (Figure 4C). In contrast, the GlcA–GalNAc (1→3-linked) series
presented an increase from 0.26 to 0.85 for an identical change in sulfation (Figure 4D).

These results indicated that the intra-molecular H-bonds were highly dynamic for both
the 1→4- and 1→3-linked sequences. Conformational dynamism was supported because
very few H-bonds were consistently formed across the entire MD trajectory. Within the
two classes, the 1→3-linked sequences exhibited much lower numbers of intra-molecular
H-bonds as compared to the 1→4-linked sequences. The results further confirmed the
fundamental difference between the 1→4- and 1→3-linked topologies.
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Figure 4. Differences in intra-molecular hydrogen bonds observed during MD simulations of different
1→4- and 1→3-linked sequences (hydrogens are not shown to improve clarity). (A,B) show intra-
molecular H-bonds formed for two representative disaccharides, GalNAc6S–GlcA2S and GalNAc6S–
GlcA, respectively. (C,D) show the average number of intra-molecular H-bonds calculated from
the 20,000 frames of each MD trajectory of 8 CS disaccharides of either Amine–Acid (1→4) or Acid–
Amine (1→3) type, respectively. Whereas intra-molecular H-bonds are formed between atoms of the
CS disaccharide, inter-molecular H-bonds are formed with solvent water molecules. The criteria for
defining a H-bond is described in the Methods section.

Inter-Molecular H-Bonds and Topological Preferences—Although sulfate groups
dominate the interaction of GAGs with proteins, solvent molecules, i.e., H2O, play a key
role in generating and maintaining local topologies for protein recognition [4,23,39,52].
In fact, nearly all crystal structures display GAG-bound water molecules [52]. Thus, to
understand the nature and role of water molecules in the conformational dynamism of
CS disaccharides, we analyzed the MD trajectories of inter-molecular H-bond formation,
in a manner that was similar to the approach used for those of intra-molecular H-bonds,
using cpptraj. Here, the donor and acceptor atoms were from either the solvent (i.e., water)
or the solute (i.e., CS atoms). The average numbers of water molecules involved in H-
bonding per CS disaccharide are shown in Figure S11. This number ranged from 16 for
disaccharides with no sulfates to 28 for sequences with three sulfate groups. Of these, each
sulfate group interacted with 5 to 6 water molecules, irrespective of the location of sulfates
(Figure S11B). In contrast, the non-sulfated atoms of a disaccharide bound to 11 to 16 water
molecules, which equated to approximately 1 to 2 water molecules per OH group (Figure
S11C). Interestingly, the directionality of the sequence did not influence the inter-molecular
H-bonding. These features imply that CS disaccharides are highly solvent bonded.
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Water molecules are also known to bridge two ring atoms within GAG chains. Such
bridged water molecules play critical roles in maintaining the conformational preferences
of ring puckers as well as torsional angles [23]. Figure S12 shows examples of such water
molecules for each of the CS disaccharides. Although transient, bridged water molecules
were found in >20% of MD frames, suggesting their role in stabilizing the respective
topologies, a common feature observed 1→3-linked sequences was that the sulfation of
GlcA added a bridged water molecule interaction (Figure S12M–P), which was less likely
for corresponding 1→4-linked sequences (e.g., Figure S12E–H). Likewise, differences in
the number of bridged water molecules also arose between the two series of disaccharides
(1→3- v/s 1→4-) when devoid of sulfation (see Figure S12H v/s Figure S12P).

The Role of Inter- and Intra- Molecular Hydrogen Bonds—As stated above, the forma-
tion and breakdown of H-bonds contribute to the dynamism of conformational topologies. Yet,
to pinpoint the role of H-bonds in the modulation of CS topology more clearly, we overlaid
representative structures from the torsional probability density plots shown in Figure S7.
Figure 5 shows these overlaid plots for selected 1→3- and 1→4-linked sequences. At a very
fundamental level, although water-mediated interactions were observed for both sequence
classes, their contributions were different. Water-mediated interactions tended to arise from
sulfate groups for the 1→3-sequences, whereas for the 1→4-sequences these originated from
nuclear atoms. This resulted in higher topological diversity for the 1→3-sequences. More
specifically, the presence or absence of two-sulfate in the GlcA of 1→3-sequences led to a
variation of ~40% in the bridging water molecules for GalNAc6S (Figure 5E). This percent-
age dropped dramatically to 4% for GalNAc4S-containing 1→3-sequences (Figure 5D). This
implies that protein residues may be able to displace bridging water molecules to engineer a
tight fit, as was previously shown for chondroitinase B complexed to CS-A tetrasaccharide
(see PDB ID:1OFM) [53].

Figure 5. Comparison of topologies of representative sequences from 1→4- (A–C) and 1→3-linked
(D–F) sequences. The backbones (nuclear atoms only) of the non-reducing end residues of selected
disaccharides were aligned to evaluate the role of water-mediated interactions in topological pref-
erences. Higher and lower sulfated sequences are shown in cyan and green sticks, respectively.
Bridging water molecules are shown as red spheres. See Figures S13 and S14 for further details.

Figures S13 and S14 show the overlaid structures for 1→3- and 1→4-linked sequences,
respectively, which further pinpoint differences within each of these classes. When a sulfate
was present in the GlcA residue, each 1→3-linked sequence tended to prefer a more
linearized topology because of the higher levels of H-bonding (Figure S13E–H). For non-
sulfated GlcA residues this topology is less favored (Figure S13A–D). Likewise, four-sulfate
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in GalNAc tended to reduce torsional spread because of H-bonding with GlcA residues.
This appears to be the reason behind the rigidity of four-sulfated CS sequences, a conclusion
supported by earlier observations with the MM3 force field [34].

For the 1→4-linked sequences, Figure S7 (above) shows an essentially single and
tight probability density. When different topologies from the probability density plots are
compared, the overlays not only clarify that the changes are minimal but point to the role of
water-mediated interactions (Figure S14). A rather common H-bond between the O5 atom
of GalNAc and the O3 atom of GlcA occurred for all disaccharides (see also Table S2), which
stabilized each sequence in an essentially identical manner. Likewise, a water-mediated
H-bond also arose between the amide of GalNAc and the carboxylate of GlcA. In fact,
these H-bonds were found to exist essentially over the entire MD timeframe, resulting in a
well-defined topology.

Overall, this analysis provides a foundation for the rather similar topologies, irrespec-
tive of the sulfation pattern, observed for the 1→4-linked sequences. Sulfation tended to
influence the 1→3 torsional space more than the 1→4 torsional space because of underlying
differences in water-mediated interactions.

Energy Landscape and Multiplicity of Local Minima—Although most studies focus
on the global minima and its role in protein recognition, it is important to recognize that
proteins may recognize less populated topologies. The potential energy surface (PES) offers an
overview of the different topologies sampled by molecules [23,54]. We utilized MD trajectories
to elucidate the PES of all 16 CS disaccharides. PES can be visualized in many ways by
plotting two different molecular components (e.g., atom positions, bond angles, etc.) as x-
and y- components against the energy of the system as the z-component. For this, each MD
frame was quenched using the steepest descent minimization protocol followed by conjugate
gradient minimization (maximum 1000 iterations) and then analyzed for potential energy [55].
Simultaneously, we performed principal component analysis (PCA) on all MD frames to
derive the first two principal components, which, when plotted against the energy, gave the
two-dimensional potential energy landscapes shown in Figures S15 and S16.

Both the 1→4- and 1→3-linked disaccharides displayed energy landscapes with multiple
low- and high-energy coordinates (blue and red loci, respectively, in Figures S15 and S16). This
implies the existence of kinetic traps, saddle points and local minima. Yet, the energy landscapes
of different sequences were significantly different as shown in Figure 6. Unsulfated 1→3-linked
disaccharide (GlcA–GalNAc) showed a primarily two-state landscape (high and low energy)
(Figure 6A). Likewise, maximally sulfated 1→3-linked disaccharide (GlcA2S–GalNAc4S6S)
also showed a two-state landscape, except that saddle points replaced the low-energy states
(Figure 6B). In contrast, the intermediate sulfated sequences, e.g., GlcA–GalNAc4S (Figure 6C)
or GalNAc6S–GlcA (Figure 6D), presented a rugged energy landscape containing multiple
energy states. Considering that fewer CS sequences in nature are either maximally sulfated
or non-sulfated, the multiplicity of local minima would dominate the conformer population
in nature.

We also compared principal components for selected disaccharides to understand
changes in topological spread as a function of sulfation. For glycans, the dynamical motion
across an MD trajectory can be captured using multiple parameters such as the root-mean-
square deviation (RMSD), end-to-end distance (EED), minimum volume enclosing ellipsoid
(MVEE), radius of gyration (RGYR), potential energy (PE), etc. Understanding these changes
in toto is difficult because the dynamical profile is multi-dimensional. Principal component
analysis (PCA) is an effective decomposition approach that reduces the multi-dimensional
space to two dimensions, which capture the most important parameters in a composite form.
The PCA for the 16 CS disaccharides clearly revealed similarities and differences among them.
The comparison of PCA plots for GlcA2S–GalNAc4S6S and GlcA–GalNAc clearly shows that
sulfation enhanced the occupancy of more topologies (Figure S17A). Likewise, the location
of sulfates also influenced the conformational spread, as exemplified by the 1→4-linked
sequences carrying GalNAc6S or GalNAc4S (Figure S17B,E).
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Figure 6. Inherent potential energy landscape of CS disaccharides. Representative landscapes are
shown for GlcA-GalNAc (A), GlcA2S-GalNAc4S6S (B), GlcA-GalNAc4S (C) and GalNAc6S-GlcA (D).
The 2D-contour plots were prepared by projecting the respective potential energy values of the Z axis
to the X and Y axes, where the X and Y-axes are the first two principal components (PCs) derived from
principal component analysis (PCA) of the MD trajectory representing the conformational subspace.
(see Figures S15 and S16 for other disaccharides).

4. Conclusions

GAGs are known to bind to numerous proteins and modulate their functions [7,8].
A common explanation for these roles is their electrostatic interactions with positively
charged domains on proteins. Electrostatic interactions are typically non-selective, and
are difficult to employ in the discovery of drug-like candidates. This is one of the main
challenges in translating GAG sequences into clinical candidates. Despite this, selective
GAG–protein systems have been found, including heparin–antithrombin [56], heparan sul-
fate hexasaccharide–heparin cofactor II [57], heparan sulfate octasaccharide–glycoprotein
D [58], dermatan sulfate hexasaccharide–heparin cofactor II [18], etc.

CS has been found to have major roles in neurobiology [9,12–14]. Although oligosac-
charide sequences with high selectivity for target proteins have yet to be identified, CS-E
(GalNAc4S6S) has been found to be a powerful neuronal modulator [2,15–17]. Likewise,
our recent computational work identified dual site interactions between TGFβ and dis-
tinct CS oligosaccharides [25]. These results imply that selective CS sequences should be
possible to design and/or discover. Unfortunately, little is known about the structural
and conformational properties of the full range of CS building blocks. Thus, this work
was directed towards understanding the conformational diversity and dynamism of CS
building blocks so as to inform future CS design algorithms.
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This is the first study of all possible CS disaccharides using the GLYCAM06 force
field. We utilized essential MD on an NPT ensemble to explore the conformational space of
16 disaccharides including GalNAc4S6S and GlcA2S, which are relatively less populated
in nature. We first validated our 20 ns MD protocol using one disaccharide sequence.
Application of this protocol to all 16 disaccharides revealed some key insights into the
structure and dynamics of these key building blocks. It is important to note that 20 ns MD
simulations for disaccharides, as performed in this work, were sufficiently robust to offer
conformational and dynamic inferences. We expect that longer GAG sequences would
require longer simulation times, e.g., 1000 ns, followed by a validation exercise, such as
that performed in this work.

The Ramachandran plots showed characteristic preferences for both the 1→4- and 1→3-linked
glycosidic bonds, which matched the available crystallographic data of free and protein-bound
oligosaccharides (Table S1). These results also correlated well with the published data using MD
and NMR [27,31–33,36,37]. However, the collective analysis of all possible sequences revealed clear
topological differences between the 1→4- and 1→3-linked sequences, each of which exhibited
variations arising from the level of sulfation in two saccharide rings. In fact, the 1→3-linked
disaccharides showed distinct multiple minima, whereas the 1→4-linked disaccharides presented
a uni-modal torsional distribution. Further, sulfation tended to influence the 1→3 conformational
space more than that of 1→4 because of the reduced level of inter-residue H-bonding in the former.
Individual sulfate groups also influenced conformational diversity. GalNAc6S introduced higher
torsional spread than GalNAc4S. Likewise, GlcA2S induced higher conformational diversity than
its non-sulfated counterpart.

The above conclusions, derived from torsional analysis, were also supported in an indepen-
dent analysis of distinct clusters formed during MD simulations. Here, the 1→3-disaccharides
displayed higher structural diversity than the 1→4-sequences. However, an anomaly was
observed with the GlcA2S–GalNAc4S6S sequence, which displayed reduced diversity as com-
pared to its 1→4 counterpart (Figure 2). We predict that high electrostatic repulsion from nearest
neighbors (three sulfates and one carboxylate) combined with the 1→3-glycosidic bond reduced
the number of degrees of freedom.

The results from the intra-molecular H-bonds also differentiate the 1→4- and 1→3-linked
sequences. However, both classes of disaccharides were found to be conformationally dynamic
because of the presence of relatively few intra-molecular H-bonds (Figure 4). Similar conclusions
could be derived from the study of bridging water molecules (Figure 5), which contributed to
the stabilization of distinct topologies. In fact, sulfation engineered a higher level of topological
diversity for the 1→3-sequences because of a huge variation in the proportion of bridging
water molecules in different sequences. However, GlcA2S induced an additional high-density
torsional region that presented a distinct topology. For the 1→4-linked sequences, a common
water-mediated interaction between the O5 atom of GalNAc and the O3 atom of GlcA was
observed for each sequence, irrespective of sulfation, which was important for the stability of
distinct topologies. A corollary of these conclusions is that such principles could be employed
in the design of a CS oligosaccharide of a defined topology.

Finally, our studies on the quenching of MD frames followed by PCA of conformational
space yielded more evidence of a large number of metastable states for all sulfated disac-
charides (Figure 6). On the structural extremes, GlcA–GalNAc and GlcA2S–GalNAc4S6S
showed the widest difference in topological space. However, subtle variations in confor-
mational spread were also evident for sequences carrying sulfates at different positions,
e.g., GalNAc6S v/s GalNAc4S.

Overall, our studies indicated the accessibility of distinct topologies by the 1→4- and
1→3- linked disaccharides. Class members exhibited similar, but not identical, preferred
geometries. Modulations in these arose due to the presence of sulfate groups at various
positions. The six-sulfate group afforded significantly more conformational dynamism
than the four-sulfate group. In contrast, the 4,6-disulfate group was likely to present
reduced conformational dynamism, especially for the 1→3-linked disaccharide. These
lucid conclusions should help design a CS sequence that is selective for its target. An
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algorithm could be developed based on these studies to design sequences with either fairly
linear or bent CS oligosaccharide with a defined number of sulfate groups decorating
the topological shape. Likewise, it may also be possible to design a CS sequence with
appropriate rigidity or flexibility to occupy a site of binding on the target protein.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12010077/s1, The accompanying supplementary information
contains Figures S1–S17 and Tables S1–S3, which offer additional details on the data and results
presented in the main manuscript.
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