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Abstract: Coronavirus disease 2019 (COVID-19) is still an active global public health issue. Although
vaccines and therapeutic options are available, some patients experience severe conditions and need
critical care support. Hence, identifying key genes or proteins involved in immune-related severe
COVID-19 is necessary to find or develop the targeted therapies. This study proposed a novel
construction of an immune-related protein interaction network (IPIN) in severe cases with the use of
a network diffusion technique on a human interactome network and transcriptomic data. Enrichment
analysis revealed that the IPIN was mainly associated with antiviral, innate immune, apoptosis,
cell division, and cell cycle regulation signaling pathways. Twenty-three proteins were identified
as key proteins to find associated drugs. Finally, poly (I:C), mitomycin C, decitabine, gemcitabine,
hydroxyurea, tamoxifen, and curcumin were the potential drugs interacting with the key proteins to
heal severe COVID-19. In conclusion, IPIN can be a good representative network for the immune
system that integrates the protein interaction network and transcriptomic data. Thus, the key proteins
and target drugs in IPIN help to find a new treatment with the use of existing drugs to treat the
disease apart from vaccination and conventional antiviral therapy.

Keywords: severe COVID-19; immune system; network diffusion; protein-protein interaction
network; drug repurposing

1. Introduction

Coronavirus disease 2019 (COVID-19) has been spreading worldwide, despite several
developed vaccines, still causing numerous cases. Moreover, most causes of death are
from severe complications from the disease. Currently, the global statistical data from
the World Health Organization (WHO) indicate that 476,374,234 and 6,108,976 cases are
infected and dead, respectively (26 March 2022) [1]. COVID-19 is an infectious disease
caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a positive-
sense single-strand RNA (+ssRNA) virus [2]. SARS-CoV-2 is a betacoronavirus, classified
in the Coronaviridae family [3]. Although SARS-CoV-2 incurs a well-known pandemic
coronavirus infection in the present, for severe respiratory diseases resulting from the
two coronavirus diseases, most known cases emerged before, in the last two decades.
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For example, SARS-CoV pneumonia occurred from November 2002 to August 2003 from
Guangdong, China, spreading to 30 countries worldwide, having 8422 confirmed cases and
916 deaths [4]. Several epidemiolocal studies suggested that palm civets (Paguma larvata) in
a market in Guangdong were the initial hosts for SAR-CoV infection before the emergence
of human-to-human transmission [5]. Middle East Respiratory Syndrome (MERS) was
first reported in Jeddah, Saudi Arabia, in June 2012. It then spread to many countries in
the Arabian Peninsula and to some countries in North Africa, Western Europe, East Asia,
Southeast Asia, and North America [6]. The disease is caused by MERS coronavirus (MERS-
CoV), which has much evidence indicating that its hosts are camels [7]. Various reports
show 2578 confirmed cases and 888 deaths from MERS [8,9]. The first case of COVID-19
was reported in Wuhan, China, in December 2019 [10]. The patient was diagnosed with
severe pneumonia with an unknown cause [11], while the number of cases in Wuhan
increased to 41 in January 2020. In the same month, the first evidence revealed human-
human transmission and asymptomatic or pre-symptomatic transmission [12]. Afterwards,
COVID-19 spread from China to Thailand, Singapore, Vietnam, Taiwan, Japan, South
Korea, Nepal, and the United States [13]. On 11 February 2020, COVID-19 was declared a
pandemic by the WHO [12].

As mentioned above, COVID-19 is caused by SARS-CoV-2, a +ssRNA virus classified
as a betacoronavirus. SARS-CoV-2 genome sequence shares 79% of genes with SARS-CoV
genome compared to MERS-CoV, which has only 53% similarity. Nonetheless, SARS-
CoV-2 has a percent identity of more than 96% when compared to bat-SARS-like CoV
(SL-CoV), suggesting that bats can be an initial host of COVID-19 [14]. SARS-CoV-2 genome
also shares 85.5 to 92.4% of identity with pangolin coronavirus genomes, indicating that
pangolins could be an initial host of the infection [15]. The genomic content of SARS-CoV-2
consists of 16 non-structural proteins (NPs), 4 structural proteins, and 9 putative accessory
factors [16]. The 16 NPs contain open reading frame (ORF) 1a and 1b. There are three
crucial NPs that play a vital role in SARS-CoV-2 replication and pathogenesis. For instance,
papain-like protease (PLpro) and 3C-like protease (3CLpro) have functions to cleave the
viral polyprotein translated from ORF1a and ORF1b into 16 NPs. RNA dependent RNA
polymerase (RdRp) replicates the viral genome in host cells [17,18]. Structural proteins,
composed of spike (S), envelope (E), membrane (M), and nucleocapsid (N) protein, play a
significant role as a viral genome protector and virulent factors used for virus entry [19].
The putative accessory factors are encoded from ORF3b, ORF6, ORF7a and ORF8. Their
roles are not well understood, although some studies revealed that they were involved in
interferon antagonism and impaired host immune response [20].

The pathogenesis of COVID-19 occurs when the virus enters a host respiratory ep-
ithelial cell using an S protein primed by transmembrane serine protease 2 (TMPRSS2)
binding with a host membrane receptor, such as angiotensin-converting enzyme 2 (ACE2)
receptor [21,22]. Meanwhile, SARS-CoV-2 also binds with Toll-like receptors (TLR) 4 and 8,
causing innate immune response that will be described in further detail [23]. After entering
the host cell, the viral genetic material is replicated to copied viral genomes and translated to
essential viral proteins in the host cytoplasm. The copied viral genomes are assembled with
the translated structural proteins to form the mature viral particles. Then, the replicated
virions are released from the infected host cell and enter other non-infected host cells [24].
During the viral replication, some viral components become pathogen-associated molecular
patterns (PAMPs) while the infected host cells express endogenous damage-associated
molecular patterns (DAMPs). These molecules are recognized by pattern recognition re-
ceptors (PRRs) in the host cells such as TLR-3, 7, and 8, retinoic acid-inducible gene 1
(RIG-1)-like receptors (RLRs)/melanoma differentiation-associated gene 5 (MDA5), and
NOD-like receptors (NLRs) [25]. The interaction between PAMPs including DAMPs and
PRRs in the infected host cells activates the host innate immune response by promoting the
production of antiviral and proinflammatory cytokines; for example, interferon α (IFN-α),
IFN- β, IFN-γ, interleukin 1β (IL-1β), IL-6, IL-12, IL-18, IL-33, and tumor necrosis factor α
(TNF-α) [26]. Moreover, PAMPs and DAMPs’ interaction with PRRs releases nuclear factor
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κB (NF-κB) [27]. NF-κB from the infected host cell stimulates innate immune cells such as
dendritic cells (DCs), monocytes, macrophages, neutrophils, and natural killer (NK) cells to
secrete further proinflammatory cytokines [27,28]. As a result, the uncontrolled proinflam-
matory cytokines are excessively released from both immune and respiratory epithelial
cells, leading to collateral tissue damage. This phenomenon is called hyperinflammation or
a cytokine storm, the most common fatal complication in COVID-19 [29].

Pathophysiology of severe COVID-19 is initiated when cytokine storm injures lung
epithelial and endothelial cell damage and induces apoptosis, resulting in increased pul-
monary vascular permeability [30]. The plasma is then leaked from the capillary to the
alveolar space. Consequently, the gas exchange defect occurs, leading to acute respi-
ratory distress syndrome (ARDS). Patients with ARDS will have progressive dyspnea,
hypoxia and require ventilation support and intensive care [31]. Unfortunately, the ex-
cessive proinflammatory cytokines also affect other organs, such as the gastrointestinal
tract, cardiovascular system, brain, liver, and kidney [32]. As a result, the patients will
progress the signs and symptoms of multiple organ injuries; for instance, nausea, vomiting,
diarrhea, hemodynamic instability, alterative mental status, heart tissue damage, elevated
liver enzyme, and creatinine rising [33]. Cytokine storms not only directly injure several
organs but also generate organ infarction due to increased thromboembolic phenomena [34].
In addition, disseminated intravascular coagulation (DIC) can arise in severe COVID-19
because of the persistent coagulation factor and platelet consumption, inducing further
multiple organ injury [35]. Severe COVID-19 patients usually die from multiple organ dys-
function [36]. Cytokine storms can also provoke other serious conditions, such as secondary
hemophagocytic lymphohistiocytosis (sHLH) and macrophage activation syndrome (MAS),
characterized by monocytes and macrophages engulfing erythrocytes, platelets, immune
cells, and other host cells. Hence, both sHLH and MAS can promote more collateral tissue
damage, worsening multiple organ dysfunction [37].

The current treatment trends in COVID-19 are using vaccination to prevent the disease
and prescribing antiviral agents to infected people [38–41]. Although COVID-19 susceptibil-
ity and severity can be improved by using well-developed vaccines and effective antiviral
therapies, some patients still progress the disease to the cytokine storm and other severe
complications. COVID-19-associated cytokine storms can be treated with intravenous
corticosteroid. Several systemic reviews and meta-analyses have indicated that systemic
corticosteroids can improve critically ill COVID-19 patients [42–46]. However, systemic
corticosteroid provides many unexpected side effects, such as hyperglycemia, adrenal
suppression, and increased secondary bacterial infection [47–49]. Therefore, finding novel
target treatments in severe COVID-19 instead of conventional medication is necessary for
more effective treatment and fewer side effects. Drug repositioning is another technique to
discover an existing drug to treat a disease. Systems biology and network analysis have
been directly applied to identify key genes or proteins [50–53], drug–gene or drug–protein
interactions [54,55], and drug–disease associations [56,57]. Structural bioinformatics is the
main task at the molecular structure level to identify possibilities of compound targeting,
such as the study of inverse docking fingerprints in drug repurposing for SAR-CoV-2 [58].
Modern biopharmaceutical approaches, such as large biomolecules like antibodies (im-
munoglobulins) and plasma, are of interest to treat COVID-19. However, their roles in
clinical trials are currently being studied to treat severe cases.

In the precision medicine and data science era, bioinformatics and systems biology are
central in molecular medicine and targeted therapy. Network biology is a powerful tool to
identify key genes and targeted drugs involved in many diseases by using topological anal-
ysis and network diffusion algorithms. In addition, protein–protein interaction network
analysis is usually used to find hub and bottleneck proteins [59–61], to infer protein func-
tions [62–64], find gene–disease [65–67] and disease–disease associations [68,69]. Various
centrality calculations, such as degree, betweenness, closeness, and eigenvector, play an
important role in biological network analysis. Several systems biological studies have per-
formed these centralities to identify key genes and gene prioritization in the disease-related
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networks [53,70–72]. Nonetheless, analyses of importance and difference of the centralities
in biological roles are still needed for further investigation.

There are two methods for extracting a specific subnetwork: the neighborhood and
diffusion approaches. Neighborhood method is a traditional technique performed widely
in many biological network studies [73–77]. Furthermore, there are several COVID-19
network studies constructing protein–protein interaction networks and selecting a group of
related proteins using this method [50,51,54,55,78–80]. This method extracts subnetworks
by considering the nodes with the low shortest path with disease-associated genes or seed
nodes [81]. The benefits of neighborhood-based subnetwork construction are that the
approach is user-friendly and has fast running time. However, some neighbor nodes in
the networks are not disease-associated genes, causing topological changes and missing
identification of key nodes. Therefore, the diffusion-based method is preferred to build
specific protein–protein interaction subnetworks, such as immune, inflammation, and viral–
host interaction network, with lower false-positive disease-related nodes, although it is
time consuming and requires coding skills. Network diffusion is the method used to predict
novel disease-associated genes based on known disease-associated genes via considering
the diffusion or probability scores from iterative running algorithms at time stable. Nodes
with high diffusion scores are inferred as theoretical disease-related genes [82].

Moreover, there have been no COVID-19 studies involved in immune-related biologi-
cal networks using the network diffusion method. As a result, we proposed this method
to construct an immune-related protein interaction network (IPIN). A network diffusion
method named Laplacian heat diffusion (LHD) algorithm on a human interactome net-
work was conducted in this study to construct an IPIN in severe COVID-19 patients. Key
immune-related proteins in the network were identified using several centralities and
ranking score measurement. Additionally, drug repurposing was also performed to find
target medication to those key proteins. This study aims to discover candidate target drugs
to treat severe COVID-19 at clinical levels.

2. Materials and Methods

The summary of materials and methods used in our study is illustrated as a diagram
in Figure 1. First, differentially expressed genes (DEGs) of the transcriptomic data down-
loaded from GEO DataSets were mapped with the human interactome data from STRING
v11.0 database [83] for forming the seed nodes. Second, construction of a human protein
interactome network obtained from STRING database [83]. Third, the Laplacian heat
diffusion (LHD) algorithm operated network diffusion. Fourth, a permutation test filtered
out false-positive high diffusion score nodes. Fifth, significantly high diffuse score nodes
were used to construct the IPIN. Metascape [84] was also performed for the functional
enrichment analysis of the network. Sixth, Molecular Complex Detection (MCODE) and
the Markov Clustering (MCL) algorithm were conducted to find IPIN modules. Next,
the centralities and the ranking score were calculated to identify the key immune-related
proteins. Finally, candidate drugs targeting the key proteins were discovered by chemical
and drug databases searching for drug–gene and drug–protein interactions.

2.1. Data Collection and Preprocessing
2.1.1. Human Protein Interactome

The human protein interactome data, containing 19,566 proteins (or nodes) and
11,938,498 interactions, was obtained from STRING v11.0 database (https://string-db.org/
accessed on 20 November 2021) [83]. R package ‘dplyr’ [85] was used to manipulate the
data. The interactions with a combined score between 900 and 999 were included. R pack-
age ‘igraph’ [86] was conducted to eliminate isolated nodes and multiple edges. As a result,
the rest of the interactome had 11,334 proteins and 123,263 interactions. The combined
scores between 900 and 999 were changed to a weighted score by rescaling into the range
of [0.01, 1].

https://string-db.org/
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Figure 1. Summary of the process to identify the key proteins and drug repurposing in the severe
COVID-19 based on an immune-related protein interaction network (IPIN). Circles represent protein
nodes in a protein-protein interaction network. Dark blue circles are nodes of the DEGs’ proteins.
Light blue circles are nodes of proteins having diffuse scores. Orange circles represent high diffusion
score proteins for IPIN. Red, green, and yellow circles are proteins in different modules. Pink circles
are target proteins of an existing drug.

2.1.2. Transcriptomic Data

The collected data was from Gill et al.’s study (2020) in GEO DataSets (GSE154998)
(https://www.ncbi.nlm.nih.gov/geo/ accessed on 20 November 2021) [87]. The researchers
collected leukocytes samples from COVID-19 cases and controls in an intensive care unit
(ICU) to perform transcriptomic profiles by RNA sequencing (RNA-seq) method. The total
sample size was 14, with 7 samples being COVID-19 cases and the rest being controls. The
SARS-CoV-2-positive cases were confirmed using reverse transcription-polymerase chain
reaction (RT-PCR) method. In addition, genes from RNA-seq data having the false discovery
rate (FDR) < 0.05 and log2fold change (log2 FC) > 1.5 were differentially expressed genes
(DEGs). Hence, there were 224 genes meeting the criterion (Table S1 in Supplementary
Materials). The DEGs then were mapped with the protein list in the protein–protein
interaction network of the STRING v11.0 database by using Ensembl ID joining [83]. Thus,
there were 189 Ensembl protein IDs (Table S2 in Supplementary Materials).

With the use of network diffusion, the seed nodes were prepared from mapping
between these 189 Ensembl IDs (the immune-related proteins from DEGs) and
the human interactome data (in Section 2.1.1). This resulted in 141 seed nodes
(Table S3 in Supplementary Materials).

2.2. IPIN Construction with Network Diffusion
2.2.1. LHD Algorithm

This study used LHD algorithm to operate human interactome network propagation.
In many studies, LHD is one of the most common network diffusion algorithms used
to infer disease-associated genes or proteins [88,89]. Given a network called G, let W be
a weight adjacency matrix of network G calculated from rescaling the combined scores
and D be a diagonal matrix whose values are a degree of each node arranged diagonally.
Laplacian matrix (L) was calculated from D−W. An initial diffusion vector (H0) of all nodes
is conducted normally by setting the initial heat diffusion score (h0) to each node. In general,
the initial heat scores (h0) are set as 1/n where n is the number of seed nodes related to the
subject of interest (immune-related proteins as seeds in our case) while the other nodes are
set as 0. The diffusion vector at time t (Ht) was updated based on the previous diffusion
vector at time t−1 (Ht−1) according to this equation:

Ht = Ht−1 × e−Lt (1)

https://www.ncbi.nlm.nih.gov/geo/
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where e is defined as Euler’s number (≈2.1828). The network diffusion was iterated based
on Equation (1) until two consecutive diffusion vectors were relatively similar. In our case,
the relative similarity is met if Ht − Ht−1 < 10−6, then the diffusion becomes stable. The
latest diffusion scores after the stability are used as an indicator of the relevant scores to the
seed nodes. In another word, a node with a high diffusion score was strongly associated
with seed nodes.

In our cases, the initial diffusion vector (H0) contained the initial scores of 11,334 protein
nodes in the whole protein–protein interaction network. The initial scores for 141 seed nodes
were set as 1/141 while other protein nodes are set as 0. After the network propagation
was stable, the final scores were then used for further permutation test analysis. In this
study, LHD algorithm was carried out by using R package ‘diffusr’ [90]. The parameters in
the package were well-established using the default setting.

2.2.2. Permutation Test

When LHD algorithm finishes the network propagation, in theory, the nodes with the
high diffusion score are strongly associated with the disease-associated proteins. However,
some nodes receiving the high diffusion score can be false-positive. This false-positive result
can occur because some factors such as the topological structure of network G can provide
a high diffusion score apart from the actual association with the seed nodes. Therefore,
a permutation test should be conducted to filter out nodes with the false-positive high
diffusion score. The permutation test measures whether nodes have a high diffusion score
due to statistical significance or chance. The test was operated by assigning 1000 different
sets of the initial seeds into the human interactome network for LHD algorithm. Before
running the algorithm in each set, 141 seed nodes were randomly assigned, independent
of DEGs, from 11,334 nodes. Hence, the sets of seed nodes in the original set and in the
1000 sets were different. The z-score of the diffusion score of node n (Z(n)) was calculated
according to this equation:

Z(n) =
h(n)− X(n)

SD(n)
, (2)

where h(n) is defined as the diffusion score of node n in the original set, X(n) and SD(n) are
the mean and standard deviation, respectively, of diffusion score of node n in the original
set and 1000 permutation sets. A node with a z-score more than 1.96 (p-value < 0.05)
had the true-positive high diffusion score and was selected for the IPIN construction.
Table S4 in Supplementary Materials shows the original diffuse scores including with the
mean and standard deviation calculated from the diffusion score in the original set and
1000 permutation sets in each node in the whole protein–protein interaction network.

2.2.3. IPIN Construction

After the network diffusion by LHD algorithm and the validation of the high diffuse
score nodes by permutation testing were performed, 154 nodes with significant diffusion
scores were obtained (Table S5 in Supplementary Materials). The filtered significant nodes
from the permutation test were mapped with the STRING human interactome network. The
largest component of the significantly high diffusion score nodes consisting of 97 nodes and
778 interactions was selected as our immune-related protein interaction network or IPIN for
further functional enrichment analysis, topological analysis, and centrality measurement.
The construction of the IPIN was based on leukocytes or white blood cells’ transcriptome
data. Leukocytes are the cells that play an important role in pathogen defense mechanisms
or immunity. The gene expression of leukocytes during the infection indicates the host’s
immune status against the pathogens. Thus, this IPIN was constructed to represent a core
host immune system against the severe COVID-19. The edge list information for this IPIN
is also provided in Table S14 in Supplementary Materials.
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2.3. Topological Analysis, Network Centrality, and Ranking Scores

R package ‘igraph’ [86] was performed to calculate global and local topological param-
eters and network centrality [86]. The global topological parameters such as the number of
nodes (N), the number of edges (M), average degree (<k>), diameter (D), mean shortest
path length (mspl), and average clustering coefficient (acc) were computed. Furthermore,
degree distribution and a clustering coefficient versus degree curve were plotted to evaluate
the scale-free network properties. Several local parameters and centrality measurements
such as degree centrality (CD), betweenness centrality (CB), closeness centrality (CC), and
eigenvector centrality (CE) were calculated to find the essential nodes in the network. A
node with more than 90th percentile centrality value was listed and its functional impor-
tance in the network and the disease was discussed. These high-value nodes in the four
centrality sets were plotted using an upset plot from R package ‘UpSetR’ [91] to find the
node overlapping in each centrality.

Degree centrality is the number of adjacent nodes having the interaction with inter-
ested node i, according to this equation

CD(i) = ∑
j

Aij , (3)

where Aij is a value of a non-weight adjacency matrix (A) of node i and j, respectively. In
network biology, the high-degree proteins are hub nodes and play an important role in the
network function [92]. Therefore, numerous medications are designed for targeting the
hub nodes.

Betweenness centrality is the summation of the ratio of the shortest path between node
u and v that passes through node i. The betweenness centrality equation is

CB(i) = ∑
u 6=v 6=i

σuv(i)
σuv

, (4)

where σuv is a total number of the shortest path between node u and v and σuv(i) is the
number of the shortest path between node u and v that pass through node i. The high-
betweenness proteins indicate the bottleneck property, forming the bridges controlling the
flow of information in the network. Interruption of the bottlenecks by several targeted
therapies can result in network function destruction in many diseases, improving the
disease outcomes [92–95].

Closeness centrality is the summation of inverse shortest path distance between node
i and all other nodes in the network. The closeness centrality equation is shown as

CC(i) =
N − 1

∑N
j=1,j 6=i d(i, j)

, (5)

where N is the total number of nodes in the network and d(i, j) is the shortest path length
between node i and node j. Some studies used closeness centrality to find essential genes
and proteins in several biological problems [96,97].

Eigenvector centrality is the extended form of degree centrality that focuses on the
global high-degree nodes more than the local high-degree nodes. Eigenvector centrality
has the assumption that the essential nodes should connect to the other important nodes.
Therefore, nodes with high eigenvector centrality have high degree centrality, and their
neighbored nodes also have a high degree value. The equation is demonstrated as

CE(i) =
1
λ ∑

j
AijCE(j) , (6)

where λ is the largest eigenvalue of A. Eigenvector centrality is applied to analyze many
connectome studies in neurological diseases [98–101].
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As mentioned above, all four centralities play a vital role in discovering essential
genes or proteins. Moreover, numerous traditional network biology studies usually use
degree and betweenness centrality to find essential genes and proteins. Closeness and
eigenvector are occasionally applied to find vital genes and proteins. Therefore, a node
with a high value of all centralities was a key protein in the network. The ranking score (SR)
was applied to rank the nodes based on the centralities. Let C be a set of all centralities and
c represent a centrality measure in C. A ranking score of any node i (SR(i)) was calculated
based on the reciprocal of the product of a ranking position of node i in each centrality
c (k(i, c)), according to this equation

SR(i) = ∏
cεC

1
k(i, c)

. (7)

Nodes with high-ranking scores greater than the 90th percentile were considered
as key proteins in the IPIN network. In addition, nodes with degree and betweenness
centrality greater than the 90th percentile were used to compare the ranking scoring nodes.

2.4. Functional Enrichment Analysis and Network Clustering

Metascape (https://metascape.org/gp/index.html#/main/step1 accessed on 10 De-
cember 2021) [84] was conducted for functional enrichment analysis in the largest compo-
nent network according to the six terms: Gene ontology biological process (GO-BP) [102],
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [103], REACTOME path-
ways [104], WikiPathways [105], Canonical pathways [106], and CORUM pathway [107].
Moreover, the Molecular Complex Detection (MCODE) algorithm [108] in Metascape was
operated to cluster the enrichment terms into large groups to find the more common bio-
logical terms. The Markov Clustering (MCL) algorithm [109] was also used in the STRING
v11.0 database to explore the network communities in the IPIN. The inflation parameter of
MCL was set to 1.5. Functional enrichment analysis in each module was also conducted
in STRING v11.0 database using GO-BP, REACTOME pathways, KEGG pathways, and
WikiPathways term. In addition, the clusters were visualized by using STRING v11.0.

2.5. Detection of Potential Drugs for Drug Repurposing

The key proteins, having a ranking score, degree, or betweenness centrality above the
90th percentile, were used as the input to find drug–gene and drug–protein interactions
from DrugBank database (https://go.drugbank.com/ accessed on 15 December 2021) [110],
Therapeutic Target Database (TTD) (http://db.idrblab.net/ttd/ accessed on 15 December
2021) [111], Comparative Toxicogenomics Databases (CTD) (http://ctdbase.org/ accessed
on 15 December 2021) [112], and GeneCards (https://www.genecards.org/ accessed on
15 December 2021) [113]. Drugs which have United States Food and Drug Administra-
tion (FDA) approval and evidence of interactions with the key genes or proteins were
selected. The STITCH v5.0 database (http://stitch.embl.de/ accessed on 18 December
2021) [114], containing drug–protein interaction information, was performed to confirm
the chosen drugs. A confidence score of the interaction in the STITCH database was
used to find suitable drug–protein interactions. The confidence score is the probability
value calculated based on both experimental and computational evidence such as text min-
ing, high-throughput experiments, co-expression and gene fusion data, and information
from other databases. A drug with a confidence score of more than 0.9 was considered a
candidate drug having efficiency for severe COVID-19 treatment.

3. Results
3.1. IPIN Construction and Topological Properties

The immune-related protein interaction network, known as IPIN, was obtained after
the network diffusion and the validation of the high diffuse score nodes by permutation
test. This network consisted of 97 nodes and 778 interactions as shown in Figure 2. In

https://metascape.org/gp/index.html#/main/step1
https://go.drugbank.com/
http://db.idrblab.net/ttd/
http://ctdbase.org/
https://www.genecards.org/
http://stitch.embl.de/
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addition, the STRING reports showed that the average node degree and the expected edges
are 16 and 50, respectively.
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Table 1 summarizes the global topological parameters of the IPIN. The average degree
and diameter of the IPIN are 16.04 and 7, respectively. The network has the small-world
effect because it provided the low mean shortest path length (mspl = 3.01) but the high
average clustering coefficient (acc = 0.74). These behaviors are concordant with other
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biological networks. Local topological parameters in each node in the network, for example,
clustering coefficient and degree, are summarized in Table S6 in Supplementary Materials.
To find the scale-free property, a degree distribution was plotted to prove the power law, as
shown in Figure 3a. Furthermore, a clustering coefficient versus degree plot is illustrated
in Figure 3b. The degree distribution plot reveals that it does not follow the power-law
distribution because it provides a low correlation (R2 = 0.1). This appearance is explained by
the IPIN is a real-world network extracted from the human interactome network. Thus, the
power-law properties can be disrupted due to the subnetwork construction. Nevertheless,
the clustering coefficient versus degree plot shows the independence between the clustering
coefficient and degree (R2 = 0.061). The independent relation between clustering coefficient
and degree is found in random and scale-free networks [115]. Analysis in the STRING
revealed that the IPIN’s protein–protein interaction (PPI) enrichment p-value is significant
(p-value < 10−16), indicating that the proteins have interactions with each other more
than by chance. Thus, the interactions in the IPIN were more significant than random
interactions. The IPIN was less likely to be a random network even though there is no
suitable reason to explain the scale-free properties of the IPIN.

Table 1. Global Topological Parameters of the IPIN.

Symbol Description Value

N Number of nodes 97
M Number of edges 778

<k> Average degree 16.04
d Diameter 7
r Radius 4

mspl Mean shortest path length 3.01
D Density 0.17
acc Average clustering coefficient 0.74
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3.2. Functional Enrichment and Module Identification in IPIN

The functional enrichment analysis was performed using a hypergeometric test and
Benjamini–Hochberg statistical correction algorithm in Metascape [84], which integrates
six biological and pathway enrichment terms: GO-BP [102], KEGG pathways [103], RE-
ACTOME pathways [104], WikiPathways [105], Canonical pathways [106], and CORUM
pathway [107]. The results revealed that the terms were primarily involved in immune path-
ways, cell division, nucleotide metabolisms, and protein processing, as shown in Figure 4.
The immune pathways were associated with innate immune response and antiviral signal-
ing pathways such as type I and II IFN (IFN-I and IFN-II) and IFN-stimulated genes (ISGs).
IFN-I mainly comprises of IFN-α and IFN-β, while IFN-γ is a component in IFN-II. The
cell division terms were relevant to mitotic cell cycle process, mitotic metaphase, regulation
of cell cycle, phase transition of cell cycle checkpoint at G1/S and G2/M, cytoskeleton-
dependent cytokinesis, and regulation of sister chromatid separation. Moreover, nucleic
metabolic pathways, such as pyrimidine metabolism, DNA metabolic process, and regula-
tion of DNA replication, were identified. Apoptosis was also found from the enrichment
analysis. Other enrichment terms were protein and enzyme processing, such as protein
modification by small protein conjugation, negative regulation of catalytic activity, protein
tetramerization, and protein localization to organelle.
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In addition, MCODE algorithm clustered the functional enrichment terms into four
modules, MCODE1, MCODE2, MCODE3, and MCODE4, as shown in Figure 5. For in-
stance, MCODE1 (Figure 5a) represented the biological term related to innate immune and
proinflammatory cytokine signaling pathways: IFN-α and IFN-β. MCODE2 (Figure 5b)
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was associated with mitotic cell division, cell damage detection, and chromosome segrega-
tion. MCODE3 (Figure 5c) was involved in cell cycle checkpoint and cell cycle signaling
pathways, and MCODE4 (Figure 5d) was enriched with protein processing and antigen
presentation. Table 2 shows the enrichment analysis results from the MCODE algorithm.
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Table 2. Clustering of functional enrichment analysis in the IPIN by Molecular Complex Detection
(MCODE) algorithm.

Functional Component Term ID Biological Term Log10 (p-Value)

MCODE1

R-HSA-909733 Interferon alpha/beta signaling −70.8

R-HSA-913531 Interferon signaling −57.5

R-HSA-1280215 Cytokine signaling in Immune system −42.5

MCODE2

R-HSA-2467813 Separation of sister chromatids −13.6

R-HSA-69278 Cell cycle, mitotic −13.5

GO:0098813 Nuclear chromosome segregation −13.0

MCODE3

R-HSA-69615 G1/S DNA damage checkpoints −12.0

R-HSA-176409 APC/C:CDC20 mediated
degradation of mitotic proteins −11.7

R-HSA-176814
Activation of APC/C and
APC/C:CDC20 mediated

degradation of mitotic proteins
−11.7

MCODE4

R-HSA-983168 Antigen processing: ubiquitination
and proteasome degradation −6.0

R-HSA-983169 Class I MHC mediated antigen
processing and presentation −5.7

GO:0016567 Protein ubiquitination −5.0

Network clustering of the IPIN by MCL algorithm provided four modules: MCL1,
MCL2, MCL3, and MCL4. Figure 6 demonstrates the MCL modules of the IPIN. Further
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detail about the clusters is described in Table S7 in Supplementary Materials. The result
from functional enrichment analysis of the four modules revealed that the MCL1 (Figure 6a)
was related to cell cycle regulation functions while MCL2 (Figure 6b) was mainly enriched
in innate immune responses. Moreover, MCL3 (Figure 6c) had an association with nucleic
acid metabolism. MCL4 (Figure 6d) mixed cell division and immune response terms. The
details of enrichment results in each MCL module are listed in Table S8 in Supplementary
Materials. The enrichments result was aggregable with the result from the MCODE analysis.
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Functional enrichment and network clustering analysis revealed two large biological
pathways: antiviral and innate immune response and cell division and cell cycle regulation
(as shown in Figures 4–6 and Table 2). The innate immune response found in the study
mostly correlated with IFN signaling pathways. IFN can be separated into two groups:
type I and II IFN (IFN-I and IFN-II). IFN-I cytokines, such as IFN-α and IFN-β, play an
essential role in innate immunity to many viral infections [116]. They are released by the
interaction between PAMPs or DAMPs and PRRs. The IFN-I activation controls innate
immunity and increases viral clearance by stimulating various antiviral proteins, such as
MX1, OASs, and ISGs [117–121]. IFN-I is also involved in NK cells, B lymphocyte, CD4+,
and CD8+ T lymphocyte stimulation [121]. Nonetheless, IFN-I signaling is suppressed
and delayed in coronavirus infections, such as SARS-CoV, MERS-CoV, and SARS-CoV-
2, causing viral clearance dysfunction. Persistent viral replication causes the release of
uncontrolled proinflammatory cytokines, resulting in the cytokine storm [116,122,123]. This
phenomenon is also called paradoxical hyperinflammation. Although IFN-II, consisting
of IFN-γ, has an immune function overlapping with IFN-I to stimulate the antiviral and
innate immune response, it causes enhancement predominantly in antigen-presenting cells
(APCs) [124]. Several studies have revealed that IFN-II exhaustion is usually found in
severe COVID-19 patients, suggesting a vital role of IFN-I in the immunopathology of the
disease [125–127]. As a result, IFN signaling enrichment found in the peripheral white blood
cells can be from the compensating mechanism of immune cells for IFN suppression and
delay in severe cases. However, IFN signaling predominance in this study can indicate the
ongoing activation. Persistent IFN stimulation induces apoptosis of CD4+ T lymphocytes
and causes lymphopenia. It also increases proinflammatory cytokine production [128–130].
Other evidence supports the notion that increased IFN-I in influenza viral infection can



Biomolecules 2022, 12, 690 14 of 32

release excessive proinflammatory cytokines, resulting in respiratory epithelial apoptosis
and severe pneumonia [131]. Because the IFN function in severe COVID-19 is complicated,
the study of IFN roles in the disease should be more investigated.

Leukocyte proliferation is the immune defense mechanism responding to infections.
However, cell division and cell cycle regulation can also participate in the pathophysiology
of COVID-19-associated cytokine storms. In the RNA-seq study used to construct the IPIN,
the patient data revealed that severe COVID-19 cases had elevated neutrophils more than
lymphocytes [87]. An excessive number of neutrophils can cause increased production of
proinflammatory cytokines. Hence, finding the key immune-related proteins in the cell
cycle regulation is necessary to modulate the immune response in severe cases. Nucleic
acid metabolism was also found in the enrichment analysis. Increased cell division also
stimulates nucleic acid metabolism to produce DNA materials for chromosome segregation.
Although cell division is found in leukocytes during the infection, several studies revealed
that SARS-CoV could induce cell cycle arrest in host cell lines by using viral proteins inter-
acting with cyclin and the cyclin-dependent kinase (CDK) complex [132–134]. Nevertheless,
there is still no research about the relation between SARS-CoV-2 and leukocyte cell cycle
regulation. Therefore, studying the cell cycle regulation of host cells in COVID-19 requires
further investigation.

Another term found in the enrichment analysis was apoptosis or programmed cell
death. Apoptosis in COVID-19 causes deleterious effects, leading to severe complications.
For instance, lymphocyte apoptosis results in lymphopenia and delays adaptive immune
response, increasing the cytokine storm risk. Many studies have found that B and T
lymphocyte apoptosis is associated with severe COVID-19 [135–137]. Apoptosis is also
found in respiratory epithelial and endothelial cells, causing the blood-air barrier defect.
This event leads to ARDS progression. Therefore, apoptosis regulation in severe COVID-19
is essential to improve adaptive immunity and reduce fatality rates.

Furthermore, there was protein processing found in the IPIN enrichment analysis.
Protein processing is post-translational modification occurring in the endoplasmic reticu-
lum (ER) and Golgi apparatus. The immune cells during the infection have more active
functions, such as cell proliferation and cytokine production. Hence, protein processing is
highly expressed to play a role in these activities.

3.3. Key Immune-Related Proteins in the IPIN
3.3.1. Important Immune-Related Proteins with Node Centralities

Network centrality aspects such as degree, betweenness, closeness, and eigenvector
centralities of each node in the IPIN are illustrated in Table S6 in Supplementary Materials.
Nodes with degree, betweenness, closeness, or eigenvector centralities above the 90th
percentile are shown in Tables S9–S12 in Supplementary Materials, respectively. From the
tables, 15 nodes have large degree values, and 10 nodes have high betweenness values. In
addition, 11 and 10 nodes have high closeness and eigenvector scores, respectively. These
nodes are proteins playing a role in antiviral, innate immune, apoptosis, and cell cycle
regulation signaling pathways. The function of each protein including high centrality
predominance is displayed in Table 3.

From the tables, we found that nodes with high betweenness values were primar-
ily involved in cell cycle regulation (6 of 10 nodes), while nodes with high degree and
eigenvector values were mainly related to antiviral and innate immune signaling pathways
(13 of 15 nodes and 9 of 10 nodes with high degree and eigenvector values, respectively).
In addition, we discovered that the high closeness nodes had a similar proportion between
immune signaling and cell proliferation, explaining that 6 of 11 nodes were involved in the
innate immune response. At the same time, the rest of the nodes had a function associated
with cell cycle regulation.
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Table 3. Summary of biological function of 23 nodes with high centrality predominance.

Symbol Description High Centrality Biological Function

CCNA2 Cyclin A2 DC, BC, CC Cell cycle regulation
CCNE1 Cyclin E1 CC Cell cycle regulation
CDC20 Cell Division Cycle 20 BC Cell cycle regulation

CDC25A Cell Division Cycle 25A BC, CC Cell cycle regulation

CMPK2 Cytidine/Uridine
Monophosphate Kinase 2 BC, CC Salvage nucleotide

synthesis
DDX58 DExD/H-Box Helicase 58 BC, CC Viral dsRNA recognition

FOXM1 Forkhead Box M1 BC Transcription activator
in cell proliferation

IFI6 IFN-α Inducible Protein 6 DC, EC Apoptosis regulation
and antiviral activity

IFI35 IFN Induced Protein 35 DC, BC
Regulation of innate
immune signaling

parhway

IFIH1 IFN Induced With Helicase
C Domain 1 BC, CC Intracellular sensor of

viral RNA

IFIT1 IFN Induced Protein With
Tetratricopeptide Repeats 1 DC, CC, EC Viral replication

inhibition

IFIT2 IFN Induced Protein With
Tetratricopeptide Repeats 2 DC, EC Viral replication

inhibition

IFIT3 IFN Induced Protein With
Tetratricopeptide Repeats 3 DC, EC Viral replication

inhibition
IRF7 IFN Regulatory Factor 7 DC, EC Antiviral activity

ISG15 IFN-stimulated gene 15 DC, CC, EC Antiviral activity

MX1 MX Dynamin Like GTPase 1 DC, CC, EC Viral replication
inhibition

OAS1 2′-5′-Oligoadenylate
Synthetase 1 DC Viral replication

inhibition

OAS2 2′-5′-Oligoadenylate
Synthetase 2 DC Viral replication

inhibition

OASL 2′-5′-Oligoadenylate
Synthetase Like DC Antiviral activity

RRM2 Ribonucleotide Reductase
Regulatory Subunit M2 BC, CC Cell cycle regulation

RSAD2
Radical S-Adenosyl
Methionine Domain

Containing 2
DC, BC, CC, EC Antiviral activity

STAT1 Signal Transducer And
Activator Of Transcription 1 DC, EC

Stimulation of
proinflammatory

cytokines
XAF1 XIAP Associated Factor 1 DC, EC Antiapoptotic inhibition

IFN, interferon; XIAP, X-linked inhibitor of apoptosis protein; dsRNA, double-strand RNA; DC, degree centrality;
BC, betweenness centrality; CC, closeness centrality; EC, eigenvector centrality.

The upset plot In Figure 7 shows that all nodes with high eigenvector values are in the
high degree nodes. That means the high-eigenvector nodes form a subset of the high-degree
nodes. Furthermore, the high-betweenness nodes share the node members mainly with
the high-closeness nodes (the intersection size is calculated from 5 + 1 = 6). There is one
node shared in all centralities (RSAD2). The degree, betweenness, and closeness centrality
provide unique nodes that do not intersect with other centralities. The numbers of unique
nodes in degree, betweenness, and closeness centrality are 3, 2, and 1, respectively.

3.3.2. Important Immune-Related Proteins with the Ranking Scores

As shown in Table 4, there are 10 nodes with a ranking score above the 90th percentile.
Among them, eight nodes have functions relevant to innate immune response and antiviral
activity: IFIT1, IFIT2, IFIT3, IRF7, ISG15, MX1, RSAD2, and STAT1. Interestingly, these
immune nodes participate in IFN signaling pathways. The signaling pathway is usually
activated when viral infections invade the hosts [138]. Stimulated IFNs increase the pro-
duction of antiviral proteins, for example, ISG15 and MX1 [139,140]. In addition, the rest
of the nodes, such as CDC25A and CCNA2, are involved in cell proliferation and cell
cycle regulation. During infection, the immune system increases leukocyte proliferation to
eradicate pathogens. As a result, cell division and cell cycle regulators can be found in the
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analysis. Both CDC25A and CCNA2 regulate cell cycle transition in G1/S phase [141]. Cell
cycle control during G1/S phase is a critical point for cell division. Hence, drug repurpos-
ing targeting these regulators could improve the excessive leukocyte proliferation in the
cytokine storm, leading to decreased morbidity and mortality rate in severe COVID-19.

Table 4. List of nodes with high-ranking scores.

Ensembl ID Symbol Ranking Score

ENSP00000371471 RSAD2 4.166667 × 10−2

ENSP00000360869 IFIT1 4.629630 × 10−3

ENSP00000368699 ISG15 6.666667 × 10−4

ENSP00000381601 MX1 4.370629 × 10−4

ENSP00000303706 CDC25A 1.940994 × 10−4

ENSP00000360883 IFIT3 1.449275 × 10−4

ENSP00000354394 STAT1 1.017501 × 10−4

ENSP00000274026 CCNA2 6.410256 × 10−5

ENSP00000360891 IFIT2 4.409171 × 10−5

ENSP00000380697 IRF7 4.084967 × 10−5
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To compare with the conventional methods usually used for identifying key proteins
in IPINs such as degree and betweenness centrality, Figure 8 displays a Venn diagram of
nodes found in the ranking score, degree, and betweenness centrality. The figure shows
that the score covers mostly proteins in degree centrality (9 of 15 nodes in the degree set).
Conversely, the score captured a few nodes in betweenness centrality (3 of 10 nodes in
the betweenness set). Noticeably, the nodes merging between degree and betweenness
set cover almost the high-value nodes analyzed from the four centralities (22 of 23 nodes).
Thus, a combination of degree and betweenness centrality can provide the best result for
identifying key proteins in IPINs. Although the ranking score could not capture other
key proteins different from these two centralities, RSAD2 and IFIT1 (the top two genes in
Table 4) were detected as the most important immune-related proteins.
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RSAD2 or viperin is a broad-spectrum antiviral protein in several viruses such as
measles, coxsackievirus A16, and enterovirus A71 [142–144]. Moreover, an animal study
revealed that RSAD2 was necessary for dendritic cell development [145]. The DEGs
analysis of the overlapping genes in postmortem lung tissue from COVID-19 cases and
acute lung injury (ALI) murine model found that RSAD2 had a high degree centrality
in a COVID-19-associated regulatory network [146]. Moreover, a lower respiratory tract
transcriptomic study revealed that RSAD2 expression correlated with the viral load in
mild and severe COVID-19 [147]. IFIT1 is an antiviral protein interacting with other IFIT
family proteins to form an IFN-dependent multiprotein complex. The complex plays an
important role to increase innate immunity against RNA viruses via binding between
IFIT1 and 5′-triphosphate RNA (PPP-RNA) [148]. Nevertheless, an experimental finding
revealed that several SARS-CoV-2 proteins, such as nsp7, nsp15, M, 3CLpro, helicase, and
N proteins, suppressed IFT1 expression in HEK293T cells [149].

Although the ranking score was computed to find the key proteins by considering
the four centralities, it captured a few proteins when compared with the combination
between degree and betweenness centrality. Moreover, the score covered the proteins
mostly found in degree centrality. The reason to describe the result is that the proteins with
high eigenvector centrality were the subset in degree centrality. Meanwhile, some proteins
with high closeness centrality were found in both eigenvector and degree centrality. In
addition, proteins found in betweenness centrality rarely overlapped with degree centrality.
Therefore, the score calculation is weighted to degree centrality more than betweenness
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centrality. Noticeably, the combination of degree and betweenness centrality covered
almost high-value centrality proteins rather than the ranking score, although it lost one
protein with a high closeness value (CCNE1).

As described earlier, the 23 key proteins identified using centrality measurement were
involved in innate immune response, cell cycle regulation, and apoptosis. IFI35 is an IFN
signaling regulator response to viral infections. Many studies have found that IFI35 plays
an essential role in cytokine storms and severity in COVID-19 and influenza [150–153].
IFIH1 is an intracellular viral sensing protein that stimulates the IFN signaling pathway
when viral particles are detected in the cell [154]. IFIH1 was reported to participate in
SARS-CoV-2 sensing and was associated with proinflammatory cytokine overproduction in
COVID-19 [155–157]. DDX58 also plays a role as a cytoplasmic viral sensor. High DDX58
expression in COVID-19 was associated with cytokine responses [158]. IFI6, IFIT1-3, IRF7,
ISG15, MX1, OAS1, OAS2, OASL, and RSAD2 have antiviral activity functions. Many
studies in IFI6 have revealed that IFI6 plays an essential role against hepatitis B virus
(HBV) and flavivirus replication [159,160]. Several systems biological and transcriptomic
studies have also shown that IFI6 is a hub gene in the gene co-expression networks and
transcriptomic profiles in COVID-19 [52,161–163]. IFIT1-3, OAS1-3, and OASL were up-
regulated in SARS-CoV-2 and other coronavirus infections [164–167]. Furthermore, the
IRF7 mutation causing loss of function was reported to be associated with severe pneumo-
nia progression in COVID-19 [168,169]. The infected macrophage cell line study showed
that extracellular ISG15 stimulated proinflammatory cytokine production, leading to hy-
perinflammation [170]. The result of a COVID-19 case-control study revealed that MX1
expression was increased depending on elevated viral load, and the expression was de-
creased in elderly patients [171]. Older patients have a high risk for COVID-19-associated
cytokine storms, suggesting that low MX1 expression could play a vital role in the cytokine
storm. STAT1 is a signal transduction protein related to various signaling pathways such
as IFN, IL-6, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF)
pathways [172–174]. Several studies have indicated that phosphorylated STAT1 increases
in severe COVID-19 patients, causing STAT1 signaling dysfunction and failed IFN activa-
tion [175–177]. XAF1 is a tumor suppressor protein playing as a positive feedback regulator
in the p53-induced apoptotic signaling pathway [178]. Numerous studies have reported
that XAF1 dysfunction plays a vital role in tumor progression [179–182]. A single-cell
transcriptomic study in peripheral blood mononuclear cells showed that COVID-19 caused
XAF1-induced T lymphocyte apoptosis, leading to adaptive immune impairment [183]. In
addition, IPIN analysis from COVID-19 patient lung tissue revealed that IFIH1, DDX58,
ISG15, OASL, and XAF1 were hub genes in the network [184].

CCNA2 and CCNE1 are CDK kinase regulators during G1/S and G2/M phases in
the cell cycle. Numerous studies have indicated CCNA2 and CCNE1 play a central role
in various types of malignancy such as hepatocellular carcinoma, breast, and colon can-
cer [185–188]. CDC25A is a protein required in the cell cycle by activating CDKs [189].
CDC25A overexpression was found in head and neck, breast, ovarian, and non-small cell
lung cancer [190–193]. An immune study revealed that CDC25A had activities decreasing
IFN-β transcription and DDX58-mediated antiviral signaling pathway [194]. CDC20 has
a function involved in chromosome segregation and is the target for spindle assembly
checkpoint (SAC) [195,196]. High-expressed CDC20 was related to the worst prognosis in
lung squamous cell carcinoma [197]. An IPIN analysis in COVID-19-induced thrombocy-
topenia also reported that CDC20 was highly expressed in COVID-19 with thrombocytope-
nia [198]. CMPK2 is an enzyme associated with the nucleotide salvage pathway. Many
studies have shown that CMPK2 participates in IFN-I activation and antiviral immune
response [199–201]. In COVID-19 studies, CMPK2 was highly upregulated in severe cases
related to ARDS [202,203]. Moreover, FOXM1-dependent tissue regeneration is impaired
in severe COVID-19 cases, causing sustained lung injury and a high fatality rate [204].
RRM2, a cell cycle regulator, had an increased expression in lung adenocarcinoma with a
poor prognosis [205]. A gene co-expression network and functional enrichment study also
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showed that RRM2 was a component in a module involved in p53 signaling pathway, a cell
cycle and apoptosis pathway, in COVID-19 [206].

3.4. Potential Drugs to Cure Severe COVID-19 Patients

We used the key immune-related proteins from the ranking score, degree, and between-
ness centrality to find the drug–gene or drug–protein interactions from four well-known
public databases: DrugBank database [110], TTD [111], CTD [112], and GeneCards [113].
In addition, the protein not found in both degree and betweenness centrality (CCNE1) was
used to discover the interaction. The result from database searching revealed 115 FDA-
approved drugs interacting with the key genes or proteins. Table S13 in Supplementary
Materials shows the drug–gene and drug–protein interactions in detail among the 23 key
immune-related proteins.

STITCH v5.0 [114], a drug–protein interaction database, was conducted to confirm
the result from the databases by the confidence score cut-off value of 0.9. The STITCH
result is demonstrated in Figure 9. The key immune-related proteins are classified into
two groups. The former is an antiviral, innate immune response, and apoptosis signaling
pathway group, and the latter is a cell division and cell cycle group. Figure 9a displays the
drug–protein interaction network in the innate immune response, and Figure 9b illustrates
the drug–protein interaction network involved in cell cycle regulation. There are seven
candidate drugs interacting with these seven key proteins. Three drugs are associated
with the key proteins related to innate immune response and apoptosis. In contrast, the
rest interacts with the proteins involved in cell cycle regulation. In the innate immune
and apoptosis network, polyinosinic:polycytidylic acid (poly(I:C)) interacts with IFIH1
and DDX58, while mitomycin C interacts with MX1. Decitabine also binds to XAF1 in the
network. There are four drug–protein interactions in the cell cycle regulation network.
RRM2 is interacted with gemcitabine and hydroxyurea, respectively. Tamoxifen binds to
FOXM1, and curcumin has an interaction with CCNE1.

From the STITCH v5.0 result, the seven candidate drugs interacted with the seven
key proteins. For instance, Poly(I:C) interacted with IFIH1 and DDX58. Poly(I:C) is an
immune stimulant used to activate innate immunity such as IFN by the TL3 agonist effect.
It also induces cancer cell apoptosis in various types of malignancy: cervical, prostate, and
colon cancer [207–211]. Poly(I:C) also increases cytotoxic activity in CD4+ T lymphocytes
in viral infections, promoting adaptive immune response [212]. A study in influenza A
virus (IAV) and a SARS-CoV-infected mice model revealed that poly(I:C) had a protective
effect in fatal respiratory infections [213]. Interestingly, intranasal poly(I:C) in mice with
SARS-CoV-2 infection showed a decreased viral load, suggesting that poly(I:C) can be an
effective drug for treating the disease [214]. However, some studies reported that poly(I:C)
increased proinflammatory production [215–217]. Therefore, further studies about poly(I:C)
in COVID-19 treatment should consider the drug dosage and administration route to
prevent the cytokine storm due to the medication. Mitomycin C, a chemotherapeutic
agent, interacted with MX1. It is used to treat many cancer types [218–221]. A systems
biological study revealed that mitomycin C interacted with MX1, a key protein in an
IPIN, suggesting further studies in the role of the drug in antiviral stimulation [50]. In
addition, there was a drug–protein interaction between decitabine and XAF1. Decitabine
is a pyrimidine nucleoside antimetabolite used to treat myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML) [222,223]. A study in the mice model showed that
decitabine improved FOXM1-dependent endothelial regeneration and vascular repair [204].
As mentioned above, lung tissue degeneration can cause worsening lung injury. Decitabine
then could play a role in decreasing lung injury in severe COVID-19. Interestingly, there is
a clinical trial that has been studying decitabine treatment in critical ill COVID-19 patients.
The estimated research completion date August 2022. Gemcitabine and hydroxyurea also
interacted with RRM2. Gemcitabine, a pyrimidine nucleoside analog and chemotherapeutic
agent, is used to treat solid tumors such as bladder, pancreatic, breast, and non-small
cell lung cancer [224]. Several studies in cell lines have found that decitabine decreases
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SARS-CoV-2 replication [225–227]. In addition, in a cohort study, gemcitabine reduced
SARS-CoV-2 infection in cancer patients [228]. Hydroxyurea, an antimetabolite treating
sickle cell anemia, has anti-inflammatory and immunomodulatory effects and was expected
to apply well in COVID-19 [229].
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A clinical study also revealed that the mortality rate was low in COVID-19 patients
receiving hydroxyurea, suggesting a vital role of hydroxyurea in COVID-19 treatment [230].
Tamoxifen, a selective estrogen receptor modulator, had an interaction with CCNE1. The
drug is used to treat estrogen receptor-positive breast cancer [231]. Tamoxifen downreg-
ulates TMPRSS2, preventing SARS-CoV-2 entry into host cells [232]. A preclinical study
showed that tamoxifen reduced SARS-CoV-2 in vitro and in vivo [233]. Moreover, a re-
view article in clinical studies found that tamoxifen decreased COVID-19 susceptibility
rates in breast cancer patients [234]. Tamoxifen also inhibited viral replication and virus
entry in many virus types such as EBOLA, MERS, and SARS-CoV-2 [234]. The drug re-
purposing result also revealed that curcumin interacted with CCNE1. It is worth noting
that curcumin is a promiscuous molecule acting on many receptors. Hence, the effect of
curcumin in COVID-19 can be from other mechanisms. Our study only proposed one
of the possible mechanisms of curcumin in severe COVID-19 treatment. Curcumin is a
natural product found in turmeric (Curcuma longa). Many studies have indicated that
curcumin has anti-inflammatory and antioxidant effects [235–237]. Moreover, it provides
effects in apoptosis promotion, cell proliferation inhibition, anti-cell adhesion and invasion,
decreased angiogenesis, and anti-microbial activity [238]. Therefore, its clinical application
is related to numerous diseases, such as rheumatoid arthritis, inflammatory bowel diseases,
osteoarthritis, and various types of cancer. In COVID-19, several review articles have
revealed that curcumin inhibits viral entry and replication [239–241]. It also promotes
IFN and antiviral signaling pathway and decreases proinflammatory cytokine production.
Curcumin has protective effects on ARDS by reducing NF-κB, inflammasome, and IL-8
pathway. Furthermore, a randomized control trial study showed that mild, moderate,
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and severe COVID-19 patients taking oral curcumin with piperine had better clinical out-
comes and lower hospitalization duration than the controls [242]. A systematic review
reported that curcumin reduced the proinflammatory cytokines, such as IL1β and IL6. It
also increased the anti-inflammatory cytokines, for example, IL-10, IL-35 and transforming
growth factor α (TGF-α) [243]. Therefore, further study should focus on the effective dose
and administration routes of curcumin.

4. Discussion

This study constructed the immune-related protein interactions network, IPIN, for
severe COVID-19 based on the leukocyte transcriptomic profile of critically ill patients using
network propagation on the human interactome network. Functional enrichment analysis
and network clustering were operated to discover the underlying molecular mechanisms
of immune-related severe COVID-19. Topological analysis, centrality, and ranking score
measurements were calculated to identify the key immune-related proteins. Finally, the
drug–protein interactions were searched to find the candidate drugs to treat the severe
COVID-19 patients.

Diffusion-based IPIN construction and permutation testing provided the highly con-
nected immune-related proteins in IPIN. IPIN was a network with a small-world effect
in relation to other biological networks. The small-world effect was proved by the low
average shortest path length and high average clustering coefficient. The scale-free property
cannot be explained in the network due to a lack of a relationship between degree and
its probability. However, the IPIN was less likely to be the random network because it
provided the significant PPI enrichment p-value from the STRING database. We performed
the four network centralities (degree, betweenness, closeness, and eigenvector) and ranking
score to find the key immune-related proteins. The results showed that the combination of
degree and betweenness centrality covered a wide range of the key proteins. However, the
ranking score can detect the main key proteins: RSAD2 and IFTI1.

We identified 23 key immune-related proteins, such as CCNA2, CCNE1, CDC20,
CDC25A, CMPK2, DDX58, FOXM1, IFI6, IFI35, IFIH1, IFIT1, IFIT2, IFIT3, IRF7, ISG15,
MX1, OAS1, OAS2, OASL, RRM2, RSAD2, STAT1, and XAF1, using the four centralities and
ranking score measurement. These proteins all play an important role in severe COVID-19,
validated by several computational, experimental, and clinical studies. The functional
enrichment analysis from the whole network and the modules obtained from both MCODE
and MCL methods produced similar results. The enrichment terms were divided into four
main categories: cell cycle regulation, antiviral and innate immune response, apoptosis,
and nucleotide metabolism. These terms were in accordance with leukocytes during viral
infections. Furthermore, the main terms were accepted with the functional classification in
the key proteins. For instance, the key proteins involved in cell cycle regulation consisted of
CCNA2, CCNE1, CDC20, CDC25A, and RRM2, while the others associated with antiviral
and innate immune response were DDX58, FOXM1, IFI6, IFI35, IFIH1, IFIT1, IFIT2, IFIT3,
IRF7, ISG15, MX1, OAS1, OAS2, OASL, RSAD2, and STAT1. In addition, the remaining
key proteins such as CMPK2 and XAF1 play a crucial role in nucleotide metabolism and
apoptosis, respectively.

Drug repurposing based on drug–gene and drug–protein interaction database search-
ing provided the seven potential candidate drugs, poly(I:C), mitomycin C, decitabine,
gemcitabine, hydroxyurea, tamoxifen, and curcumin. There were three drugs interacting
with the key proteins related to antiviral and innate immune response: poly(I:C), mito-
mycin C, and decitabine. Other drugs interacted with the key proteins involved in cell
cycle regulation and apoptosis. Among the candidate drugs, we recommend that the
drugs interacting with proteins involved in IFN and antiviral signaling should be used
carefully in clinical application because they promote IFN stimulation. IFN overactiva-
tion can result in excessive proinflammatory cytokine production in some studies that we
mentioned [128–131]. Moreover, chemotherapeutic agents cause many adverse side effects
and should be performed as the second choice. Therefore, we suggest using curcumin and
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tamoxifen as the first choices for clinical application. They have fewer side effects than
other chemotherapeutic agents because curcumin is a natural product and tamoxifen is a
targeted drug. In addition, both curcumin and tamoxifen have several clinical studies to
support their effectiveness in COVID-19 treatment.

5. Limitations and Future Study Suggestions

Although this study provides novel knowledge and candidate targeted drugs in
COVID-19, it has some limitations to be explained. First, the network diffusion method is
an algorithm consuming computational time and memory space which depends on the
number of nodes, interactions, and permutation tests. We conducted high-performance
computing (HPC) for running the LHD algorithm in the original and 1000 random sets to
perform the permutation test. Second, many proinflammatory cytokine signaling pathways,
such as IL-1β, IL-6, IL-12, IL-18, IL-33, and TNF-α, were rarely detected in this IPIN analysis.
Our reason for explaining the issue is that the data came from comparing controls and
COVID-19 cases in an intensive care unit. Typically, critically ill patients have stress and
inflammatory responses, leading to increased proinflammatory cytokines. Therefore, there
was no difference in the proinflammatory cytokine gene expression between cases and
controls. Moreover, proinflammatory cytokines are usually released from respiratory
epithelial and immune cells in the lung parenchymal tissue. Studies in peripheral white
blood cells can lose this proinflammatory cytokine information. Our suggestion for future
research is to perform lung transcriptomic profiles comparing severe COVID-19 cases and
mild illness or healthy cases for IPIN construction and analysis. Furthermore, a single-cell
approach should be conducted to identify an IPIN in each cell type. In COVID-19, there are
differences between each cell type such as cell count, behavior, function, and pathogenesis.
Therefore, identifying key proteins in these cells can help to treat the disease more precisely.

6. Conclusions

This study proposed LHD algorithms to perform network diffusion on the human
interactome network to construct the immune-related IPIN in severe COVID-19 based on
the transcriptomic data. Functional enrichment analysis found that the network contained
the proteins involved in antiviral and innate immune response signaling pathways, cell
cycle regulation, apoptosis, and protein processing. The degree and betweenness centrality
combination covered almost the key proteins from the four centrality measurements. These
key proteins play a significant role in cell proliferation, antiviral activity, and innate immu-
nity responding to the SARS-CoV-2 infection. Moreover, the candidate drugs targeting the
key proteins were found from database searching. Most of them have experimental data
supporting their effectiveness in COVID-19 treatment. However, other key proteins and
candidate drugs were not found in our method and need further investigation. Therefore,
a combination of advanced experimental and computational tools should be conducted for
further efficient treatment discovery relating to COVID-19.
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