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Abstract: Genome-scale metabolic models (GEMs) are effective tools for metabolic engineering and
have been widely used to guide cell metabolic regulation. However, the single gene–protein-reaction
data type in GEMs limits the understanding of biological complexity. As a result, multiscale models
that add constraints or integrate omics data based on GEMs have been developed to more accurately
predict phenotype from genotype. This review summarized the recent advances in the development
of multiscale GEMs, including multiconstraint, multiomic, and whole-cell models, and outlined
machine learning applications in GEM construction. This review focused on the frameworks, toolkits,
and algorithms for constructing multiscale GEMs. The challenges and perspectives of multiscale
GEM development are also discussed.

Keywords: multiscale genome-scale metabolic models; multiconstraint models; multiomics models;
machine learning; whole-cell models

1. Introduction

Genome-scale metabolic models (GEMs) transform cell growth and metabolism pro-
cesses into a mathematical model based on a stoichiometric matrix and solve the optimal
solution of the target equation at a steady-state [1]. GEMs have become an important tool
for systematically revealing cell growth and metabolic regulation [2]. To satisfy the needs
of different growth and metabolism processes in actual cells, researchers have developed a
framework for different constraint models and various model analysis algorithms. Thus,
GEMs are widely used in guiding strain design, predicting cell phenotype, analyzing
metabolic mechanisms, mining unknown metabolic pathways, and studying the evolution
of strains [3].

Since the first GEM of Haemophilus influenzae RD was reported in 1999 [4], various
GEMs have been constructed for 5897 bacteria with the development of genome sequencing
and omics analysis techniques [5]. In particular, many GEMs have been constructed for clas-
sical industrial microorganisms, such as Escherichia coli [6], Saccharomyces cerevisiae [7], and
Bacillus subtilis [8]. The first GEM of E. coli, one of the most important model organisms, was
reported in 2000 [9]. Thirteen GEMs have been reported, with four updates in gene–protein
response correlation coverage and prediction accuracy [10]. In the latest GEM of E. coli,
the metabolism-expression (ME) model was reported, which reconstructs the complete
pathway of transcription and translation during cellular metabolism [11]. FoldME [12],
OxidizeME [13], and AcidifyME [14] were developed based on an ME model to simulate
different environmental pressures on temperature, oxidation and low pH, respectively.
S. cerevisiae was the first eukaryotic microorganism whose genome was sequenced [15].
Thus far, 13 GEMs for S. cerevisiae have been reported, and the latest Yeast8 can dissect the
metabolic mechanism of cells at multiscale levels [7]. In B. subtilis, seven GEMs have been
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reported. The latest eciYO844 integrates the enzymatic data of central carbon metabolism
to guide the design of high-producing poly-γ-glutamic acid strains [16].

To explore the relationship between the genotype and phenotype in cells, flux balance
analysis (FBA) is widely used to characterize cellular metabolism [17]. Then, dynamic flux
balance analysis algorithms, dynamic FBA, were developed to meet the design of model
chassis cells [18]. However, FBA suffers from the limitations of assuming a steady-state
and substrate uptake rate as constraints. Therefore, model analysis algorithms based on
multi-omics data were developed to improve the application scope of GEMs, such as
iMAT [19], MADE [20], ∆FBA [21], GIM3E [22], multiTFA [23], and INTEGRATE [24]. In
addition, the development of various omics databases and model-building tools facilitates
the construction of multi-scale GEMs, such as KBASE [25], ModelSEED [26], CarveMe [27],
and MEMOTE [28]. With the development of high-throughput technologies, massive
omics data drive the interpretation of biological mechanisms [29,30]. In particular, machine
learning has become an indispensable tool for the training and analysis of large datasets [31].
Therefore, many machine learning-trained GEMs that integrate multilevel omics data to
deepen insights into genotype–phenotype relationships have been reported [32].

However, the single gene–protein-reaction relationship in GEM often leads to mispre-
dictions due to the multifactorial regulation of microbial metabolism. Therefore, multiscale
GEMs that add constraints, such as thermodynamic, enzymatic, or kinetic constraints, or
integrate omics data, such as proteomic, transcriptomic, or other omics data, have been
developed based on traditional GEMs, and have been widely used in silico biodesign.
This review summarized the construction workflow and toolkits of multiscale models. It
also discussed how to use artificial intelligence, such as machine learning, to improve the
qualities of multiscale GEMs. Finally, this review analyzed the challenges and perspectives
of multiscale GEM development in the future. This review may aid biological engineers in
the in silico design of versatile cell factories for sustainable bioproduction.

2. Constraint-Based GEMs

GEMs have been widely used to simulate metabolic phenotypes at the systems level,
often relying only on constraints on metabolite uptake rates. However, cellular metabolism,
a fundamental biological process used by all organisms to generate and consume energy
to promote growth, not only depends on the regulation of interconnected mechanisms
within cells, but is also affected by the external environment. Multiple factors regulate
cellular metabolism for an organism to respond to various conditions. Therefore, the basic
form of GEMs cannot explain the complex regulatory mechanisms within the cell. This
limitation of GEMs has prompted the development of multiple constraints to integrate
regulatory mechanisms, thereby improving the predictive power and broadening the scope
of GEMs. Several constraint-based models have been developed, including thermodynamic,
enzymatic, and kinetic constraint models (Figure 1).

2.1. Thermodynamic Constraint GEMs

Although classic GEMs can achieve flux analysis of metabolic networks, single stoi-
chiometric and metabolite concentration limitations hinder their scope of application [17].
Therefore, introducing thermodynamic constraints can narrow the range of feasible solu-
tions by considering the directionality and Gibbs free energy of metabolic reactions [33].

The development of thermodynamic constraints relies on three main algorithms: en-
ergy balance analysis (EBA), network embedded thermodynamic analysis (NET analysis),
and thermodynamically based metabolic flux analysis (TMFA; Table 1). EBA provides
additional constraints for the metabolic network based on voltage loop laws and effectively
reduces the feasible flux space compared to FBA [34]. NET analysis was proposed as a com-
putational thermodynamics-based framework that couples quantitative metabolomic data
into metabolic networks via thermodynamic laws and Gibbs free energies of metabolites.
NET analysis enables the identification of putative genetically or allosterically regulated
active sites and can be used to explore new interrelationships in metabolic regulation [35].
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Henry et al. proposed that TMFA, which uses mixed-integer linear constraints to generate
flux analysis, and the flux distribution produced by TMFA, eliminates any thermodynami-
cally infeasible reactions and pathways [36]. TMFA first introduced linear thermodynamic
constraints into GEMs, pioneering the construction and analysis of models based on ther-
modynamic constraints.
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However, the standard Gibbs free energy of metabolites is mostly unknown, and the
temperature, pH, and ionic strength of different cells can have huge effects on the detection
of Gibbs free energy. To overcome this challenge, Mavrovouniotis proposed a method for
estimating Gibbs free energy and the equilibrium constants of biochemical reactions by
multiple linear regression from group contributions [37]. In the group contribution method,
the molecular structure of a single metabolite is decomposed into a set of linear molecular
substructures based on structural assumptions, and its linear model can more conveniently
estimate the Gibbs free energy of metabolite formation and metabolic reactions [37]. The
eQuilibrator website was developed to obtain online biochemical equilibrium constants
and Gibbs free energies of metabolites and metabolic pathways [38]. Various algorithms
and toolkits were developed for model construction and analysis, such as OptMDFpath-
way (an algorithm for directly calculating thermodynamic driving forces in metabolic
pathways) [39], Find_tfSBP (an algorithm for identifying thermodynamically feasible mini-
mal equilibrium pathways for high-yielding target products in metabolic networks) [40],
matTFA, and pyTFA (a toolkit for integrating thermodynamic data with constraint-based
GEM) [41].

Based on the above algorithms and frameworks, many efforts have been made to
explore the construction and analysis of thermodynamically constrained models. The first
thermodynamically constrained model in E. coli, iHJ873, evaluated the thermodynamic
feasibility of the reactions in the model through Gibbs free energy, focused on the thermody-
namic study of a single reaction, and explored the flux direction of the reaction [42]. Gibbs
free energy change values for 1403 (97%) reactions estimated by the group contribution
method were included in iBsu1103 of B. subtilis, identifying 653 (45%) irreversible reactions
in the model, bringing its prediction accuracy from 89.7% to 93.1% [43]. In addition to
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determining the direction of reaction fluxes and assessing the thermodynamic feasibility
of metabolic reactions in the model, thermodynamics is applied to metabolite sensitiv-
ity analysis, which combines constrained modeling, design of experiments, and global
sensitivity analysis to evaluate metabolites in the model [44]. The quantitative relation-
ship between the regulation of metabolic flux by enzymes and thermodynamics in the
metabolic network was explored, and the thermodynamic driving force of the network
constrains almost all flux control coefficients in the pathway [43]. The effects of thermo-
dynamic constraints on the prediction of metabolic networks were evaluated, and the
networks with thermodynamic constraints effectively improved the prediction accuracy
of essential genes [45]. These studies comprehensively highlight the importance of global
thermodynamic signatures in limiting metabolic regulation patterns.

Table 1. Algorithms and frameworks for the construction and application of multiscale models.

Model Type Year Algorithm/Framework Language Task Reference

Constraint-based
models 2007 TMFA MATLAB Thermodynamic constraint model [36]

2019 MatTFA, pyTFA MATLAB, Python Toolkit of build thermodynamic
constraint model [41]

2007 FBAwMC MATLAB Calculation scheme of
enzyme concentration [46]

2012 MOMENT MATLAB Enzymatic constraint model [47]

2017 GECKO MATLAB Comprehensive framework for enzyme
constraint models [48]

2006 Structural Kinetic
Modeling MATLAB Dynamic analysis of metabolic systems [49]

2008 MASS framework MATLAB
Evaluate the dynamic properties of the

model and formulate a
timescale hierarchy

[50]

2010 ORACLE MATLAB Introducing the state space of the
enzyme into the model [51]

2008 Ensemble Modelling MATLAB Framework for Steady-State
kinetics model [52]

2016 ABC-GRASP MATLAB Framework for modeling uncertain
dynamics data [53]

2021 ETGEM Python Framework of enzyme constraints and
thermodynamic constraints [54]

2020
Expression and

Thermodynamics Flux
models

Python Multi-omics integrated framework [55]

Multi-scale
Integrated models 2011 TIGER MATLAB Integrate TRN and GEM platforms [56]

2015 FlexFlux Java Integrate TRN and GEM platforms [57]

2010 Probabilistic Regulation
of Metabolism MATLAB Toolkit of integrate TRN and GEM [58]

2017 TRFBA MATLAB Toolkit of integrate TRN and GEM [59]

2019 OptRAM MATLAB Predict optimal metabolic flux in
TRN-integrated GEM [60]

2016 GEM-PRO MATLAB Integration of protein structure
with GEM [61]

2019 GEMMER Python + Java Database for multiscale modeling [62]

Whole cell model 2006 GEM System Java Toolbox for building metabolic
pathways in whole-cell models [63]

2021 Pathway Tools Python + Java Software for pathway and genetic data [64]
2013 WholeCellKB Python + SQL Database of whole-cell models [65]

2020 CellML XML Mathematical models describing
cellular physiological systems [66]

2003 E-Cell C++ Multiplatform cell simulation system [67]
2014 CellDesigner SBML modeling tool for biochemical networks [68]

2009 Complex pathway
simulator SBML Software for biochemical network

modeling and simulation [69]

2009 Biochemical simulations Python Random mixture algorithm [70]
2014 WholeCellSimDB Python + Java Database of whole-cell

model predictions. [71]
2013 WholeCellViz Java + SOL visualization for whole-cell models [72]
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Table 1. Cont.

Model Type Year Algorithm/Framework Language Task Reference

Machine
learning-based

models
2019 DeepEC Python EC number prediction by deep learning [73]

2020 ART, TeselaGen EVOLVE Python Multi-level training datasets for
accurate prediction [74]

2020

BEMKL, bagged random
forest, multimodal

artificial neural network,
sparse group lasso,
NSGA-II, iterative

random forests

Python Multiomics and multimodal algorithms
to predict phenotypes [75]

2020 AMMEDEUS Python Tools to identify changes in
model structure [76]

2014 regularized multinomial
logistic regression MATLAB Tool for phenotypic inverse prediction

of growth conditions [77]

2016 primary elementary
modal analysis Python Identifying metabolic patterns in

fluxomics based on metabolic pathways [78]

2018 dynEMR-DA MATLAB Algorithm for environment-driven
dynamic performance discrimination [79]

2016
support vector machines,

k-nearest neighbors,
decision trees

MATLAB Method for rapid prediction of bacterial
heterotrophic fluxomics [80]

ABC-GRASP: Approximate Bayesian Computation-General Reaction Assembly and Sampling Platform;
AMMEDEUS: automated metabolic model ensemble-driven elimination of uncertainty with statistical learn-
ing; ART and TeselaGen EVOLVE: Automatic Recommendation Tool and TeselaGen EVOLVE; BEMKL: Bayesian
efficient multiple-kernel learning; dynEMR-DA: Dynamic Fundamental Mode Regression Discriminant Analysis;
ETGEM: Pyomo-based model framework integrating enzymatic constraints and thermodynamic constraints;
FBAwMC: Flux Balance Analysis with Molecular Crowding; GECKO: GEMs with Enzymatic Constraints using
Kinetic and Omics data; GEM-PRO: genome-scale model with protein structure; GEMMER: genome-wide tool for
multi-scale modeling data extraction and representation; MOMENT: MetabOlic Modeling with ENzyme kineT-
ics; NSGA-II: nondominated sorting genetic algorithm II; OptRAM: optimization of regulatory and metabolic
networks; ORACLE: Optimization and Risk Analysis of Complex Living Entities; TMFA: thermodynamically
based metabolic flux analysis; TIGER: toolbox for integrating genome-scale metabolism; TRFBA: transcriptional
regulation flux balance analysis.

2.2. Enzymatic Constraint GEMs

Models based on stoichiometric relationships and thermodynamic constraints have
been widely used to predict cell growth rates, explore the interactions of metabolic path-
ways, and identify potential targets for metabolic engineering. However, the limitations of
substrate uptake rates and the thermodynamic feasibility of metabolic reactions are insuffi-
cient to describe complex metabolic networks in which enzyme kinetics are a nonnegligible
factor in regulating cellular metabolism.

Four frameworks or toolkits can be used for constructing enzymatic constraint GEMs.
(1) FBA with molecular crowding (FBAwMC) limits the concentration of enzymes that
catalyze various metabolic reactions in the crowded cytoplasm, and each enzyme can solve
the crowding factor based on six parameters (molecular weight, mass volume, Km, kcat,
substrate concentration, and cytoplasmic density) [46]. (2) Metabolic modeling with en-
zyme kinetics (MOMENT) predicts metabolic flux and growth rates using enzyme turnover
rates and molecular weight. Importantly, it considers specific enzyme concentration require-
ments for catalyzing predicted metabolic flux rates, including isozymes, protein complexes,
and multifunctional enzymes [47]. (3) A comprehensive modeling framework, GEMs with
enzymatic constraints using kinetic and omics data (GECKO), limits metabolic flux in GEMs
based on enzyme kinetics and protein abundance [43]. In GECKO, each metabolic reaction
was split into putative reactions catalyzed by an enzyme, and each putative reaction is lim-
ited by the abundance of that enzyme [48]. This allows the direct integration of quantitative
proteomic data, significantly reducing model flux variability in metabolic reactions. (4) The
AutoPACMEN toolbox automates the creation of enzymatic constraint models, especially
the automatic reading and processing of enzymatic data from different databases [81]. It
simplifies the construction and analysis of enzyme constraint models and paves the way
for the routine construction of enzyme constraint models for different strains.
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Aside from the four toolkits, several algorithms have been developed to introduce
enzymatic constraints in GEMs. Integrative omics–metabolic analysis quantitatively inte-
grates proteomic and metabolomic data with GEMs, taking into account the concentration
levels of enzyme substrates and products to predict metabolic flux distributions more
accurately [82]. Enzyme cost minimization calculates the number of enzymes for metabolic
flux at the lowest protein cost by prior distributions, thermodynamic laws, and Bayesian
statistics [83]. The proteome allocation theory divides the entire proteome into three mod-
ules (fermentation, respiration, and cellular activity) and explores the effects of cellular
energy demand on overflow metabolism [84].

In E. coli, a model of metabolic flux balance was constructed based on FBAwMC, which
can activate cellular metabolism by systematically recognizing environmental changes [46].
Vazquez et al. demonstrated the effects of limited solvent capacity on the growth rate of
cells and explored a regulatory mechanism that identifies metabolic control switches in
the central carbon cycle by FBAwMC [85]. Furthermore, Adadi et al. demonstrated that,
compared to FBAwMC, the model constructed by MOMENT could significantly improve
the prediction accuracy of various metabolic phenotypes by conducting growth experiments
in a minimal medium with 24 single carbon sources [47]. However, the assumption in the
MOMENT algorithm that enzymes are in a substrate-saturated state does not conform
to the actual cell growth state. Hence, the upper limit of each enzyme usage in ecYeast7
of S. cerevisiae was defined at the protein level, and the expected constraints of each flux
were specifically considered by GECKO [48]. Moreover, ecYeast7 cannot only accurately
simulate the maximum specific growth rate of cells under different carbon sources and
reduce the flux variability of the model, but also explain the physiological reactions of cells,
such as overflow metabolism and cell adaptation under temperature stress through the
enzyme restriction theory.

Based on GECKO, the protein requirements for lysine synthesis were predicted by
ec_iML1515 (enzyme-constrained model for E. coli), and the expression of 20 proteins was
optimized by modular engineering, resulting in a lysine titer of 193.6 ± 1.8 g/L, which in-
creased by 55.8% [86]. Model ec-iBag597 (enzyme-constrained model for Bacillus coagulans)
estimated the protein efficiency of major ATP-producing pathways in cells, paving the
way for a comprehensive understanding of B. coagulans metabolism [87]. Model eciJB1325
(enzyme-constrained model for Aspergillus niger) predicts the differential expression of
enzymes under different growth conditions and significantly reduces the solution space
of the model by 40.10%, explaining the changes in metabolic phenotypes at the proteomic
level [88].

2.3. Kinetic Constraint GEMs

Although enzyme constraint GEMs have been widely used in metabolic engineering,
the enzyme parameters set in the hypothetical homeostasis are not suitable for the dynamic
growth of cells in complex environments. In contrast, kinetic constraint GEMs enable
dynamic analysis of biological systems and can overcome the shortcomings of traditional
models. Moreover, kinetic constraint GEMs estimate reaction rate rules from metabolic
phenotypes and can capture the effects of fluctuations in enzyme activity on metabolic flux.

After the central carbon metabolism kinetic model of E. coli was constructed in
2002 [89], researchers started to explore the modeling framework of the kinetic model,
and five toolkits have been developed as follows: (1) Structural kinetic modeling (SKM)
was developed based on the Jacobian matrix (the matrix captures the dynamic response of
the metabolic system), where the matrix can construct a dynamic linear approximation of
the metabolic system in the absence of dynamic data. It enables SKM to perform dynamic
analysis of metabolic systems with minimal data, providing a versatile framework for
exploring possible system dynamics [49]. (2) The mass action stoichiometric simulation
(MASS) framework defines the Jacobian matrix of a biochemical reaction network as a
product of an S matrix and a G matrix, where the S matrix is the stoichiometric matrix,
and the G matrix is composed of fluxomics and metabolomics data, and also performs
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the kinetic characterization and thermodynamic evaluation of each reaction. The MASS
framework enables the assessment of kinetic (k PERC) and dynamic (Jacobian) properties
of large metabolic systems to formulate time-scale hierarchies in biological networks, which
are the most scalable dynamics, by combining network topology and multiomics data
learning model frameworks [50]. (3) Optimization and risk analysis of complex living
entities (ORACLE) uses Monte Carlo sampling to calculate the elasticity distribution of
enzymes in uncertain states based on the MCA framework and fully considers the enzyme
state space to determine the effects of enzyme-regulatory interactions on metabolic net-
works [51]. ORACLE obtains a population of control coefficients consisting of Jacobian and
elastic parameters to accurately characterize the dynamic state of a metabolic system by
integrating network structure with fluxomics data supported by directionality based on
thermodynamic and metabolomic data. Notably, ORACLE captures the global properties
of metabolic networks, identifies control features in any given network, and determines
the probability distribution of control coefficients for different network configurations
(represented by ensemble entities) [52]. (4) Ensemble modeling (EM) develops an ensem-
ble of steady-state kinetic models based on an iterative process of determining kinetic
parameters based on reaction reversibility and enzyme distribution. EM predicts different
phenotypes with dynamic responses by constructing a set of initial models with different
kinetic behaviors and trains the models on the acquired phenotypic data to determine the
smallest kinetic model. Notably, for unknown enzyme kinetics, EM resolves the enzymatic
reaction by mass action kinetics to capture the saturation behavior and substrate-level
regulation of the reaction [53]. (5) Approximate Bayesian computation-general reaction
assembly and sampling platform (ABC-GRASP) parameterizes the data sampled in GRASP
and uses ABC to calculate the data, providing a framework for dissecting the mechanism of
enzyme-catalyzed reactions through kinetic information under uncertainty [90]. However,
in all kinetic frameworks, ABC-GRASP requires more experimental data to reveal the
effects of thermodynamic affinity, substrate saturation level, and effector concentration on
flux control and response coefficients of various enzymatic reactions [91].

Based on the five toolkits, various algorithms have been developed and applied to
the construction and analysis of kinetic models. EM for robustness analysis (EMRA) was
developed based on numerical continuation and EM to investigate the robustness of un-
natural metabolic pathways. The bifurcation robustness of the two synthetically central
metabolic pathways (nonoxidative glycolysis and the reverse glyoxylate cycle) that achieve
carbon conservation was analyzed by EMRA, weighing robustness and performance in
the regulation of metabolic flux [92]. An in silico approach to the characterization and
reduction of uncertainty in the kinetic models of genome-scale metabolic networks (iS-
CHRUNK) was developed based on the ORACLE framework and machine learning to
determine and quantify the kinetic parameters of enzymes to obtain more accurate kinetic
parameter ranges, thereby reducing the uncertainty of the model [93]. DMPy is proposed
as a computational framework to automatically search kinetic rates to generate metabo-
lite fluxes, which can analyze the effects of parameter uncertainty on model kinetics and
can be used to test how model simplification changes metabolic system properties [94].
MASS python (MASSpy) was developed as a toolkit for reconstructing, simulating, and
visualizing dynamic metabolic models. MASSpy solves data-driven problems in dynamic
modeling programs with a combination of constraint-based and kinetic modeling that
makes it possible to exploit mass action kinetics and detailed chemical mechanisms to build
dynamic models of complex biological processes [95].

Based on the above frameworks and toolkits, a kinetic model for E. coli, k-ecoli457, was
constructed by combining a genetic algorithm (GA) and EM, and the model was parame-
terized by minimizing the difference between the model predictions and the steady-state
flux distributions of the 25 mutant strains. The prediction results showed that the average
relative error of k-ecoli457 for the prediction of 129 product yields in 320 designed strains
was within 20% of the measured value, showing the accuracy of k-ecoli457 in predicting
the phenotype of E. coli under different growth conditions of genetic perturbation [96]. In
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B. subtilis, a kinetic model was developed to describe growth and sporulation as the process
of differentiation from vegetative cells to spores. The growth kinetics of spores was de-
scribed by two specific parameters: time and probability of spore formation. In addition, the
biological significance of sporulation parameters was assessed experimentally, qualitatively,
and quantitatively at the physiological level of the sporulation process in B. subtilis [97]. For
Clostridium thermocellum, the core kinetic energy model of C. thermocellum was constructed
based on EM, named k-ctherm118, and the model was parameterized by the fermentation
data of 19 metabolites of lactic acid, malic acid, and the hydrogen production pathway so
that k-ctherm118 could capture the upregulation of amino acid production and predict the
direction and extent of changes in cytosolic concentration under ethanol stress [98].

2.4. Multiconstraint GEMs

Although multiple kinetic modeling frameworks have been developed and kinetic
models of multiple strains have been constructed to reveal the regulatory mechanisms of
metabolic networks, datasets for model parameterization and computational power hinder
the development of kinetic constraint models. Therefore, comprehensive GEMs integrating
more constraints were developed.

Yang et al. proposed a Pyomo-based model framework integrating enzymatic and ther-
modynamic constraints and constructed a multiconstrained model for E. coli [54]. Moreover,
the optimal pathways for 22 metabolite products were calculated, and among the predicted
L-arginine synthesis pathways, thermodynamically unfavorable and high enzymatic cost
pathways were excluded from achieving an accurate prediction of metabolites [54].

In addition, the most classic example of multiconstraint GEMs is the ME model. The
ME model was reported for E. coli, which extended the transcription and translation pro-
cesses in cell growth metabolism based on the traditional GEM (M-model) [11]. Unlike the
M-model, the ME model is combined with the M-model and E-matrix through metabolite
and coupling constraints. The E-matrix contains 11,991 components and 13,694 biochemical
reactions, depicting gene expression and all components and modification processes of pro-
tein synthesis in E. coli [99]. In addition, the E-matrix contains all gene products necessary
to produce the active ingredient and incorporates known reaction stoichiometry, including
protein-substrate complex intermediates, metal ions, and cofactors. It also considers the
necessary modifications to stabilize RNA and proteins, as well as rRNA and tRNA pro-
cessing reactions, providing an accurate representation of operons in biology [99]. Thus,
compared to constraint-based models, ME models reconstruct the complete pathway of
transcription, translation, and metabolism, enabling the simulation of protein composition
and the calculation of the cellular cost of enzyme synthesis [100]. Importantly, the ME
model accurately decouples the three stages of substrate uptake, growth rate, and growth
yield during cell growth and metabolism, allowing for trade-offs between the rates and
yields of important products [101].

With the development of the software COBRAme [102], the construction of ME models
was quickly extended to other microorganisms. For Thermotoga maritima, the ME model
was constructed to accurately simulate changes in cell composition and gene expression,
in which experimental values of the transcriptome and proteome containing 651 genes
were positively correlated with the simulated values, and the Pearson correlation coef-
ficients were 0.54 and 0.57, respectively [103]. For Clostridium ljungdahlii, the first ME
model of Gram-positive bacteria was reported, covering the synthetic pathways of biomass
composition, revealing the influence of protein partition and medium composition on the
metabolic pathways and energy conservation of the strain and significantly broadening the
model prediction range [104]. In addition, the ME model of E. coli has undergone several
updates, such as iOL1650-ME (revealing the importance of proteomic constraints for cell
growth and secretion of by-products) [11], iJL1678-ME (revealing predictions of perturba-
tions, such as membrane crowding and enzyme efficiency impact) [100], and iJL1678b-ME
(reducing free variables and solution time to improve model prediction accuracy) [102].
To address different stress responses in the metabolic environment of cell growth, the
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ME model integrates with known response mechanisms, extending FoldME (predicting
temperature-dependent growth rate and protein abundance changes) [12], OxidizeME
(predicting changes in cellular phenotypes under oxidative stress) [13], and AcidifyME
(achieving a systemic understanding of acid stress response) [14].

Based on the ME model, Salvy et al. developed a framework for expression and ther-
modynamics flux models (ETFL), which formulated a mixed-integer linear program (MILP)
to integrate metabolites, proteins, and mRNA, enabling the simultaneous consideration of
expression, thermodynamics, and growth-related variables [55]. This framework provides
finer control and more accurate prediction of gene editing, with fewer false-negatives
for ETFL predicting gene necessity in E. coli than iJO1366 [55]. Furthermore, yETFL was
developed in S. cerevisiae, which extends the eukaryotic system (additional ribosomes and
RNA polymerase in the eukaryotic mitochondrial expression system) based on ETFL and
constrains proteins assigned to metabolism and cellular expression. Therefore, yETFL can
capture the Crabtree effect only by integrating experimental data [105,106].

3. Multiomics-Integrated GEMs

Although the multiconstraint approach in GEMs allows researchers to explore cellular
metabolic networks, there are still certain difficulties in analyzing complex regulatory
mechanisms in cells [102]. Therefore, GEMs integrating the transcriptional regulatory
network (TRN) and protein structure (PRO) were constructed to comprehensively analyze
the regulatory mechanism of the metabolic network in cells and the feedback regulation of
metabolic flux at the genome scale to understand the growth and metabolic process of cells
in detail (Figure 2).
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3.1. TRN-Integrated GEMs

Transcriptional regulation is one of the important mechanisms by which microorgan-
isms transform their metabolic flux in response to changing environments. TRNs have
been widely reported in bacteria after the standard procedure for reconstituting TRNs was
proposed [107]. TRNs usually appear as a network of mutual regulation between genes,
and global transcription factors control the expression of most genes.

Two tool platforms for the integration of TRN into GEMs based on logical Boolean
rules were developed: the toolbox for integrating genome-scale metabolism (TIGER) [56]
and FlexFlux [57]. TIGER converts generalized Boolean and multilevel rules into MILPs
and couples these rules into GEMs to address the multiple iterations required to reach
a steady-state for multilayered transcriptional regulation compared to traditional single
iterations [56]. Unlike TIGER, FlexFlux has a user-friendly graphical interface, and it applies
the regulatory steady-state analysis algorithm to constrain each component in the network
to a single steady-state [57]. Importantly, FlexFlux allows the transformation of discrete
qualitative states of regulatory networks into user-defined continuous intervals and the
different approaches to a detailed analysis of regulatory mechanisms in metabolic network
models [57].

Furthermore, the probabilistic regulation of metabolism (PROM) [58], gene expression
and metabolism integrated for network inference [108], and transcriptional regulation
FBA [59] realized the coupling of GEMs and transcriptional regulation models based on
Boolean rules and explored the effects of transcription factors on the cell phenotype in dif-
ferent environments. Based on PROM, the integrated deduced and metabolism (IDREAM)
method [109] and the optimization of regulatory and metabolic networks approach (Op-
tRAM) [60] were developed to evaluate the regulatory role of transcription factors in
metabolic networks. The strategy of optimal gene combination optimization can be inferred
to improve the yield of the target product.

For E. coli, TRN-integrated GEMs were constructed from quantitative cell growth
data [58]. Six strains with key transcriptional regulator knockout in the oxygen consump-
tion reactions were constructed according to the model prediction. The model accurately
predicted the growth rate of 14 knockout phenotypes, with a correlation coefficient of
0.95 [58]. For Mycobacterium tuberculosis, an expanded knowledge base of metabolic net-
works and regulatory mechanisms was constructed with 104 TF regulatory networks
based on ChIP-seq interactions linked to 810 GEMs [110]. The knowledge base identified
synergistic TF–drug interactions in >50% of the cases, suggesting that this model may
provide corresponding information for antituberculosis drug target identification [110]. For
S. cerevisiae, a TRN-integrated GEM was constructed involving 25,000 regulatory interac-
tions and controlling 1597 metabolic reactions [108]. The model accurately predicted the
phenotype of TF knockout under different conditions and revealed potential condition-
specific regulatory mechanisms [108]. Furthermore, Shen et al. used OptRAM to design
efficient synthetic strains of succinic acid, 2,3-butanediol, and ethanol in yeast and con-
firmed the role of key predicted genes [60]. The productivity of 2,3-butanediol increased by
61 times compared to the experimental value under the optimization strategy simulation,
and the productivity of ethanol increased by 1.8 times under the same conditions [60].

3.2. PRO-Integrated GEMs

GEM construction relies on the mining of multiomics and the analysis of cellular
metabolic processes, in which protein–protein interactions control a wide range of cellular
processes, such as signal transduction [110,111] and molecular transport [112]. There-
fore, introducing proteomic data into GEMs can provide insights into metabolic network
mechanisms in cells [113].

Brunk et al. proposed the GEM with a protein structure (GEM-PRO) framework,
which directly maps genes to transcripts, PROs, biochemical responses, network states,
and, ultimately, phenotypes [61]. The massive open-source protein database provides
>110,000 entries of biological macromolecular structure information [114]. These have



Biomolecules 2022, 12, 721 11 of 21

facilitated the development of protein ensemble models. Chang et al. integrated GEMs
with data such as amino acid sequence, PRO, functional annotation, and protein-substrate
binding sites to analyze protein stability in the cellular environment [115]. PRO-integrated
GEMs predicted the growth-limiting factor of heat resistance and revealed the metabolic
mechanism of heat resistance for E. coli [115]. GEM-PROs of E. coli and T. maritima were
reported, revealing growth limitation by protein instability through features such as tem-
perature conditions, protein folding, and substrate specificity [61]. The establishment of
this model demonstrates the utility of the intersection of systems biology and structural
biology [61].

Recently, an integrated GEM based on protein synthesis and degradation was reported
in yeast, which systematically alters the growth rate and determines its protein expression
level [116]. Importantly, this model identifies protein compartment-specific constraints
to reveal growth rate-optimized protein expression profiles, providing a framework for
understanding metabolic mechanisms in eukaryotic cells [116]. However, except for E. coli
and yeast, PRO-integrated GEMs have not been widely used, and the acquisition of accurate
PRO data may be the main limiting factor for its development.

3.3. Comprehensive Metabolic Models

Cellular metabolism is regulated at multiple levels, so a single integrated model cannot
accurately predict cellular phenotypes under various environmental conditions. Therefore,
the development of comprehensive models facilitates the exploration of cellular metabolism
at multiscale levels.

In E. coli, a comprehensive modeling framework (EcoMAC), which unifies various
biological processes and multilayer interactions, was developed to combine gene expres-
sion data from genetic and environmental perturbations, transcriptional regulation, signal
transduction and metabolic pathways, and growth measurements [117]. In this framework,
expression balance analysis was used to integrate genetic, competence, phenomenolog-
ical, and environmental constraints to predict gene expression, and a new approach to
transcription-based metabolic flux enrichment was developed to expand flux boundaries
and simultaneously calculate metabolic interaction with transcription [117]. Notably, Eco-
MAC improved the performance of the region classifier to 22%, identifying stress responses,
locomotion and taxis, and cell motility, which were the most abundant biological processes
from 500 computationally inferred interactions [117]. A knowledge base calculating the
traits of E. coli, iML1515, was reported, which contained not only transcriptome, proteome,
and metabolome data, but also unique metabolite response information and complete PRO
data [118]. The knowledge base simulated 23,617 phenotypic data with 93.4% accuracy in
gene knockouts of 16 different carbon sources and identified important metabolic differ-
ences in clinical isolates [118]. These all reflect its potential for identifying drug targets and
then using them in therapeutic and clinical applications.

For S. cerevisiae, a genome-wide tool for multiscale modeling data extraction and
representation (GEMMER) was developed. This tool aids the visualization of the physical,
regulatory, and genetic interactions between proteins and genes and integrates existing
database information to support multiscale modeling efforts [62]. Lu et al. introduced
a model ecosystem based on the Yeast8 model platform, which includes ecYeast8 (en-
zyme constraint model), panYeast8 (protein 3D structure database), and coreYeast8 (core
metabolic network model of 1011 different mutant strains of S. cerevisiae) [119]. This model
ecosystem comprehensively explores the effects of single nucleotide variation on phe-
notypic characteristics, promotes the exploration of yeast metabolism at the multiscale
level, and provides guidance for the wide application of yeast systems and synthetic
biology [119].

4. Whole-Cell Model

Although various multiscale integrated models have been established to simulate cell
growth and metabolism, many subcellular processes have not yet been incorporated, such
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as chromosome initiation and replication, protein activation and folding, and RNA decay
and modification [120]. Therefore, the development of whole-cell models becomes the
“ultimate goal” of systems biology.

4.1. Construction of Whole-Cell Models

Whole-cell models are computational models that explain the integrated function
of every gene and molecule in a cell, aiming to predict the cellular phenotype from the
genotype by representing the entire genome, the structure and concentration of each
molecular species, each molecular interaction, and the extracellular environment [121].

The construction of whole-cell models can be divided into five stages: (1) Training
data. The biological system of cells is divided into functional modules, and the data for
the cellular process of each module are collected [121]. These data can be obtained from
large databases and a massive amount of literature. Machine learning can automatically
rebuild knowledge bases for data sorting and cleaning [63,122,123]. Open-source tools
can be used for data training [64,65,124,125]. (2) Submodel integration. Each pathway
model is built according to experimental data that can be integrated according to the model
database [66,126,127], and undefined pathways or data can be built by relying on rule-based
tools, such as E-Cell [67], CellDesigner [68], and COPASI [69]. Next, the hybrid simula-
tor integrates heterogeneous submodels based on simultaneous time steps [70,128,129].
(3) Parameter estimation. After building the structure of the model, the parameters need to
be identified to match the model predictions with the experimental data. Due to the high
dimensionality and supercomputing requirements of whole-cell models, it is necessary to
simplify the model to optimize the parameters [130] and identify the parameters using
automatic differentiation, parallelized simulation engines, and distributed optimization
procedures [71]. (4) Model refinement. After building the model, massive data are needed
to iteratively evaluate the model, in which the prediction of the model phenotype is the
focus of validation, requiring multilevel validation of the model’s accuracy. It is a huge chal-
lenge to obtain massive experimental data, which can be obtained from microfluidics [131]
and high-throughput experiments [132]. (5) Visual analysis. Visualization tools are the best
means to analyze complex and multilevel whole-cell models. Many simulation tools have
been developed to explore cellular energy metabolism and analyze cell-to-cell interactions,
such as WholeCellSimDB [133], WholeCellViz [72], and E-Cell [67].

4.2. Application of Whole-Cell Models

Currently, whole-cell models have been constructed for Mycoplasma genitalium [134]
and explored in E. coli [135] and S. cerevisiae [136], providing new insights into many
previously unobserved cellular behaviors. The first whole-cell model was reported for
M. genitalium, which describes the life cycle of a single cell at the level of individual
molecules and their interactions [134]. A total of 128 wild-type cells were simulated us-
ing this model, and predictive simulations included cellular and molecular properties,
such as cell mass and growth rate, as well as the count, localization, and activity of each
molecule [134]. Results showed that the model calculation was completely consistent with
the experimental data regarding doubling time, cytochemical composition, and gene expres-
sion [134]. In addition, the model successfully predicted central carbon cycle flux, protein
synthesis, and mRNA- and protein-level distribution with high accuracy [134]. Therefore,
the model accurately predicts a wide range of observable cellular behaviors. Notably, the
establishment of this whole-cell model provides a framework for comprehensive modeling
of systems biology in other strains.

For E. coli, a large-scale mechanistic model that evaluates large heterogeneous datasets
by deeply managing the process of mapping multiple layers was constructed [135]. In-
consistencies between data and function were captured by model testing, including the
insufficient total output of ribosomes and RNA polymerases to multiply cell replication,
metabolic parameters that were inconsistent with overall growth, and the absence of essen-
tial proteins that did not affect cell growth [135]. The discovery of these inconsistent data



Biomolecules 2022, 12, 721 13 of 21

serves as a new driver to correct model-to-experiment errors, and the development of this
model framework is an important step toward whole-cell models. For S. cerevisiae, Ye et al.
explored the framework of a whole-cell model in which the functions of 1140 essential
genes were characterized and associated with five levels of phenotypes, enabling the
real-time tracking of the dynamic allocation of intracellular molecules to simulate cell
activity [136]. However, due to the simplification of the model framework and the lack of
parameters, the model does not extend to all processes in the whole cell.

5. Machine Learning in GEMs

Although multiscale GEMs have made important progress in exploring the regulation
of metabolic networks, there is still a lack of multilevel resolution schemes to systematically
reveal cellular growth and metabolic processes. Machine learning has become an indis-
pensable tool for revealing the regulatory mechanisms of metabolic networks due to its
multidimensional data processing capabilities and intelligent analysis strategies [31]. In
addition, many machine learning algorithms have been reported to be used in the construc-
tion and analysis of multi-scale GEMs. For example, DeepEC uses convolutional neural
networks to clarify the enzymatic data in the model [73]; the automatic recommendation
tool (ART) and the TeselaGen EVOLVE algorithms explore the effects of transcriptional
regulation on target products [74]; machine learning strategies of random forest (RF), elastic
network, and neural network improve proteomic utilization of models [75]. Therefore,
introducing machine learning into multi-scale GEMs can effectively expand the dimension
of the model network and improve the model quality (Figure 3).
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5.1. Improving the Model Quality

Although various automated tools have been developed to build GEMs, the crit-
ical step of filling gaps in models still needs to be managed manually. Recently, the
automated metabolic model ensemble-driven elimination of uncertainty with statistical
learning (AMMEDEUS) was developed to identify metabolic responses that significantly
affect simulation performance [76]. First, growth phenotype data were used to evaluate
biomass equations by removing individual genes from the model. K-means was performed
to distinguish the ensemble clusters of the model and train the optimized clusters to fill gaps
in the simulated growth using a random forest classifier. Finally, the process was performed
iteratively until the model could grow under all conditions. A huge dataset of 1000 given
models and outstanding computing power for machine learning make AMMEDEUS an
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important tool to replace the manual management of metabolic networks in models and
improve the quality of the automated construction of GEMs [76].

Identifying enzyme committee (EC) numbers is critical for an accurate understand-
ing of enzyme function. However, the reported EC number prediction tools contain
computational time and coverage limitations. Therefore, a deep learning-based compu-
tational framework was developed for predicting EC numbers from protein sequences
(DeepEC) [73]. DeepEC comprises three independent convolutional neural networks and
performs three different classification tasks: classifying the input protein sequences as en-
zyme proteins, modeling in a standard dataset of 387,805 protein sequences, and predicting
the third and fourth EC numbers [73]. Therefore, DeepEC can automatically predict EC
numbers in a high-throughput computing manner, providing a powerful tool for models to
precisely define the relationship between genes and proteins.

5.2. Improving the Prediction Accuracy

Improving prediction accuracy is a huge challenge for models, and combining machine
learning with GEMs can aid in solving this problem. Zhang et al. developed a method
for engineering targets identified by GEMs and machine learning-trained screening of
high-throughput biosensors to explore optimal synthetic pathways for tryptophan [137].
First, five target genes were identified in a combined library of 7776 genes by GEM, and the
promoters controlling these five genes were mined. Next, multiple training rounds were
performed on promoter expression data by combining two machine learning methods,
namely, ART and TeselaGen EVOLVE, to explore the optimal gene design scheme. Finally,
this integrated strategy increased tryptophan titer and productivity by 74% and 43%,
respectively [137]. Moreover, in E. coli K-12 MG1665, the GEM framework was restricted by
the proteomics and fluxomics of 21 strains. The model significantly improved the prediction
accuracy of quantitative proteomic data by integrating a comprehensive machine learning
strategy of RF, elastic network, and neural network, and its prediction error was reduced
by >40% [74].

For S. cerevisiae, Culley et al. proposed a multimodal learning framework based on
fluxomics and transcriptomics, which utilizes transcriptome data and GEMs to predict the
phenotypic characteristics of cells [75]. In particular, three machine learning techniques,
including support vector regression (RF) and artificial neural networks (ANNs), were used
to analyze high-dimensional omics data and explore the correlations between features to
predict cells phenotype [75]. Three machine learning methods, namely, Bayesian efficient
multiple-kernel learning (BEMKL), bagged random forest (BRF), and multimodal artificial
neural network (MMANN), were used for data integration and multi-view fusion [75].
Importantly, to address the multidimensionality of the data, (1) sparse group lasso (SGL)
was used for the resolution of biological function correlations, (2) nondominated sorting
genetic algorithm II (NSGA-II) was used for the optimization of multiple objectives, and
(3) iterative random forests (iRF) was used to analyze nonlinear interactions between
biometrics [75]. Therefore, the specific GEMs of 1.229 strains of S. cerevisiae mutants were
constructed using this framework. The introduction of mechanoflux signatures significantly
increases the range of discernible mechanobiological insights, providing analytical tools for
uncovering unknown interactions between biological domains [75].

John et al. used Bayesian inference and linlog kinetics to develop a scalable metabolic
ensemble modeling simulation capable of inferring kinetic parameters of large metabolic
models with multiomics-scale datasets. This provides a solution for a complete kinetic
description in the kinetic model [76]. In addition, multiple machine learning algorithms
were integrated with GEMs for a comprehensive exploration of the effects on cellular
metabolism, such as regularized multinomial logistic regression (RMLR) [77], primary
elementary modal analysis (PEMA) [78], and genetic algorithms (GA) [98,138].
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5.3. Exploring Metabolic Networks

GEMs are often used to explore synthetic pathways of target products, and clarifying
their metabolic network is conducive to specifying a comprehensive metabolic regulation
strategy. The introduction of machine learning is conducive to analyzing datasets from
multiple perspectives and comprehensively exploring and analyzing the distribution of
metabolic fluxes of cells. A regularization optimization framework combining PCA and a
stoichiometric flux analysis method, primary metabolic flux pattern analysis (PMFA), was
proposed, identifying the flux patterns that explain most flux variations [139]. In addition,
a sparse PMFA was developed to interpret linear combinations of reaction activities in
principle components, providing insights into the interactions between reactions [139].
Therefore, PMFA identifies six mitochondrial pathways in response to changes in oxygen
availability in a genome-wide metabolic network analysis of S. cerevisiae and explains their
metabolic regulatory mechanisms [139].

An automated procedure based on a two-stage GA was developed to automatically
generate hypotheses to explain negative interactions between genes [140]. The program
overlays genetic interactions between 185,000 metabolic gene pairs into GEMs and intro-
duces machine learning to reconcile differences between predicted and observed pheno-
types to demonstrate genetic interactions in small-molecule metabolism and establish a
GEM performance range [140]. This computational model reveals the relationship between
mutational effects and genetic interactions and proposes mechanistic hypotheses critical for
systematically optimizing the GEM structure [140]. Dynamic fundamental mode regression
discriminant analysis (dynEMR-DA) was proposed, which maps flux data into a space de-
fined by dynEM and fits the NPLS-DA model with a discriminant purpose [79]. The focus of
this model is to capture dynamic fundamental patterns with large performance differences
driven by the environment [79]. This model simplifies the dynamic model and combines
experimental data and fluxomics to identify changes in metabolic pathways driven by the
environment, which is beneficial for probing small changes in cellular metabolic networks
early in the culturing process [79]. Moreover, MFlux (http://mflux.org) was developed
based on three machine learning algorithms, support vector machines (SVM), k-nearest
neighbors (k-NN), and decision trees, to predict bacterial central metabolism. It utilizes
10,013 bacterial metabolic data and integrates machine learning with GEMs to explore the
complex relationship between influencing factors and metabolic fluxes [80]. MFlux can
reasonably predict the central metabolic flux distribution of 30 bacteria through different
culture conditions [80].

6. Conclusions and Perspectives

After two decades of development, GEMs have become an indispensable tool for
systematically exploring cell growth and metabolism. With the development of biochem-
ical research and omics technology, GEMs are not only limited to the exploration of the
metabolic network but also extended to the gene level [99], protein level [100], and tran-
scription level [58]. GEMs provide theoretical guidance for the design of high-yielding
strains, such as 3-hydroxypropionic acid [141], lactic acid [142], isobutanol [143], and pro-
vide new insights for the creation of cell factories. Based on this multiexpansion, GEMs
are widely used in industry, agriculture, and medicine [5,144,145]. However, it is still a
huge challenge to use models to fully simulate the complex metabolic network and actual
growth state in cells.

In the future, whole-cell models will eventually become the goal for building models
of different strains. Although multiple whole-cell models have emerged, the development
of truly fully functional whole-cell models remains a challenge. First, it is difficult to
clarify all cell mechanisms and obtain accurate and massive experimental data because,
compared to M. genitalium, the cellular processes of most industrial microorganisms are
extremely complex, and there are many unknown areas. Unclear data and mechanisms
make it difficult to build the model. Second, the perfect framework is a key factor in
building a model. The cell morphology and life cycle of different strains are different,

http://mflux.org
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and a single model framework is not suitable for other strains. Finally, efficient and novel
toolkits and powerful computing power are indispensable conditions for constructing and
analyzing whole-cell models. Overall, advances in assays and algorithms will facilitate the
whole-cell modeling of multiple strains, advancing microbial biological discovery and the
comprehensive design of cell factories.
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