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Abstract: Finding, exploring and filtering frequent sentence-based associations between a disease and
a biomedical entity, co-mentioned in disease-related PubMed literature, is a challenge, as the volume
of publications increases. Darling is a web application, which utilizes Name Entity Recognition to
identify human-related biomedical terms in PubMed articles, mentioned in OMIM, DisGeNET and
Human Phenotype Ontology (HPO) disease records, and generates an interactive biomedical entity
association network. Nodes in this network represent genes, proteins, chemicals, functions, tissues,
diseases, environments and phenotypes. Users can search by identifiers, terms/entities or free text
and explore the relevant abstracts in an annotated format.

Keywords: text-mining; data integration; bioinformatics; named-entity recognition; literature-
derived associations

1. Introduction

PubMed® today (02/2022) hosts more than 33 million biomedical abstracts, whereas
PubMed Central® Open Access Subset (PMC OA Subset) [1] contains more than
7 Million full-text articles. The ever-increasing amount of literature is posing numer-
ous challenges for bioscientists, as parsing these texts and extracting associations among
biomedical entities is neither easy nor trivial. This is particularly true for disease-related
research, where a wealth of knowledge on the relations between bioentities (genes, proteins,
chemicals, etc.) and pathological conditions is available, especially since the rise of high-
throughput experimental methods [2]. There is, therefore, a great need for the development
of effective and user-friendly methods for the automated recognition, visualization and
analysis of disease-related bioentity associations.

Towards this end, several text-mining approaches have been implemented [3–7]. Bio-
TextQuest [8], for example, retrieves PubMed articles and clusters them based on their
biomedical terms. DrugQuest [9] applies text mining on the DrugBank database [10], in
order to explore drug associations. DISEASES [11] is a system for extracting disease–gene
associations from biomedical abstracts. PREGO [12] uses text mining to link microor-
ganisms with environmental processes and functions. Reflect [13] and EXTRACT [14]
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perform Named Entity Recognition (NER) on web pages on the fly. FACTA [15] is a text
search engine for identifying associated biomedical concepts. OnTheFly [16] parses Office
documents, images and PDF files to identify biomedical terms in their text and perform
functional enrichment and biological network analysis. CoPub [17] uses Medline abstracts
to calculate robust statistics for keyword co-occurrences. NETME [18] offers a knowledge
network construction, with term associations in biomedical literature. PubAnnotation [19]
is an open, Agile text mining framework to aid researchers throughout the entire anno-
tation process. PubTator [20] provides automated annotations from state-of-the-art text
mining systems for genes/proteins, genetic variants, diseases, chemicals, species and cell
lines. MetaMap [21] provides access to concepts in the unified medical language sys-
tem (UMLS) Metathesaurus, from biomedical text. Medline Ranker [22] scores abstracts
from Medline, according to a training set of abstracts or a MeSH term. LipiDisease [23]
performs disease enrichment analysis on lipids using biomedical literature data. Finally,
PESCADOR [24] extracts and analyzes a network of gene and protein interactions from a
set of Medline abstracts.

Despite the increasing number of text-mining solutions, effective text mining and
analysis of disease-related literature remains challenging. For one thing, the majority of
currently available approaches, such as those referenced above, are specialized towards
specific bioentity types (e.g., genes, proteins, chemicals, etc.). However, diseases are often
complex phenotypes, depending on a multitude of different factors, from gene expression,
protein function and chemical substances to cell tissues and even environmental factors.
Furthermore, most of these services often offer limited options in the visualization and
analysis of their components. To address these challenges, in this article, we present
Darling, a novel web application to query scientific publications associated with diseases,
identify and visualize bioentities of various types and construct knowledge-based biological
interaction networks. Out of a plethora of articles and available databases (reviewed
in [25]), we focus on disease-centric repositories and generate a non-redundant set of
publications, associated with entries in the OMIM [26], Human Phenotype Ontology
(HPO) [27] and DisGeNET [28] databases. The abstracts of the publications are parsed
through Named Entity Recognition (NER) to identify a wide range of biomedical terms
(genes, chemicals, organisms, ontology terms, diseases, phenotypes and environments).
Sentence-based associations among the various biomedical entities are presented in an
interactive network [29,30], as well as in searchable and sortable tables, while abstracts
are shown in annotated format. Statistics regarding the frequencies of the queried entity
types are also presented. Darling is available at http://darling.pavlopouloslab.info or
http://bib.fleming.gr:8084/app/darling (accessed on 28 February 2022).

2. Materials and Methods
2.1. Data Collection

The database records (October 2021 data) of OMIM (25,767 entries), HPO (4645 entries)
and the human subset of DisGeNET v. 7.0 (30,170 entries) were parsed and their associated
publications were isolated, resulting in a non-redundant set of 881,185 articles. The article
abstracts were retrieved from PubMed using the Entrez Direct API [31] and were analyzed
through NER to isolate bioentities, using the EXTRACT tagger [14,32]. The EXTRACT tag-
ger uses a dictionary-based approach, through which biological and biomedical terms, both
canonical and synonyms (e.g., gene name aliases), are assigned to their unique identifiers;
thus producing concept-normalized results. The extracted bioentities were assigned to
their proper database identifiers, resulting in a non-redundant set of 78,938 terms including
genes (protein-coding and other gene types, e.g., micro-RNAs), chemical compounds, Gene
Ontology terms, tissues, diseases, organisms, phenotypes and environments. In the dataset,
each term is represented by its unique identifier to the relevant database (Table 1), its canon-
ical name, and a number of alternative names/synonyms, as found through the mining
of the publications. A knowledge-based interaction network was constructed from these
terms (nodes), using their co-occurrence to define interactions (edges). Specifically, two
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terms were defined as interaction partners if they were mentioned in the same sentence in
the text, with their edge weight defined as the sum of the two terms’ co-mentions in the an-
alyzed abstracts. The aforementioned approach resulted in knowledge network consisting
of 78,938 nodes and 5,235,076 edges. Table 1 summarizes the number of biomedical terms
identified for each category. A flowchart demonstrating the data retrieval and analysis
procedure is shown in Figure 1.

Table 1. Identified biomedical terms in a set of 881,185 articles mentioned in OMIM, HPO and
DisGeNET databases.

Entity Type Resource #Terms

Chemicals PubChem [33] 23,593

Genes/Proteins ENSEMBL [34], miRBase [35], Gene
Cards [36] 19,731

GO—Biological Process Gene Ontology [37] 6002
GO—Molecular Function Gene Ontology [37] 3176
GO—Cellular Component Gene Ontology [37] 1842

Tissues BRENDA Tissue Ontology (BTO) [38] 4229
Diseases Disease Ontology [39], AmyCo [40] 6172

Organisms NCBI Taxonomy [41] 11,212
Environments Environmental Ontology (ENVO) [42] 363

Phenotypes Mammalian Phenotype Ontology [43],
Cell Line Data Base (CLDB) [44] 2618

Figure 1. Flowchart of the data retrieval procedure implemented in Darling.

2.2. Darling Application and Analysis

Query: Darling’s GUI, offers different query options through three tabs. These are:
(i) Disease Search, (ii) Bioentity Search and (iii) Literature Search.

In the first case, one can directly query any of the OMIM, HPO and DisGeNET
databases using their original identifiers or disease names. Users can only query one of
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the databases each time but, with each query, one can append the article result list for
further analysis. Duplicated retrieved terms are discarded in the next step of the analysis.
In the case of free text querying (e.g., disease name), users can force Darling to look for
exact matches or substrings in the database’s record names. In the case of using database
identifiers, users can use lists of IDs separated by spaces or commas to retrieve the results
of multiple disease entries.

In the second tab, one can search for a bioentity term using free text and exact or partial
string matches. In this case, the user can search for chemicals, proteins or tissues stored
in Darling’s database and perform a non-disease-centric analysis from a different starting
point (e.g., a chemical). Notably, exact matches refer to the bioentity terms identified by the
EXTRACT tagging service.

The third option is the most flexible as one can use a list of PubMed identifiers or free
text to look for exact or partial matches in article titles. In this case, Darling will search for
terms (e.g., “CRISPR-Cas9” or “mir-19”) that may not appear in its dictionary or any of the
OMIM, HPO and DisGeNET record names.

In every case, after submitting a search query, Darling will fetch all matched articles
(Figure 2). The collected articles are then summarized in an interactive and sortable table
for review prior to further analysis; thus, users may either keep all retrieved articles or
focus on a subset. When multiple search queries are executed, the results of each query
can also be filtered to include the intersection (only the common results) or union (all
results) of the queries. Users may also choose to filter the NER results and subsequently the
retrieved associations by selecting one or more bioentity types (genes, proteins, chemicals,
functions, tissues, diseases, environments and phenotypes). Notably, all of these actions
can be applied on the set of 881,185 articles mentioned in OMIM, HPO and DisGeNET
databases. OMIM’s body text is not processed due to license restrictions.

Tables and statistics: Upon selecting articles and applying entity-type filters, Darling
will mine all articles of interest and retrieve the corresponding NER results from its database
(pre-calculated with the use of EXTRACT [14]). Identified terms are reported in searchable
and sortable tables along with their synonyms, official symbols, database identifiers and
links to the original source. Identified terms can be reported altogether or separately
in corresponding tabs—one per category (genes/proteins, chemicals, functions, tissues,
diseases, environments and phenotypes). Extra columns indicate how many times a term
was found in the retrieved abstracts as well as in how many articles this term was detected.
Interactive ordered bar blots are generated to show such frequencies while interactive pie
charts show the overall coverage of terms and articles retrieved for every bioentity category.
Finally, word clouds show the most common terms, scaled by their frequency.

Network: In addition to the tables, Darling generates an interactive association net-
work of the identified bioentities. Network nodes may fall into any of the identified
bioentity types (genes/proteins, chemicals, organisms, GO terms, tissues, diseases, envi-
ronments and phenotypes) and are assigned a certain color (distinct per category). Node
sizes can be adjusted according to how many times they were identified in a selected set of
abstracts (total frequency) whereas network edges can be interactively filtered according to
the total times two adjacent entities were located in the same sentence (edge weight). At
any stage of analysis, users may limit the visible nodes to certain bioentity types. For aes-
thetical convenience, users may adjust the network view using various offered layouts [45].
Characteristic examples are the force-directed ones such as Fruchterman–Reingold [46]
and Kamada–Kawai [47] or the plain ones such as grid, random and circular layout. The
network is fully interactive and comes with control buttons for positioning, zooming and
recentering. Nodes can be dragged and positioned anywhere on the plane.



Biomolecules 2022, 12, 520 5 of 13

Figure 2. The Darling Graphical User Interface of Darling. (A) The input form of the Disease Search
query. Users can perform searches using a disease’s name or database identifier, against the data
retrieved from OMIM, HPO or DisGeNET. In the example, the term “HIV” is searched against
DisGeNET. The search form initially returns the publications associated with the disease. Users can
then choose the publications and entity types of their interest and perform an analysis, using the
form elements at the bottom of the page. (B) Excerpts of the results retrieved for the search. A total of
2869 entities have been retrieved and organized in distinct categories. For each term, its database
identifier, canonical name, synonym terms and associated PubMed identifiers (PMIDs) are shown; in
addition, the frequency of the terms, both total and for each distinct publication, is calculated. (C) A
knowledge-based association network generated by the search results. Users can adjust the elements
of the network and select from a list of different visualization layouts. (D) Bar-plot (left) and word
cloud (right) representations of the most frequent GO biological processes associated with HIV. (E) A
graphical representation of one of the publication abstracts, with extracted bioentities highlighted in
color. (F) Pie charts of the overall coverage of terms and articles retrieved for every bioentity category.

Besides visualization, similarly to the NAP application [48,49] or Cytoscape’s Net-
work analyzer [50], Darling offers basic network topological analysis where users can
see numerical values for the numbers of nodes and edges, density, modularity, radius,
average path length, average connectivity, average clustering coefficient, betweenness and
eccentricity centrality.

For more comprehensive visualization and analysis, at any stage, the network’s edge
list can be exported in a tab-delimited file format and visualized with external view-
ers [51–53] (e.g., Cytoscape [54], Gephi [55], NORMA [56], Arena3Dweb [57]). Bidirectional
edges (e.g., AB-BA) are kept only once.
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Annotated text: At any stage of the analysis, the relevant PubMed article abstracts are
reported in an annotated format in a separate table. Users can read these abstracts with
the identified terms highlighted in different colors according to the tagged entity category.
On mouse-hovering or clicking over a term, a popup window with relevant links to the
corresponding databases is generated on-the-fly.

Functional Enrichment: After the network generation and the application of any
filtering options, all of the visible identified genes and proteins can be sent to the Flame
application [58] for functional and literature enrichment analysis. Genes and Proteins will
be first converted to ENSEMBL identifiers and can then be analyzed for KEGG [59,60],
Reactome [61,62] and Wiki Pathways [63] or for the biological functions [37] they are
involved in. Flame utilizes g:Profiler [64] and aGOTool [65] at its backend for functional
and literature enrichment and offers appealing visualizations for easier interpretation of
the reported results. In addition, Flame can construct protein–protein interaction networks,
by retrieving evidence from the STRING database [66].

2.3. Implementation

Darling is organized in a MySQL database which is periodically updated. The GUI
and backend are mainly written in R/Shiny. The interactive network is visualized with
the R/visNetwork library and network topological analysis is performed using the R/igraph
library [67]. Plots are generated with the use of R/Plotly [68], while wordclouds with the
R/wordcloud2 library. The EXTRACT API [14] is utilized to display popup windows for
bioentity terms in the annotated abstracts.

3. Results
3.1. Investigating the Link between Obesity and Cardiovascular Diseases

To demonstrate Darling’s capacity for the extraction of biological information and
knowledge discovery, we investigated genes and pathways that may link cardiovascular
disease (CVD) to obesity. We queried DisGeNET, using the disease term “cardiovascular”,
and obtained the 5000 most recent articles, 100 of which also contained the term “obesity”.
This group entailed 317 entities (Figure 3A) that included 109 unique genes/proteins
associated with “insulin receptor signaling”, “metabolic disease”, “energy homeostasis”
and “cytolysis” gene ontology (GO) biological processes (Figure 3B). By using Darling,
we constructed a co-occurrence network of genes, phenotypes and tissues predicted to
link CVD to obesity (Figure 3C). A major neighborhood in this network (subnetwork 1)
is associated with “insulin resistance”, “abnormal inflammatory response” and “cardiac
hypertrophy” and linked to the adipose tissue, liver and blood. This group mostly entails
components of the adiponectin pathway, including adiponectin (ADIPOQ), its receptors
ADIPOR1 and ADIPOR2, and their downstream adaptors APPL1/2, which transduce the
anti-atherogenic and anti-inflammatory effects of adiponectin. The group also includes the
inflammation marker CRP, which is elevated in both obesity and CVD, and GAS6, which
has been implicated in atherosclerosis, thrombosis and innate immune reactions [69].

The Darling co-occurrence network also indicated an interaction between fat mass
and obesity-associated protein (FTO) and apolipoprotein E (APOE), linked to inflammatory
processes (Figure 3C). Several FTO polymorphisms are associated with increased risk for
weight gain [70] and the APOE ε4 variant is a genetic risk factor for atherosclerosis and
CVD in humans [71]. Experimental evidence suggests that expression of APOE ε4 leads
to elevated intracellular and circulating cholesterol levels and heightened inflammatory
reactions compared to other variants [71]. A putative mechanistic link between APOE and
FTO is underscored by studies showing that overexpression of FTO in APOE-deficient mice
reduces cholesterol and inflammatory cytokine synthesis by macrophages and alleviates
atherosclerosis associated with the absence of APOE [72].

Another neighborhood of interest identified by Darling (subnetwork 2; Figure 3C)
entails the growth differentiation factor 15 (GDF15) and its receptor, GFRAL. Circulating
GDF15 crosses the blood brain axis to bind GFRAL in neurons of the hindbrain, leading
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to reduced appetite and food intake. The serum levels of GDF15 dramatically increase
in cancer-associated cachexia but are also found elevated in obesity, presumably acting
as a compensatory mechanism to reduce appetite [73]. GDF15 has been reported as a
prospective biomarker of CVD and independent predictor of all-cause mortality [74,75].
Interestingly, CRP has been found to induce the expression of GDF15 [76].

Figure 3. Assessment of Darling’s capacity for extraction of biological information and knowl-
edge discovery. (A) Top entities (chemicals, phenotypes, proteins/genes, organisms, GO:BP,
GO:CC and GO:MF, tissues, environments and diseases) plotted against frequency of occurrence in
100 DisGeNET-related publications. (B) GO Biological processes predicted to be mostly associated
with cardiovascular disease. (C) Co-occurrence network depicting genes (orange circles), phenotypes
(purple circles) and tissues (green circles) predicted to link cardiovascular disease and obesity. Sub-
network 1, discussed in the Results section, is demarcated by the blue line and subnetwork 2 by the
red line.
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Overall, the aforementioned observations demonstrate the capacity of Darling for the
extraction of biological information and knowledge discovery.

3.2. Querying Multiple Disease Databases Simultaneously with Darling

In a second case study, we asked whether Darling could facilitate the extraction
of biological information on a disease by combining several disease libraries. To this
end, we interrogated OMIM, HPO and DisGeNET for Cornelia de Lange, a rare genetic
syndrome characterized by slow growth rates, leading to short stature, intellectual disability
that ranges from moderate to severe, congenital heart defects and bone abnormalities,
among others. Through Darling, we queried OMIM for “Cornelia de Lange” and obtained
127 entries that generated 264 entities. By exploring the same query against the OMIM,
HPO and DisGeNET compendiums together, Darling retrieved 318 entries that generated
292 unique articles and 712 entities. The co-occurrence network of genes/proteins, GO
Biological Processes and DOID diseases derived by these 712 entities yielded superior
information compared to the respective network derived from OMIM only (Figure 4).

Figure 4. Networks of genes/proteins, GO Biological Processes and DOID diseases generated by
Darling query of OMIM (A) or OMIM, HPO and DisGeNET compendiums together (B) for “Cornelia
de Lange”. Entities (264 and 712, respectively) were used to build co-occurrence networks (filter by
frequency = 5).

A major neighborhood in both networks (Figure 4A,B) contained the NPBL, SMC1A,
SMC3, HDAC8 and RAD21 genes, which are found mutated in >80% of Cornelia de Lange
patients. These genes encode for regulators of the cohesin complex and are involved in
chromosome condensation, chromosome segregation and DNA repair. Additional genes
found exclusively in the network generated from OMIM, HPO and DisGeNET include
BRD4 and MAU2. Mutations in both genes have recently been detected in Cornelia de
Lange patients and have been functionally implicated in disease pathogenesis through
their interaction with NPBL [77,78].
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Interactions with Wilson–Turner and Roberts syndromes were also indicated in this
network (Figure 4B). Roberts syndrome bears developmental abnormalities, similar to
Cornelia de Lange, such as limb abnormalities, retarded growth and intellectual impairment.
Mechanistically, Roberts syndrome has been linked to mutations in ESCO2 gene, which
encodes a cohesin acetyltransferase and modulator of double strand break repair [79].
Wilson–Turner syndrome is a rare X-linked multisystem genetic disease that also manifests
with intellectual disability, dysmorphic facial features and short stature and has been linked
to a mutation in the HDAC8 gene [80]. Overall, the aforementioned examples demonstrate
the capacity of Darling for the extraction of biological information and acceleration of
knowledge discovery.

4. Discussion

Darling is a text-mining application, aiming to aid researchers in associating different
biomedical entities in a knowledge network, generated by literature mining. A great advan-
tage of Darling is its high quality back-end NER tagger, which makes it more competitive
compared to other similar applications, both in terms of annotation and data integration.
In addition, Darling only focuses on a subset of disease-centric articles, which have been
manually curated in the OMIM, HPO and DisGeNET databases, rather than the whole
PubMed space. Taking into account that PubMed currently contains many review articles
and has also recently started to support preprints [81], we believe that this is the safest
approach, in order to eliminate possible false-positive term associations. Nevertheless, we
plan to extend Darling’s functionality in the future and cover literature coming from more
databases, as well as support full text articles.

In its core, Darling contains a relational database, consisting of all relevant bioentity
information and associations. Term frequencies per article, their respective canonical names
and the relative tagged documents are all pre-calculated, further speeding up the execution
of the application, and are served via an interactive GUI. Therefore, Darling does not
depend on external web services, as opposed to other similar applications (e.g., NETME),
which query the various databases (e.g., PubMed) on the fly, resulting in time-consuming
requests. This may secure an always up-to-date information schema but comes at the
cost of speed, performance and web-service dependencies. To keep up to date, Darling’s
database will be annually updated, including new OMIM, HPO and DisGeNET entries,
as well as their associated publications and extracted bioentities. Furthermore, in future
versions, Darling will implement additional databases, support more model organisms and
enable the detection of abstract-based associations (currently only offers sentenced-based),
something which may increase the network’s complexity.

Overall, we believe that Darling outperforms most of the currently available tools, in
terms of performance, variety of identified entity terms and quality of results. It is a power-
ful tool, which can simplify the way researchers query and explore existing knowledge,
while also identifying novel indirect associations among biomedical entities, which may be
the pivot elements for new hypotheses and discoveries.

Author Contributions: Conceptualization, G.A.P. and I.I.; methodology, I.I., G.A.P. and T.T.; software,
E.K., F.A.B. and I.K.; validation, A.G.E. and D.S. formal analysis, A.G.E. and T.T.; investigation, I.K.;
data curation, E.K. and F.A.B.; writing—original draft preparation, G.A.P., E.K., F.A.B., A.G.E., D.S.
and I.I.; visualization, I.K.; supervision, G.A.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I)
under the “First Call for H.F.R.I Research Projects to support faculty members and researchers and
the procurement of high-cost research equipment grant”, Grant ID: 1855-BOLOGNA. GAP was also
supported by the project ‘The Greek Research Infrastructure for Personalized Medicine (pMedGR)’
(MIS 5002802), which is implemented under the Action ‘Reinforcement of the Research and In-
novation Infrastructure’, funded by the Operational Program ‘Competitiveness, Entrepreneurship
and Innovation’ (NSRF 2014-2020) and co-financed by Greece and the European Union (European
Regional Development Fund).



Biomolecules 2022, 12, 520 10 of 13

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Darling is available online at http://darling.pavlopouloslab.info (ac-
cessed on 28 February 2022).

Acknowledgments: We would like to thank Yorgos Sofianatos, supported by the Marie Skłodowska-
Curie Individual Fellowships—MSCA-IF-EF-CAR (Grant ID: 838018—H2020-MSCA-IF-2018).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roberts, R.J. PubMed Central: The GenBank of the published literature. Proc. Natl. Acad. Sci. USA 2001, 98, 381–382. [CrossRef]

[PubMed]
2. Lightbody, G.; Haberland, V.; Browne, F.; Taggart, L.; Zheng, H.; Parkes, E.; Blayney, J.K. Review of applications of high-

throughput sequencing in personalized medicine: Barriers and facilitators of future progress in research and clinical application.
Brief. Bioinform. 2019, 20, 1795–1811. [CrossRef] [PubMed]

3. Cheerkoot-Jalim, S.; Khedo, K.K. A systematic review of text mining approaches applied to various application areas in the
biomedical domain. J. Knowl. Manag. 2020, 25, 642–668. [CrossRef]

4. Przybyła, P.; Shardlow, M.; Aubin, S.; Bossy, R.; Eckart de Castilho, R.; Piperidis, S.; McNaught, J.; Ananiadou, S. Text mining
resources for the life sciences. Database 2016, 2016, baw145. [CrossRef] [PubMed]

5. Rebholz-Schuhmann, D.; Oellrich, A.; Hoehndorf, R. Text-mining solutions for biomedical research: Enabling integrative biology.
Nat. Rev. Genet. 2012, 13, 829–839. [CrossRef] [PubMed]

6. Wang, L.L.; Lo, K. Text mining approaches for dealing with the rapidly expanding literature on COVID-19. Brief. Bioinform. 2021,
22, 781–799. [CrossRef] [PubMed]

7. Papanikolaou, N.; Pavlopoulos, G.A.; Theodosiou, T.; Iliopoulos, I. Protein-protein interaction predictions using text mining
methods. Methods S. Diego Calif. 2015, 74, 47–53. [CrossRef]

8. Papanikolaou, N.; Pavlopoulos, G.A.; Pafilis, E.; Theodosiou, T.; Schneider, R.; Satagopam, V.P.; Ouzounis, C.A.; Eliopoulos, A.G.;
Promponas, V.J.; Iliopoulos, I. BioTextQuest(+): A knowledge integration platform for literature mining and concept discovery.
Bioinforma. Oxf. Engl. 2014, 30, 3249–3256. [CrossRef]

9. Papanikolaou, N.; Pavlopoulos, G.A.; Theodosiou, T.; Vizirianakis, I.S.; Iliopoulos, I. DrugQuest—A text mining workflow for
drug association discovery. BMC Bioinform. 2016, 17, 182. [CrossRef]

10. Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank
5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [CrossRef]

11. Pletscher-Frankild, S.; Pallejà, A.; Tsafou, K.; Binder, J.X.; Jensen, L.J. DISEASES: Text mining and data integration of disease-gene
associations. Methods S. Diego Calif. 2015, 74, 83–89. [CrossRef]

12. Zafeiropoulos, H.; Paragkamian, S.; Ninidakis, S.; Pavlopoulos, G.A.; Jensen, L.J.; Pafilis, E. PREGO: A Literature and Data-Mining
Resource to Associate Microorganisms, Biological Processes, and Environment Types. Microorganisms 2022, 10, 293. [CrossRef]
[PubMed]

13. Pafilis, E.; O′Donoghue, S.I.; Jensen, L.J.; Horn, H.; Kuhn, M.; Brown, N.P.; Schneider, R. Reflect: Augmented browsing for the life
scientist. Nat. Biotechnol. 2009, 27, 508–510. [CrossRef] [PubMed]

14. Pafilis, E.; Buttigieg, P.L.; Ferrell, B.; Pereira, E.; Schnetzer, J.; Arvanitidis, C.; Jensen, L.J. EXTRACT: Interactive extraction of
environment metadata and term suggestion for metagenomic sample annotation. Database J. Biol. Databases Curation 2016, 2016,
baw005. [CrossRef]

15. Tsuruoka, Y.; Tsujii, J.; Ananiadou, S. FACTA: A text search engine for finding associated biomedical concepts. Bioinformatics 2008,
24, 2559–2560. [CrossRef] [PubMed]

16. Baltoumas, F.A.; Zafeiropoulou, S.; Karatzas, E.; Paragkamian, S.; Thanati, F.; Iliopoulos, I.; Eliopoulos, A.G.; Schneider, R.;
Jensen, L.J.; Pafilis, E.; et al. OnTheFly2.0: A text-mining web application for automated biomedical entity recognition, document
annotation, network and functional enrichment analysis. NAR Genom. Bioinform. 2021, 3, lqab090. [CrossRef]

17. Fleuren, W.W.M.; Verhoeven, S.; Frijters, R.; Heupers, B.; Polman, J.; van Schaik, R.; de Vlieg, J.; Alkema, W. CoPub update:
CoPub 5.0 a text mining system to answer biological questions. Nucleic Acids Res. 2011, 39, W450–W454. [CrossRef]

18. Muscolino, A.; Di Maria, A.; Rapicavoli, R.V.; Alaimo, S.; Bellomo, L.; Billeci, F.; Borzì, S.; Ferragina, P.; Ferro, A.; Pulvirenti, A.
NETME: On-the-fly knowledge network construction from biomedical literature. Appl. Netw. Sci. 2022, 7, 1–24. [CrossRef]

19. Kim, J.-D.; Wang, Y.; Fujiwara, T.; Okuda, S.; Callahan, T.J.; Cohen, K.B. Open Agile text mining for bioinformatics: The
PubAnnotation ecosystem. Bioinformatics 2019, 35, 4372–4380. [CrossRef]

20. Wei, C.-H.; Kao, H.-Y.; Lu, Z. PubTator: A web-based text mining tool for assisting biocuration. Nucleic Acids Res. 2013, 41,
W518–W522. [CrossRef]

21. Aronson, A.R.; Lang, F.-M. An overview of MetaMap: Historical perspective and recent advances. J. Am. Med. Inform. Assoc.
2010, 17, 229–236. [CrossRef]

http://darling.pavlopouloslab.info
http://doi.org/10.1073/pnas.98.2.381
http://www.ncbi.nlm.nih.gov/pubmed/11209037
http://doi.org/10.1093/bib/bby051
http://www.ncbi.nlm.nih.gov/pubmed/30084865
http://doi.org/10.1108/JKM-09-2019-0524
http://doi.org/10.1093/database/baw145
http://www.ncbi.nlm.nih.gov/pubmed/27888231
http://doi.org/10.1038/nrg3337
http://www.ncbi.nlm.nih.gov/pubmed/23150036
http://doi.org/10.1093/bib/bbaa296
http://www.ncbi.nlm.nih.gov/pubmed/33279995
http://doi.org/10.1016/j.ymeth.2014.10.026
http://doi.org/10.1093/bioinformatics/btu524
http://doi.org/10.1186/s12859-016-1041-6
http://doi.org/10.1093/nar/gkx1037
http://doi.org/10.1016/j.ymeth.2014.11.020
http://doi.org/10.3390/microorganisms10020293
http://www.ncbi.nlm.nih.gov/pubmed/35208748
http://doi.org/10.1038/nbt0609-508
http://www.ncbi.nlm.nih.gov/pubmed/19513049
http://doi.org/10.1093/database/baw005
http://doi.org/10.1093/bioinformatics/btn469
http://www.ncbi.nlm.nih.gov/pubmed/18772154
http://doi.org/10.1093/nargab/lqab090
http://doi.org/10.1093/nar/gkr310
http://doi.org/10.1007/s41109-021-00435-x
http://doi.org/10.1093/bioinformatics/btz227
http://doi.org/10.1093/nar/gkt441
http://doi.org/10.1136/jamia.2009.002733


Biomolecules 2022, 12, 520 11 of 13

22. Fontaine, J.-F.; Barbosa-Silva, A.; Schaefer, M.; Huska, M.R.; Muro, E.M.; Andrade-Navarro, M.A. MedlineRanker: Flexible
ranking of biomedical literature. Nucleic Acids Res. 2009, 37, W141–W146. [CrossRef] [PubMed]

23. More, P.; Bindila, L.; Wild, P.; Andrade-Navarro, M.; Fontaine, J.-F. LipiDisease: Associate lipids to diseases using literature
mining. Bioinformatics 2021, 37, 3981–3982. [CrossRef] [PubMed]

24. Barbosa-Silva, A.; Fontaine, J.-F.; Donnard, E.R.; Stussi, F.; Ortega, J.M.; Andrade-Navarro, M.A. PESCADOR, a web-based tool to
assist text-mining of biointeractions extracted from PubMed queries. BMC Bioinform. 2011, 12, 435. [CrossRef] [PubMed]

25. Baltoumas, F.A.; Zafeiropoulou, S.; Karatzas, E.; Koutrouli, M.; Thanati, F.; Voutsadaki, K.; Gkonta, M.; Hotova, J.; Kasionis, I.;
Hatzis, P.; et al. Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review. Biomolecules
2021, 11, 1245. [CrossRef]

26. Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man
(OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015, 43, D789. [CrossRef]

27. Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.;
Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2021, 49, D1207–D1217. [CrossRef]

28. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge
platform for disease genomics: 2019 update. Nucleic Acids Res. 2019, 48, gkz1021. [CrossRef]

29. Koutrouli, M.; Karatzas, E.; Paez-Espino, D.; Pavlopoulos, G.A. A Guide to Conquer the Biological Network Era Using Graph
Theory. Front. Bioeng. Biotechnol. 2020, 8, 34. [CrossRef]

30. Pavlopoulos, G.A.; Secrier, M.; Moschopoulos, C.N.; Soldatos, T.G.; Kossida, S.; Aerts, J.; Schneider, R.; Bagos, P.G. Using graph
theory to analyze biological networks. BioData Min. 2011, 4, 10. [CrossRef] [PubMed]

31. Kans, J. Entrez Direct: E-Utilities on the Unix Command Line; National Center for Biotechnology Information (US): Rockville, MD,
USA, 2022.

32. Pafilis, E.; Jensen, L.J. Real-time tagging of biomedical entities. BioRxiv 2016, 078469. [CrossRef]
33. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021:

New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [CrossRef] [PubMed]
34. Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al.

Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [CrossRef] [PubMed]
35. Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47,

D155–D162. [CrossRef] [PubMed]
36. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al.

The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1–30.
[CrossRef]

37. Gene Ontology Consortium. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004, 32, D258–D261.
[CrossRef] [PubMed]

38. Chang, A.; Schomburg, I.; Placzek, S.; Jeske, L.; Ulbrich, M.; Xiao, M.; Sensen, C.W.; Schomburg, D. BRENDA in 2015: Exciting
developments in its 25th year of existence. Nucleic Acids Res. 2015, 43, D439–D446. [CrossRef]

39. Schriml, L.M.; Mitraka, E.; Munro, J.; Tauber, B.; Schor, M.; Nickle, L.; Felix, V.; Jeng, L.; Bearer, C.; Lichenstein, R.; et al.
Human Disease Ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Res. 2019, 47, D955–D962.
[CrossRef]

40. Nastou, K.C.; Nasi, G.I.; Tsiolaki, P.L.; Litou, Z.I.; Iconomidou, V.A. AmyCo: The amyloidoses collection. Amyloid 2019, 26,
112–117. [CrossRef]

41. Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O′Neill, K.; Robbertse,
B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [CrossRef]

42. Buttigieg, P.L.; Morrison, N.; Smith, B.; Mungall, C.J.; Lewis, S.E. ENVO Consortium The environment ontology: Contextualising
biological and biomedical entities. J. Biomed. Semant. 2013, 4, 43. [CrossRef] [PubMed]

43. Smith, C.L.; Eppig, J.T. The mammalian phenotype ontology: Enabling robust annotation and comparative analysis. Wiley
Interdiscip. Rev. Syst. Biol. Med. 2009, 1, 390–399. [CrossRef] [PubMed]

44. Romano, P.; Manniello, A.; Aresu, O.; Armento, M.; Cesaro, M.; Parodi, B. Cell Line Data Base: Structure and recent improvements
towards molecular authentication of human cell lines. Nucleic Acids Res. 2009, 37, D925–D932. [CrossRef] [PubMed]

45. Pavlopoulos, G.A.; Paez-Espino, D.; Kyrpides, N.C.; Iliopoulos, I. Empirical Comparison of Visualization Tools for Larger-Scale
Network Analysis. Adv. Bioinform. 2017, 2017, 1278932. [CrossRef]

46. Fruchterman, T.M.J.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164.
[CrossRef]

47. Kamada, T.; Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 1989, 31, 7–15. [CrossRef]
48. Theodosiou, T.; Efstathiou, G.; Papanikolaou, N.; Kyrpides, N.C.; Bagos, P.G.; Iliopoulos, I.; Pavlopoulos, G.A. NAP: The Network

Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks. BMC Res. Notes
2017, 10, 278. [CrossRef]

49. Koutrouli, M.; Theodosiou, T.; Iliopoulos, I.; Pavlopoulos, G.A. The Network Analysis Profiler (NAP v2.0): A web tool for visual
topological comparison between multiple networks. EMBnet. J. 2021, 26, e943. [CrossRef]

http://doi.org/10.1093/nar/gkp353
http://www.ncbi.nlm.nih.gov/pubmed/19429696
http://doi.org/10.1093/bioinformatics/btab559
http://www.ncbi.nlm.nih.gov/pubmed/34358314
http://doi.org/10.1186/1471-2105-12-435
http://www.ncbi.nlm.nih.gov/pubmed/22070195
http://doi.org/10.3390/biom11081245
http://doi.org/10.1093/nar/gku1205
http://doi.org/10.1093/nar/gkaa1043
http://doi.org/10.1093/nar/gkz1021
http://doi.org/10.3389/fbioe.2020.00034
http://doi.org/10.1186/1756-0381-4-10
http://www.ncbi.nlm.nih.gov/pubmed/21527005
http://doi.org/10.1101/078469
http://doi.org/10.1093/nar/gkaa971
http://www.ncbi.nlm.nih.gov/pubmed/33151290
http://doi.org/10.1093/nar/gkaa942
http://www.ncbi.nlm.nih.gov/pubmed/33137190
http://doi.org/10.1093/nar/gky1141
http://www.ncbi.nlm.nih.gov/pubmed/30423142
http://doi.org/10.1002/cpbi.5
http://doi.org/10.1093/nar/gkh036
http://www.ncbi.nlm.nih.gov/pubmed/14681407
http://doi.org/10.1093/nar/gku1068
http://doi.org/10.1093/nar/gky1032
http://doi.org/10.1080/13506129.2019.1603143
http://doi.org/10.1093/database/baaa062
http://doi.org/10.1186/2041-1480-4-43
http://www.ncbi.nlm.nih.gov/pubmed/24330602
http://doi.org/10.1002/wsbm.44
http://www.ncbi.nlm.nih.gov/pubmed/20052305
http://doi.org/10.1093/nar/gkn730
http://www.ncbi.nlm.nih.gov/pubmed/18927105
http://doi.org/10.1155/2017/1278932
http://doi.org/10.1002/spe.4380211102
http://doi.org/10.1016/0020-0190(89)90102-6
http://doi.org/10.1186/s13104-017-2607-8
http://doi.org/10.14806/ej.26.1.943


Biomolecules 2022, 12, 520 12 of 13

50. Assenov, Y.; Ramírez, F.; Schelhorn, S.-E.; Lengauer, T.; Albrecht, M. Computing topological parameters of biological networks.
Bioinformatics 2008, 24, 282–284. [CrossRef]

51. Gehlenborg, N.; O′Donoghue, S.I.; Baliga, N.S.; Goesmann, A.; Hibbs, M.A.; Kitano, H.; Kohlbacher, O.; Neuweger, H.; Schneider,
R.; Tenenbaum, D.; et al. Visualization of omics data for systems biology. Nat. Methods 2010, 7, S56–S68. [CrossRef]

52. Pavlopoulos, G.A.; Wegener, A.-L.; Schneider, R. A survey of visualization tools for biological network analysis. BioData Min.
2008, 1, 12. [CrossRef]

53. Pavlopoulos, G.A.; Malliarakis, D.; Papanikolaou, N.; Theodosiou, T.; Enright, A.J.; Iliopoulos, I. Visualizing genome and systems
biology: Technologies, tools, implementation techniques and trends, past, present and future. GigaScience 2015, 4, 38. [CrossRef]
[PubMed]

54. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

55. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proc. Int.
AAAI Conf. Web Soc. Media 2009, 3, 361–362.

56. Koutrouli, M.; Karatzas, E.; Papanikolopoulou, K.; Pavlopoulos, G.A. NORMA: The Network Makeup Artist—A Web Tool for
Network Annotation Visualization. Genom. Proteom. Bioinform. 2021, S1672022921001303. [CrossRef]

57. Karatzas, E.; Baltoumas, F.A.; Panayiotou, N.A.; Schneider, R.; Pavlopoulos, G.A. Arena3Dweb: Interactive 3D visualization of
multilayered networks. Nucleic Acids Res. 2021, 49, W36–W45. [CrossRef] [PubMed]

58. Thanati, F.; Karatzas, E.; Baltoumas, F.A.; Stravopodis, D.J.; Eliopoulos, A.G.; Pavlopoulos, G.A. FLAME: A Web Tool for
Functional and Literature Enrichment Analysis of Multiple Gene Lists. Biology 2021, 10, 665. [CrossRef] [PubMed]

59. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef] [PubMed]
60. Okuda, S.; Yamada, T.; Hamajima, M.; Itoh, M.; Katayama, T.; Bork, P.; Goto, S.; Kanehisa, M. KEGG Atlas mapping for global

analysis of metabolic pathways. Nucleic Acids Res. 2008, 36, W423–W426. [CrossRef]
61. Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; et al.

The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018, 46, D649–D655. [CrossRef]
62. Koutrouli, M.; Hatzis, P.; Pavlopoulos, G.A. Exploring Networks in the STRING and Reactome Database. In Systems Medicine;

Wolkenhauer, O., Ed.; Academic Press: Oxford, UK, 2021; pp. 507–520, ISBN 978-0-12-816078-7.
63. Martens, M.; Ammar, A.; Riutta, A.; Waagmeester, A.; Slenter, D.N.; Hanspers, K.; A Miller, R.; Digles, D.; Lopes, E.N.; Ehrhart, F.;

et al. WikiPathways: Connecting communities. Nucleic Acids Res. 2021, 49, D613–D621. [CrossRef] [PubMed]
64. Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g: Profiler: A web server for functional enrichment

analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [CrossRef] [PubMed]
65. Schölz, C.; Lyon, D.; Refsgaard, J.C.; Jensen, L.J.; Choudhary, C.; Weinert, B.T. Avoiding abundance bias in the functional

annotation of post-translationally modified proteins. Nat. Methods 2015, 12, 1003–1004. [CrossRef] [PubMed]
66. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.;

et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [CrossRef] [PubMed]

67. Csardi, G.; Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 2006, 1695, 1–9.
68. Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; CRC Press, Taylor and Francis Group: Boca Raton, FL,

USA, 2020; ISBN 978-1-138-33149-5.
69. Laurance, S.; Lemarié, C.A.; Blostein, M.D. Growth Arrest-Specific Gene 6 (gas6) and Vascular Hemostasis. Adv. Nutr. 2012, 3,

196–203. [CrossRef]
70. Gkouskou, K.; Vlastos, I.; Karkalousos, P.; Chaniotis, D.; Sanoudou, D.; Eliopoulos, A.G. The “Virtual Digital Twins” Concept in

Precision Nutrition. Adv. Nutr. 2020, 11, 1405–1413. [CrossRef]
71. Gkouskou, K.; Vasilogiannakopoulou, T.; Andreakos, E.; Davanos, N.; Gazouli, M.; Sanoudou, D.; Eliopoulos, A.G. COVID-19

enters the expanding network of apolipoprotein E4-related pathologies. Redox Biol. 2021, 41, 101938. [CrossRef]
72. Mo, C.; Yang, M.; Han, X.; Li, J.; Gao, G.; Tai, H.; Huang, N.; Xiao, H. Fat mass and obesity-associated protein attenuates lipid

accumulation in macrophage foam cells and alleviates atherosclerosis in apolipoprotein E-deficient mice. J. Hypertens. 2017, 35,
810–821. [CrossRef]

73. Breit, S.N.; Brown, D.A.; Tsai, V.W.-W. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe? Annu. Rev.
Physiol. 2021, 83, 127–151. [CrossRef]

74. Hagström, E.; Held, C.; Stewart, R.A.H.; Aylward, P.E.; Budaj, A.; Cannon, C.P.; Koenig, W.; Krug-Gourley, S.; Mohler, E.R., III;
Steg, P.G.; et al. Growth Differentiation Factor 15 Predicts All-Cause Morbidity and Mortality in Stable Coronary Heart Disease.
Clin. Chem. 2017, 63, 325–333. [CrossRef] [PubMed]

75. Wiklund, F.E.; Bennet, A.M.; Magnusson, P.K.E.; Eriksson, U.K.; Lindmark, F.; Wu, L.; Yaghoutyfam, N.; Marquis, C.P.; Stattin, P.;
Pedersen, N.L.; et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): A new marker of all-cause mortality. Aging Cell 2010, 9,
1057–1064. [CrossRef] [PubMed]

76. Kim, Y.; Noren Hooten, N.; Evans, M.K. CRP Stimulates GDF15 Expression in Endothelial Cells through p53. Mediat. Inflamm.
2018, 2018, e8278039. [CrossRef]

http://doi.org/10.1093/bioinformatics/btm554
http://doi.org/10.1038/nmeth.1436
http://doi.org/10.1186/1756-0381-1-12
http://doi.org/10.1186/s13742-015-0077-2
http://www.ncbi.nlm.nih.gov/pubmed/26309733
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1016/j.gpb.2021.02.005
http://doi.org/10.1093/nar/gkab278
http://www.ncbi.nlm.nih.gov/pubmed/33885790
http://doi.org/10.3390/biology10070665
http://www.ncbi.nlm.nih.gov/pubmed/34356520
http://doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://doi.org/10.1093/nar/gkn282
http://doi.org/10.1093/nar/gkx1132
http://doi.org/10.1093/nar/gkaa1024
http://www.ncbi.nlm.nih.gov/pubmed/33211851
http://doi.org/10.1093/nar/gkz369
http://www.ncbi.nlm.nih.gov/pubmed/31066453
http://doi.org/10.1038/nmeth.3621
http://www.ncbi.nlm.nih.gov/pubmed/26513550
http://doi.org/10.1093/nar/gkaa1074
http://www.ncbi.nlm.nih.gov/pubmed/33237311
http://doi.org/10.3945/an.111.001826
http://doi.org/10.1093/advances/nmaa089
http://doi.org/10.1016/j.redox.2021.101938
http://doi.org/10.1097/HJH.0000000000001255
http://doi.org/10.1146/annurev-physiol-022020-045449
http://doi.org/10.1373/clinchem.2016.260570
http://www.ncbi.nlm.nih.gov/pubmed/27811204
http://doi.org/10.1111/j.1474-9726.2010.00629.x
http://www.ncbi.nlm.nih.gov/pubmed/20854422
http://doi.org/10.1155/2018/8278039


Biomolecules 2022, 12, 520 13 of 13

77. Olley, G.; Ansari, M.; Bengani, H.; Grimes, G.R.; Rhodes, J.; von Kriegsheim, A.; Blatnik, A.; Stewart, F.J.; Wakeling, E.; Carroll,
N.; et al. BRD4 interacts with NIPBL and BRD4 is mutated in a Cornelia de Lange-like syndrome. Nat. Genet. 2018, 50, 329–332.
[CrossRef] [PubMed]

78. Parenti, I.; Diab, F.; Gil, S.R.; Mulugeta, E.; Casa, V.; Berutti, R.; Brouwer, R.W.W.; Dupé, V.; Eckhold, J.; Graf, E.; et al. MAU2 and
NIPBL Variants Impair the Heterodimerization of the Cohesin Loader Subunits and Cause Cornelia de Lange Syndrome. Cell Rep.
2020, 31, 107647. [CrossRef] [PubMed]

79. Whelan, G.; Kreidl, E.; Peters, J.-M.; Eichele, G. The non-redundant function of cohesin acetyltransferase Esco2: Some answers
and new questions. Nucl. Austin Tex 2012, 3, 330–334. [CrossRef] [PubMed]

80. Harakalova, M.; van den Boogaard, M.-J.; Sinke, R.; van Lieshout, S.; van Tuil, M.C.; Duran, K.; Renkens, I.; Terhal, P.A.; de Kovel,
C.; Nijman, I.J.; et al. X-exome sequencing identifies a HDAC8 variant in a large pedigree with X-linked intellectual disability,
truncal obesity, gynaecomastia, hypogonadism and unusual face. J. Med. Genet. 2012, 49, 539–543. [CrossRef]

81. NIH Preprint Pilot. Available online: https://www.ncbi.nlm.nih.gov/pmc/about/nihpreprints/ (accessed on 10 February 2022).

http://doi.org/10.1038/s41588-018-0042-y
http://www.ncbi.nlm.nih.gov/pubmed/29379197
http://doi.org/10.1016/j.celrep.2020.107647
http://www.ncbi.nlm.nih.gov/pubmed/32433956
http://doi.org/10.4161/nucl.20440
http://www.ncbi.nlm.nih.gov/pubmed/22614755
http://doi.org/10.1136/jmedgenet-2012-100921
https://www.ncbi.nlm.nih.gov/pmc/about/nihpreprints/

	Introduction 
	Materials and Methods 
	Data Collection 
	Darling Application and Analysis 
	Implementation 

	Results 
	Investigating the Link between Obesity and Cardiovascular Diseases 
	Querying Multiple Disease Databases Simultaneously with Darling 

	Discussion 
	References

