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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the
COVID-19 disease, is a highly infectious and transmissible viral pathogen that continues to impact
human health globally. Nearly ~600 million people have been infected with SARS-CoV-2, and about
half exhibit some degree of continuing health complication, generically referred to as long COVID.
Lingering and often serious neurological problems for patients in the post-COVID-19 recovery
period include brain fog, behavioral changes, confusion, delirium, deficits in intellect, cognition
and memory issues, loss of balance and coordination, problems with vision, visual processing and
hallucinations, encephalopathy, encephalitis, neurovascular or cerebrovascular insufficiency, and/or
impaired consciousness. Depending upon the patient’s age at the onset of COVID-19 and other
factors, up to ~35% of all elderly COVID-19 patients develop a mild-to-severe encephalopathy
due to complications arising from a SARS-CoV-2-induced cytokine storm and a surge in cytokine-
mediated pro-inflammatory and immune signaling. In fact, this cytokine storm syndrome: (i) appears
to predispose aged COVID-19 patients to the development of other neurological complications,
especially those who have experienced a more serious grade of COVID-19 infection; (ii) lies along
highly interactive and pathological pathways involving SARS-CoV-2 infection that promotes the
parallel development and/or intensification of progressive and often lethal neurological conditions,
and (iii) is strongly associated with the symptomology, onset, and development of human prion
disease (PrD) and other insidious and incurable neurological syndromes. This commentary paper will
evaluate some recent peer-reviewed studies in this intriguing area of human SARS-CoV-2-associated
neuropathology and will assess how chronic, viral-mediated changes to the brain and CNS contribute
to cognitive decline in PrD and other progressive, age-related neurodegenerative disorders.

Keywords: angiotensin-converting enzyme 2 receptor (ACE2R); Creutzfeldt–Jakob disease (CJD);
cytokine storm; microRNA (miRNA); miRNA-146a; miRNA-155; prion disease (PrD); SARS-CoV-2

1. Introduction

Viral and other microbial infections of the human nervous tissues have long been
recognized for their ability to initiate, propagate, or intensify the same neuropathological,
inflammatory, and/or degenerative changes that are observed over the entire continuum
of progressive, neurodegenerative brain diseases, which include Creutzfeldt–Jakob dis-
ease (CJD) and other PrDs [1–9]. Multiple independent and peer-reviewed published
reports indicate that both DNA and RNA viruses, such as the human double-stranded
DNA (dsDNA) Herpes simplex type 1 and 2 (HSV-1, HSV-2), the human cytomegalovirus
(HMCV), the Epstein–Barr virus (EBV), ssRNA viruses such as the hepatitis C virus (HCV;
Herpesviridae), human influenza A viruses (H1N1/H3N2; Orthomyxoviridae), Zika virus
(ZIKVs; Flaviviridae), MERS-CoV (Coronaviridae), severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2; Coronaviridae), and a remarkably large number of bacteria from
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the genera Aggregatibacter, Bacteroides, Borrelia, Chlamydia, Eikenella, Fusobacterium, Porphy-
romonas, Prevo-tella, Tannerella, and Treponema, as well as several other fungi (Aspergillus;
Candida) or eukaryotic parasites (e.g., Toxicara; Toxoplasma) have been associated with an
acceleration of age-dependent inflammatory neurodegeneration [2–14]. More importantly,
all microbial infections of the brain and CNS contribute to the development of a microbial-
and/or viral-induced cytokine storm, which is associated with a progressive inflammatory
degeneration of brain cells and tissues. The continuing progression of this cytokine storm
is often accompanied by the appearance of amyloid-beta (Aβ) peptides, Aβ amyloid fibers,
prion amyloids, related amyloidogenic, lipoprotein or Aβ peptide aggregation processes,
the appearance of twisted neurofilamentous structures, including neurofibrillary tangles,
pro-inflammatory biomarkers, gliosis of microglial cells, the formation of vacuoles and
spongiform change within brain cells, neuronal cell loss, or any combination of these
pathological biomarkers associated with a diverse range of human neurological disorders
and phenotypic states [4,7,8,10–20].

The viral infection of human host cells often involves the direct recognition, binding,
and interaction of the virus particle with a naturally occurring host cell surface receptor
that protrudes from cholesterol-enriched lipid raft domains in the viral lipoprotein enve-
lope (see Section 2. SARS-CoV-2—Structure, Function and Neuroinvasion) [21–28]. In
the case of COVID-19, the SARS-CoV-2 ‘S1’ spike protein interacts specifically with the
angiotensin-converting enzyme 2 receptor (ACE2R; EC 3.4.17.23; https://www.genecards.
org/cgi-bin/carddisp.pl?gene=ACE2; last accessed on 30 August 2022), which is located
on multiple host cell surfaces. The ACE2R: (i) is a ubiquitously expressed zinc-containing
metallo-carboxypeptidase surface receptor glycoprotein of the human renin-angiotensin
system (RAS) that has a natural homeostatic role in the regulation of blood pressure; (ii) is
abundantly expressed in multiple endothelial and epithelial cells of the human respiratory
tract; and (iii) has been identified on the outer surface of every human host cell type
so far analyzed, except for erythrocytes [6,25,29–31]. With regard to neuroinvasion and
neurotropism, the ACE2R has been abundantly detected in every cell type of the brain
and central nervous system (CNS) that has been analyzed, in the neurovasculature, within
the choroid plexus as well as along multiple visual processing and neuro-ophthalmic
signaling tracts extending from the human retina into the primary visual areas of the
occipital lobe [6,26,29–32]. The highest ACE2R densities in the human CNS have been
localized to the brain’s medullary centers that include respiratory neurons of the medulla
oblongata and pons in the brainstem, and this may partly explain the vulnerability of many
SARS-CoV-2-infected patients to severe respiratory disturbances [6,30,33]. The remarkable
ubiquity of the ACE2R indicates that the SARS-CoV-2 virus has an enormous potential to
infect, damage, and/or destroy virtually every cell, tissue type, and organ system within
the human host and to induce a serious and highly interactive multi-organ system failure,
especially over the long term [34–37].

2. SARS-CoV-2: Structure, Function, and Neuroinvasion

The SARS-CoV-2 virus consists of a ~100 nm diameter virion particle containing an
unusually large, positive-sense single-stranded RNA (ssRNA) genome of about 29,903 nu-
cleotides packaged into a nucleocapsid core within a compact spherical lipoprotein enve-
lope [27,38–42] (National Center for Biological Information (NCBI) GenBank Accession
No. NC_045512.2; last accessed on 30 August 2022). Decorating the surface of this SARS-
CoV-2 lipoprotein envelope are hundreds of homotrimeric, ~681-amino-acid, ~78.3 kDa
‘S1’ spike glycoproteins that play essential roles in the molecular mechanism of a success-
ful SARS-CoV-2 invasion [38,42,43]. These include the initial recognition of the ACE2R
receptor on susceptible host cells, SARS-CoV-2 attachment, as well as fusion with and
entry into host cells to initiate SARS-CoV-2 infection [24,38,43]. The ‘S1’ spike protein of
SARS-CoV-2 is an absolute requirement for ACE2R recognition and viral entry, and it is
the main antigen used as a target for COVID-19 vaccines [25,29,44]. Vaccine-mediated
blocking of ‘S1’ spike protein-ACE2R recognition in host cells fully arrests the initiation of
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SARS-CoV-2 infection [45,46]. Interestingly, the amino acid sequence of the SARS-CoV-2
viral ‘S1’ spike protein shares a number of ‘prion-like’ attributes and properties that appear
to contribute to various aspects of the PrD neuropathology, neurophysiology, and the
pathomechanism of prion-type infection and neurodegeneration. These attributes include
the ability to bind various natural glycosoaminoglycans such as heparin, heparin binding
proteins (HBP), and disease-associated molecules such as amyloid-beta (Aβ) peptides and
prion proteins; the ‘S1’ spike protein therefore acts as ‘seeding centers’ for the formation
of disease-characteristic intracellular inclusions in the brain and CNS. These pathological
lesions support pro-inflammatory neurodegeneration, neuronal cell atrophy, death, and/or
PrD-type change (see Section 4. The SARS-CoV-2 and PrD—Overlapping Pathological
Neurobiology) [3,43,44,47–49].

3. Prion Disease (PrD) and Prion Neurobiology

PrDs of humans, also known as transmissible spongiform encephalopathies or TSEs,
represent an expanding spectrum of progressive and ultimately lethal neurodegenerative
disorders that globally affect about one person out of every one million per year [17,20,49].
About 85–90% of all PrDs manifest as the Creutzfeldt–Jakob disease (CJD) or a variant of the
CJD (vCJD), with the remainder consisting mainly of the Gerstmann–Straussler–Scheinker
(GSS) syndrome, fatal familial insomnia (FFI), variably protease-sensitive prionopathy
(vPSPr), and kuru (https://www.cdc.gov/prions/index.html; https://www.niaid.nih.
gov/diseases-conditions/prion-research; last accessed on 30 August 2022). All known
PrDs are progressive, transmissible, have no known effective treatment or cure, are always
fatal, and are characterized by the insidious onset of neurological deficits, which are
caused in part by the accumulation and aggregation of a misfolded prion protein ‘scrapie’
isoform (PrPsc) derived from a native cellular prion protein (PrPc). The rapid development
of a progressive systemic inflammation and protein aggregation is very similar in its
presentation to Alzheimer’s disease (AD) and other protein-mis-folding disorders such as
the tauopathies [20,21,41–43,50].

Because of their unusual and atypical infective nature, PrDs and prion neurobiol-
ogy have been intensively studied in considerable detail [19,20,47–59]. The brain- and
CNS-abundant cellular prion sialoglycoprotein PrPc monomer consists of a constitutively
expressed ~209-amino-acid, ~200 kDa glycosylated polypeptide containing a predominant
internal α-helical region. This structural region appears to be involved in neuritogen-
esis, neuronal homeostasis, cell signaling, cell–cell adhesion and interaction, and inter-
cellular communication, and it may provide a protective role against multiple forms of
induced physiological stress [19,20,51]. The misfolded isoform of PrPc, known as PrPsc,
is enriched in pathological β-pleated sheet structure and self-associates into protease-
resistant, pro-inflammatory aggregates that are insoluble in most detergent and chaotropic
agents [11,19,47]. The molecular mechanisms of PrPsc neurotoxicity that drive the initiation,
development, and progression of PrD appear to be dependent on the unnatural folding
associated with the PrPc-PrPsc transition and are related to prion aggregation, increased
oxidative stress, and the chronic inflammation linked to PrD initiation, maintenance, and
progression [19,20,52]. Typically, activated microglia accumulate around PrPsc aggregates
and release cytokines such as IL-1β that play important roles in the inflammatory patho-
genesis of PrD and the cytokine storm syndrome [19,20,47,51,59]. PrDs such as CJD appear
to be initiated and driven by the accumulation of abnormally folded, protease-resistant
isoforms of PrPsc, which leads to neuropathologic spongiform changes that coincide with
neuroinflammation, microglial activation, and an irreversible and fatal pro-inflammatory
neurodegeneration [52–59].

4. SARS-CoV-2 and PrD: Overlapping Neuropathology

It is of a rather serious current concern that in association with SARS-CoV-2 infec-
tion, there are emerging case reports of COVID-19 patients developing PrD and/or are
experiencing an acceleration or exacerbation in the development or propagation of this
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pre-existing, fatal, preclinical and/or already-established, age-dependent neurodegenera-
tive disorder [48,53,56]. A number of interesting and fascinating associations have recently
been made between SARS-CoV-2 infection, prion neurobiology, and PrD: (i) both SARS-
CoV-2-mediated neurological complications and PrDs represent variably transmissible,
pro-inflammatory diseases of the brain and CNS, involve a significant disruption in cy-
tokine signaling patterns that is sometimes referred to as the cytokine storm syndrome,
and are neurodegenerative, consistently neuro-disruptive, and/or lethal neurological dis-
orders [58,59]; (ii) several recent reports link multiple aspects of the ‘S1’ spike protein
structure and function, immunology, and epidemiology with PrD, prion-like spread, and
prion neurobiology [44,48,60,61]; (iii) ‘S1’ spike proteins contain self-associating ‘prion-like’
domains [43,44,48]; (iv) ‘S1’ spike proteins are either bound to the SARS-CoV-2 lipoprotein
envelope or are in free monomeric form and these domains also appear to play a role
in systemic amyloidogenesis in aggregate ‘seeding’ and/or ‘spreading’, which in turn
supports systemic inflammation and the formation of pathogenic pro-inflammatory le-
sions in the brain and CNS that sustain pro-inflammatory neurodegeneration, neuronal
cell death, and/or PrD-type change [3,44,48,59,60]; (v) the SARS-CoV-2 ‘S1’ spike pro-
tein binds to aggregation-prone glycosaminoglycan heparin and heparin binding protein
(HBP), amyloid-beta (Aβ) peptides, α-synuclein, tau and prion proteins, and TDP-43 (TAR
DNA binding protein 43, critical for the regulation of the viral gene expression), thus
facilitating and/or accelerating the coalescence and aggregation of multiple pathological
amyloidogenic proteins in nervous tissues, all of which appear to further contribute to
the protein-mis-folding characteristic of PrD infection [3,20,22,49,60]; and (vi) variations
in the prion-like domains of the ‘S1’ spike protein differ among SARS-CoV-2 variants,
thus modulating ‘S1’ affinity for the ACE2R and hence the success of SARS-CoV-2 infec-
tivity [3,6,9,43,44]. Targeting the interaction of the SARS-CoV-2 ‘S1’ spike protein with
this series of brain-enriched pathological and pro-inflammatory proteins may be a useful
therapeutic strategy to reduce aggregation processes, with the aim of limiting progression
of the neurodegenerative disease process in COVID-19 patients [11,23,60].

5. SARS-CoV-2 and Prion Disease (PrD): Case Reports

Multiple case reports of COVID-19 patients developing PrD and/or presenting with
exacerbated neuropathological consequences of PrD as a result of SARS-CoV-2 infection
have recently appeared in the peer-reviewed scientific literature. Young et al. described a
~60-year-old male patient whose initial indications for CJD occurred in tandem with a fully
symptomatic onset of COVID-19, and who deceased 2 months after the first symptom onset.
A brain MRI and a comprehensive biofluid analysis revealed an abnormality in inflam-
matory biomarkers and a SARS-CoV-2-mediated hastening of CJD pathogenesis, which
suggest an association between host immune responses to SARS-CoV-2 and an acceleration
of the pro-inflammatory neurodegeneration characteristic of idiopathic CJD [53]. Kuvandik
et al. described an ~82-year-old female patient whose CJD course was significantly am-
plified after SARS-CoV-2 infection and COVID-19 vaccination. It was concluded that the
role of viral-mediated inflammation and immunity-related conditions for CJD played a
significant role in PrD proliferation [55]. Ciolac et al. described SARS-CoV-2 infection in
a ~60-year-old female CJD patient who presented with cognitive impairment, gait ataxia,
temporo-spatial disorientation, bradykinesia, and multifocal myoclonus and later devel-
oped severe COVID-19. The conclusions from this study were that SARS-CoV-2-associated
systemic immune responses aggravated the clinical course in patients with CJD, and that
systemic inflammation and the host immune responses associated with SARS-CoV-2 ap-
peared to accelerate the rate of neurodegeneration in CJD patients. These studies provide
further evidence of the age-dependent neurological effects of SARS-CoV-2 that predisposes
vulnerable individuals to an increased progression of CJD [56]. Bernardini et al. recently
described a previously healthy ~40-year-old male COVID-19 patient who developed fatal
CJD two months after the COVID-19 onset while presenting symptoms of ataxia, diffuse
myoclonus, dizziness and loss of coordination, hallucinations and visuospatial deficits.
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Again, this case study concluded that the brief interval between SARS-CoV-2 respiratory
symptoms and CJD neurological symptoms was indicative of a causal relationship between
a COVID-mediated inflammatory state, protein mis-folding, and the subsequent aggrega-
tion of PrPc into PrPsc, again emphasizing the role of SARS-CoV-2 as an significant ‘viral
initiator of progressive neurodegenerative disease’ [57]. Olivo et al. described the case of
a ~70-year-old male with seizures and a rapidly evolving CJD during an acquired SARS-
CoV-2 co-infection, again supporting the notion that CJD during SARS-CoV-2 infection is
characterized by an accelerated progression of PrD [58,59]. Taken together, the concept that
SARS-CoV-2 worsens, aggravates, or intensifies CJD is deemed urgent because COVID-19
infection foreshadows a disproportionately worse outcome in the elderly who are already
at risk of PrD and other forms of age-related neurodegenerative disease [48,53,57–62].
These evolving clinically and molecularly evidenced associations between SARS-CoV-2
and CJD underscore an overlapping pathological link between COVID-19 and PrD, both
involving systemic inflammation, progressive lethal neurodegeneration, and the potential
acceleration of PrD-like protein spread, especially in elderly persons who already possess
neurological symptoms. Severe neuroinflammatory reactions and aging are two shared
links between neurodegenerative diseases and COVID-19; therefore, COVID-19 patients
that have a very high viral load may be at the highest risk of developing long-term adverse
neurological consequences [13,48,63,64].

6. SARS-CoV-2 Infection, PrD, and a Pathological microRNA (miRNA) Signature

Of considerable interest is the effect of SARS-CoV-2 invasion on the molecular genetics
and gene expression patterns of the newly infected host, and this is reflected in part by the
consequences of SARS-CoV-2 infection on the abundance, speciation, and complexity of a
small family of brain-enriched pathology-associated microRNAs (miRNAs). Very recent
evidence suggests that dietary polyphenolic compounds may protect against SARS-CoV-2
invasion by modulating the patterns of expression of host cell miRNA [13,64,65]. These
~22-nucleotide single-stranded RNAs (ssRNAs) include several inducible pro-inflammatory
miRNAs such as miRNA-146a-5p, miRNA-155-5p, and several others [13,66–70]. A con-
siderable amount of work has focused on the brain-enriched pathogenic miRNA-146a-5p,
which was found to be significantly up-regulated in at least 12 categories of PrD in rodents,
ruminants, and humans, and after infection by at least 18 neurotropic DNA and/or RNA
viruses, including SARS-CoV-2, which infect the human brain, the CNS as well as the
immune, lymphatic, hepatic, respiratory, and/or circulatory systems [68–71]. There is
additional evidence that the ACE2R recognized by the SARS-CoV-2 ‘S1’ spike protein is
up-regulated by miRNA-146a, and that the many types of PrD and viral infections that
induce miRNA-146a-5p and/or miRNA-155 are all associated with advancing systemic
inflammation and specific neurological disease symptoms and/or syndromes that are
progressive, age-related, insidious, incapacitating, and invariably fatal [13,15,70]. Despite
the absence of detectable nucleic acids in prions, both DNA- and RNA-containing viruses,
along with prions, significantly and progressively induce miRNA-146a and/or miRNA-155
in the infected host, but whether this represents a reaction to the host’s innate immune
response or adaptive immunity, or if it represents a mechanism that enables the invading
prion or virus to achieve a successful infection is not well-understood [13,19,20,42,69–71].
It is clear, however, that miRNA-146a and/or miRNA-155 signaling underlies several com-
mon pathological molecular genetic mechanisms in each of these progressive age-related
neurological disorders, and for which there are currently no effective clinical treatments or
cures.

7. Summary

Since the first cases of SARS-CoV-2 viral infection were reported in Wuhan, Hubei
Province, China in early 2020, multiple clinical and epidemiological investigations have
yielded complex details concerning the etiopathology and the extraordinary neurological
sequelae over the post-COVID-19 period. While the long-term neurological consequences
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of SARS-CoV-2 invasion continue to be documented, the very long-term consequences of
SARS-CoV-2 (greater than 2.6 years post-infection) remain unknown. It appears that el-
derly COVID-19 patients with pre-existing neurological conditions constitute an extremely
high-risk category prone to more severe complications of SARS-CoV-2 infection and long
COVID. The pathological and neurodegenerative pathways utilized by both SARS-CoV-2
and PrD have been shown to overlap, and this is of increasing concern. There is also the
evolving realization that SARS-CoV-2 accelerates and/or intensifies the pathomechanism
of PrD and other types of progressive pro-inflammatory neurodegeneration, including AD.
This is coupled with the growing recognition of significant cytokine-facilitated immune
and pro-inflammatory responses to systemic SARS-CoV-2 invasion and a general viral-
mediated hastening of the neurodegenerative disease process [53,54,59,63,72–74]. Cytokine-
directed therapies may have some benefit in the clinical management of either COVID-19 or
PrD [59,63]. Future investigation of the expanding global incidence of COVID-19 variants
and the increased occurrence of SARS-CoV-2-modulated neurodegenerative disorders:
(i) should further unravel the complex neurobiology and inflammatory neuropathology of
these pathologically interrelated and overlapping neurological syndromes; and (ii) will ad-
vance our mechanistic understanding of COVID-19 onset, epidemiology, and propagation,
with the long-term goal of expanding and improving our therapeutic treatment strategies
for a neurological healthcare crisis that represents one of the worst pandemics in recorded
human history.
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70. Roganović, J.R. microRNA-146a and -155, upregulated by periodontitis and type 2 diabetes in oral fluids, are predicted to regulate
SARS-CoV-2 oral receptor genes. J. Periodontol. 2021, 92, 35–43. [CrossRef]

71. Pinacchio, C.; Scordio, M.; Santinelli, L.; Frasca, F.; Sorrentino, L.; Bitossi, C.; Oliveto, G.; Viscido, A.; Ceci, F.M.; Celani, L.;
et al. Analysis of serum microRNAs and rs2910164 GC single-nucleotide polymorphism of miRNA-146a in COVID-19 patients.
J. Immunoass. Immunochem. 2022, 43, 347–364. [CrossRef] [PubMed]

72. Hascup, E.R.; Hascup, K.N. Does SARS-CoV-2 infection cause chronic neurological complications? GeroScience 2020, 42, 1083–1087.
[CrossRef] [PubMed]

73. Hu, C.; Chen, C.; Dong, X.-P. Impact of COVID-19 Pandemic on Patients With Neurodegenerative Diseases. Front. Aging Neurosci.
2021, 13, 664965. [CrossRef]

74. Tayyebi, G.; Malakouti, S.K.; Shariati, B.; Kamalzadeh, L. COVID-19-associated encephalitis or Creutzfeldt–Jakob disease: A case
report. Neurodegener. Dis. Manag. 2022, 12, 29–34. [CrossRef] [PubMed]

http://doi.org/10.3390/biomedicines9111730
http://doi.org/10.1080/19336896.2022.2095185
http://doi.org/10.1016/j.ijdevneu.2004.07.017
http://doi.org/10.1007/s13760-022-02023-x
http://doi.org/10.3390/cells10081993
http://doi.org/10.1016/j.jbc.2021.101507
http://www.ncbi.nlm.nih.gov/pubmed/34929169
http://doi.org/10.1007/s00239-022-10054-4
http://doi.org/10.1084/jem.20202135
http://www.ncbi.nlm.nih.gov/pubmed/33433624
http://doi.org/10.7150/ijms.76168
http://doi.org/10.3389/fphar.2021.765553
http://doi.org/10.3389/fneur.2014.00181
http://doi.org/10.3389/fnins.2020.585432
http://doi.org/10.3389/fmicb.2015.00043
http://doi.org/10.3389/fneur.2020.00462
http://www.ncbi.nlm.nih.gov/pubmed/32670176
http://doi.org/10.1002/JPER.20-0623
http://doi.org/10.1080/15321819.2022.2035394
http://www.ncbi.nlm.nih.gov/pubmed/35227165
http://doi.org/10.1007/s11357-020-00207-y
http://www.ncbi.nlm.nih.gov/pubmed/32451846
http://doi.org/10.3389/fnagi.2021.664965
http://doi.org/10.2217/nmt-2021-0025
http://www.ncbi.nlm.nih.gov/pubmed/34854312

	Introduction 
	SARS-CoV-2: Structure, Function, and Neuroinvasion 
	Prion Disease (PrD) and Prion Neurobiology 
	SARS-CoV-2 and PrD: Overlapping Neuropathology 
	SARS-CoV-2 and Prion Disease (PrD): Case Reports 
	SARS-CoV-2 Infection, PrD, and a Pathological microRNA (miRNA) Signature 
	Summary 
	References

