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Abstract: Clinical sequelae and symptoms for a considerable number of COVID-19 patients can linger
for months beyond the acute stage of SARS-CoV-2 infection, “long COVID”. Among the long-term
consequences of SARS-CoV-2 infection, cognitive issues (especially memory loss or “brain fog”),
chronic fatigue, myalgia, and muscular weakness resembling myalgic encephalomyelitis/chronic fa-
tigue syndrome (ME/CFS) are of importance. Melatonin may be particularly effective at reducing the
signs and symptoms of SARS-CoV-2 infection due to its functions as an antioxidant, anti-inflammatory,
and immuno-modulatory agent. Melatonin is also a chronobiotic medication effective in treating
delirium and restoring the circadian imbalance seen in COVID patients in the intensive care unit.
Additionally, as a cytoprotector, melatonin aids in the prevention of several COVID-19 comorbidities,
including diabetes, metabolic syndrome, and ischemic and non-ischemic cardiovascular diseases.
This narrative review discusses the application of melatonin as a neuroprotective agent to control cog-
nitive deterioration (“brain fog”) and pain in the ME/CFS syndrome-like documented in long COVID.
Further studies on the therapeutic use of melatonin in the neurological sequelae of SARS-CoV-2
infection are warranted.

Keywords: brain fog; COVID-19; fibromyalgia; long COVID; melatonin; minimal cognitive impairment;
myalgic encephalomyelitis/chronic fatigue syndrome; SARS-CoV-2 virus

1. Introduction

The COVID-19 pandemic’s repercussions are catastrophic. Over 619 million persons
worldwide have had proven infection with the SARS-CoV-2 virus as of 5 October 2022, and
over 6.5 million have died [1]. Although the SARS-CoV-2 virus has a higher preference for
lung tissue, clinical and experimental research have also revealed its strong affinity for the
central nervous system [2]. Associated with SARS-CoV-2 infection, neurological symptoms
such as memory loss, lack of concentration, myalgia, anosmia, cephalea, and dizziness are
commonly reported in COVID-19 patients, as well as isolated cases of epileptic seizures,
encephalitis, stroke, and rhabdomyolysis [3]. The long-term consequences of SARS-CoV-2
infection include cognitive issues (especially memory loss or “brain fog”), chronic fatigue,
myalgia, muscular weakness, persistent fever, and shortness of breath on exertion [3].

Breakthrough SARS-CoV-2 infection may occur in vaccinated individuals. A study
including 33,940 individuals with breakthrough SARS-CoV-2 infection and followed for up
to 6 months after infection indicated a higher risk of death and incident post-acute sequelae,
including deteriorated mental health, musculoskeletal, and neurologic disorders [4–7]. As
compared to people with SARS-CoV-2 infection who had not previously been vaccinated,
patients with breakthrough SARS-CoV-2 infection had decreased odds of mortality and
post-acute incident sequelae [4–7]. Hence, immunization before infection provides only
limited protection in the post-acute phase of COVID-19 illness, and a single mitigation
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technique may not diminish the long-term health implications of SARS-CoV-2 infection
optimally [4–7].

In a 2-year retrospective cohort analysis of neurological and mental sequelae,
1,284,437 patients with SARS-CoV-2 infection were matched with controls who had a
different respiratory condition [8]. While the increased incidence of mood and anxiety
disorders was transient, the increased risk of cognitive deficit, dementia, psychotic disorder,
or seizures persisted throughout. Neurological and psychiatric outcomes were similar
during the delta and omicron waves suggesting that pressure on the healthcare system
might continue even with variants that are less severe in other aspects [8]. Overall, the
findings highlight the need to optimize options other than vaccinations for the primary
prevention of SARS-CoV-2 infection.

Melatonin, an effective chronobiotic/cytoprotective chemical, has been recommended
as a therapy since the onset of the COVID-19 pandemic [9–13]. The justification for
its use not only derives from its multiple beneficial effects in experimental and clin-
ical studies related to SARS-CoV-2 infection but is also due to its high-security pro-
file. Melatonin (a) impairs SARS-CoV-2 infection; (b) is an effective antioxidant/anti-
inflammatory/immunoregulatory compound; (c) restores and maintains circadian rhyth-
micity; (d) is effective to treat COVID-19 comorbidities such as metabolic syndrome, dia-
betes mellitus, and cardiovascular diseases; (e) is an effective neuroprotector in SARS-CoV-2
patients; (f) potentiates anti- SARS-CoV-2 vaccines (see Ref. [14]). Recently Jarrot et al.
put forth the hypothesis that melatonin, an agent that activates the intracellular transcrip-
tion factor nuclear factor erythroid-derived 2-like 2, enhancing expression of glutathione-
synthesizing enzymes, should be considered in the treatment of long COVID [15]. In
this review, we discuss the potential use of melatonin to treat brain fog and myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS) in long COVID.

2. Brain Fog in Long COVID

The term “brain fog”, also known as cognitive dysfunction, comprises deficits in
attention, short-term and working memory, verbal and non-verbal learning, mathematic
problem-solving, and processing speed, focusing on a specific topic [16]. Brain fog is not
always related to an underlying condition and may be caused by chronic stress, poor sleep,
hormonal changes such as pregnancy or menopause, poor nutrition, chemotherapy, or viral
infection, remarkably SARS-CoV-2 [17].

According to research conducted by Northwestern University’s Neuro-COVID-19
Clinic, brain fog was the most common (>6 weeks) neurologic symptom among patients
(81%) who did not have a history of acute sickness, hypoxia, or respiratory compromise [18].
Fatigue was the most frequently reported complaint (58%) in a systematic review assessing
the prevalence of symptoms in long COVID [19].

A systematic review assessing the prevalence of symptoms of long COVID has been
published [19]. For chronic trouble concentrating and attention problems, the effects on
cognition were found to be 31% and 27%, respectively. Short-term memory (32%) and
attention (27%) abnormalities were also seen in patients with brain fog. Neuroinflamma-
tion resulting in hypometabolic lesions has been hypothesized as one cause of chronic
dysfunction following moderate COVID disease [20].

A significant cognitive deficit was detected in a study on 84,285 individuals with
biologically confirmed COVID-19 infection who completed a Great British Intelligence
Test [21]. The sample included people who had recovered, many of them no longer
reporting symptoms and the magnitude of the detected deficiencies was similar to the
average 10-year loss in performance observed worldwide at ages 20–70 years [21]. Brain
fog, or disorientation, forgetfulness, inability to focus, exhaustion, and poor mental energy,
is, therefore, an important developing consequence of COVID-19 infection. Essentially,
brain fog can be considered an example of minimal cognitive impairment (MCI) [22].
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3. Magic Encephalomyelitis/Chronic Fatigue Syndrome in Long COVID

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multi-systemic
condition with devastating and often lifelong symptoms characterized by persistent fatigue,
intolerance to physical exercise, cognitive problems, sleep disruption, and underlying auto-
nomic dysfunction [23]. ME/CFS is associated with an oxidative and nitrosative stress state,
mitochondrial dysfunction together with dysregulated bioenergetics condition, a proin-
flammatory state, and disruption of the gut mucosal barrier [24]. Disruption of circadian
rhythmicity occurs in ME/CFS as indicated by the disrupted rhythms in sleep, activity, and
cognition with concomitant insomnia, energy disturbances, cognition problems, depression,
and autonomic dysfunction [25]. A key role of disrupted circadian transforming growth
factor-β (TGF-β) signaling in ME/CFS was proposed in this respect [25].

Initially, post-COVID-19 follow-up studies included patients with the most severe
infection and who spent, on average, 2 weeks in the intensive care unit [26]. These follow-
up data documented the occurrence of severe consequences in many patients. One of these
studies reported that 45.2% of COVID-19 patients met specific ME/CFS criteria 6 months
later [27]. Post-exertional malaise, one of the major ME/CFS symptoms, was observed
in 56.8% of a sample of 3762 COVID-19 patients across 56 countries [28]. Thus, the post-
COVID-19 condition is presently recognized as having a considerable overlap of symptoms
with ME/CFS.

4. Mechanism of Action of Melatonin Relevant to Long COVID Treatment

Melatonin is an ancient molecule. This methoxyindole is found in all forms of life
that express aerobic respiration; melatonin’s primary function is cytoprotection, displaying
anti-inflammatory, antioxidant, and immunostimulant effects [29,30] which together en-
dow it with highly potent neuroprotective properties [31]. The anti-inflammatory action of
melatonin involves a variety of mechanisms [32]. One of them is Sirtuin-1 induction, which
decreases the polarization of macrophages toward a proinflammatory profile [33]. Sup-
pression of nuclear factor (NF)-κB activation [34,35] and stimulation of nuclear erythroid
2-related factor 2 are also detected after exposure to melatonin [36]. Melatonin reduces
proinflammatory cytokines (tumor necrosis (TN)F-α, interleukin (IL)-1β, IL-6, and IL-8)
and increases anti-inflammatory cytokines such as IL-10 [33,37].

The antioxidant and scavenging effects of melatonin on free radicals in both the cy-
toplasm and the cell nucleus are mainly independent of receptors [38]. To fulfill this,
melatonin not only acts as a free radical scavenger but also gives rise to a cascade of
molecules with high antioxidant activity. It also acts as an indirect antioxidant, enhancing
the production of antioxidant enzymes while inhibiting that of prooxidant enzymes [39].
In addition, some antiapoptotic and cytoprotective effects are seen under ischemia, pre-
sumably due to melatonin’s stabilizing activity of the mitochondrial membrane [40].

A distinguishing hallmark of viral infection is the shift of cellular metabolism from the
oxidative phosphorylation pattern taking place in the mitochondria to glycolysis occurring
mainly in the cytoplasm (Warburg’s effect) [41]. The main phenomenon responsible for the
change in the oxidation of mitochondrial glucose is the positive regulation of cytoplasmic
pyruvate, which is often accompanied by the increase in the hypoxia-inducible factor-1α
(HIF-1α), and of NF-κB and other transcription factors promoting inflammation [42]. Be-
cause of this, M2 anti-inflammatory macrophages in COVID-19 patients are converted
into M1 proinflammatory cells, therefore triggering a cytokine storm. Thus, melatonin
can reduce the damage resulting from sepsis mediated by COVID-19 through different
mechanisms, i.e., by reversing the Warburg-type metabolism and transforming proinflam-
matory M1 macrophages into anti-inflammatory M2 macrophages [43], by mitigating the
production of HIF-1α [44], by suppressing NF-κB [45], and by inhibiting NLRP3 inflamma-
some [46]. Circulating secreted phospholipase-A2 (Group IIA) correlated with the severity
of COVID-19 disease [47]; hence, cyclooxygenase inhibition by melatonin [48,49] is another
potential mechanism by which the methoxyindole may inhibit viral infection.
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As shown by several meta-analyses, the chronobiotic/hypnotic properties of melatonin
are useful in patients with sleep disorders by synchronizing the circadian apparatus,
decreasing sleep onset latency, and increasing total sleep time [50–52]. A significant role
of melatonin treatment in adult insomnia was the conclusion of several recent expert
consensus reports [53–56]. In addition, melatonin reduces the need for sedation in ICU
patients [57–62]. These chronobiotic/hypnotic effects of melatonin are obtained at a daily
dose range of 2–10 mg [63].

It may well be true that higher doses of melatonin would be more beneficial in the
COVID pandemic condition. For example, in a retrospective cross-sectional study of a
closed population of 110 old adult patients treated with a mean melatonin daily dose of
46 mg for at least 12 months prior to the availability of COVID-19 vaccination, there was
no death in the face of a lethality rate of 10.5% in the local population of elders suffering
acute COVID-19 disease [64]. Indeed, animal studies support the use of high doses of
melatonin to prevent infection in murine COVID-19 models [65]. From several animal
studies, the human equivalent dose HED) of melatonin was calculated by allometry for a
75 kg adult [46]. Allometry is commonly employed for determining initial doses used in
Phase I human clinical drug trials [66].

(a) Melatonin and brain fog

As stated above, the deficits in attention, memory, verbal processing, and problem-
solving seen in patients complaining of brain fog resemble MCI, the initial phase of
Alzheimer’s disease (AD) [22]. The underlying neuroinflammation in this condition
(Figure 1) could be effectively controlled by melatonin, as shown by studies in cell lines
linked to AD, in which melatonin reverses abnormalities in the Wnt/β-catenin, insulin,
and Notch signaling pathways, proteostasis disruption and abnormal autophagic integrity
(reviewed in Refs. [67–71]).
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In transgenic models of AD, melatonin regulates amyloid-β (Aβ) metabolism begin-
ning with the initial phases of the pathological process (see Ref. [31]). From these studies,
the HED of melatonin for a 75 kg adult was 2 to 3 orders of magnitude greater than those
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usually employed in humans. The exact mechanism by which melatonin inhibits the pro-
duction of Aβ is unknown. Via structural melatonin features independent of its antioxidant
capabilities [72], melatonin interacts with Aβ40 and Aβ42, thus inhibiting progressive
-sheet and/or amyloid fibrils and facilitating peptide clearance by increasing proteolytic
degradation.

Aβ-induced neurotoxicity and cell death involve oxidative stress, and melatonin
effectively protects cells against it in vitro [73] and in vivo [74,75]. Melatonin was found to
protect against Aβ toxicity, particularly at the mitochondrial level. Melatonin effectively
inhibits tau hyperphosphorylation in N2a and SH-SY5Y neuroblastoma cells by influencing
protein kinases and phosphatases [76,77].

Melatonin treatment of AD transgenic mice increases Aβ glymphatic clearance [78,79].
Relevant to this, melatonin is known to preserve slow-wave sleep in patients [80], a phase
in which the glymphatic elimination of Aβ peptides increases considerably [81]. Thus, the
correction by melatonin of sleep disruption can contribute to counteracting the failure of
Aβ clearance found in AD.

Epidemiological research suggests that anti-inflammatory medication use in AD
may be beneficial due to activated microglia’s decreased secretion of proinflammatory
cytokines [82]. In this respect, melatonin is very effective in attenuating the microglial
production of proinflammatory cytokines induced by Aβ, NF kB, or nitric oxide [83].

The effectiveness of melatonin therapy in improving sleep in demented patients is
supported by two meta-analyses [84,85]. In addition, the administration of melatonin in the
initial stages of cognitive decline consistently improves sleep and cognitive performance
(see Ref. [31]). In one of our laboratories, we conducted a retrospective analysis of MCI
patients who had received a daily dose of 3–24 mg of melatonin along with their usual
medication. Compared to the untreated group, melatonin-treated patients significantly
improved cognitive performance, Beck Depression Inventory, and quality of sleep/wake
rhythm [86,87]. In a study on 40 MCI patients treated with melatonin at a daily dose
of 0.15 mg/kg for 6 months, the hippocampal volume and lamina cribrosa thickness de-
creased significantly as compared with 39 MCI patients receiving placebo [88]. On the
other hand, the cerebrospinal fluid T-tau level of the melatonin-treated group was signifi-
cantly lower compared with the untreated group. A lower Mini Mental State Examination
score, a smaller hippocampus volume, and upregulated level of tau protein were associ-
ated with significantly thinner lamina cribrosa in MCI patients, all effects counteracted
by melatonin treatment [88]. In a meta-analysis of 22 randomized controlled trials to
assess the neurocognitive effects of melatonin treatment in healthy adults and individuals
with AD disease and insomnia, AD patients receiving >12 weeks of melatonin treatment
(2.5–10 mg daily) improved MMSE score, particularly in the mild stage of AD [89]. There-
fore, melatonin treatment could be effective in the early stages of neurodegenerative
diseases, such as brain fog, in long COVID patients. Unfortunately, very little information
is available on melatonin efficacy in COVID therapy, and none has been related to long
COVID brain fog syndrome.

(b) Melatonin and ME/CFS

The beneficial effects of melatonin on fibromyalgia (associated commonly with ME/CFS)
were first described in one of our laboratories [90]. Since then, several studies have con-
firmed the initial findings (for a summary, see ref. [91]). A common pathogenic mechanism
is suggested by the similarities among ME/CFS, fibromyalgia, and post-COVID syndrome.
The multiplicity of pathophysiological abnormalities in ME/CFS patients opens the possi-
bility of numerous potential therapeutic targets [24]. The several abnormalities described
comprise increased oxidative stress, mitochondrial dysfunction, dysregulated bioenergetics,
a proinflammatory state, the disruption of gut mucosal barriers, and autonomic nervous
system disturbances related to autoimmunity [92] (Figure 2). The possible therapeutic
options targeting these pathways include melatonin, coenzyme Q10, curcumin, molecular
hydrogen, and N-acetylcysteine [24]. Among them, melatonin is the only compound that
addresses all mentioned potential targets [24].
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5. Conclusions

Considering the quantity of scientific/medical studies that have suggested melatonin
use in the COVID-19 pandemic, the inability of melatonin to garner attention from public
health authorities or the pharmaceutical industry is disheartening. More than 190 papers
on pubmed.gov (accessed on 9 October 2022) have examined the use of melatonin as a
safe and potentially effective therapy for the COVID-19 pandemic since its inception [93].
This might be due to several factors, including the fact that no influential organization has
promoted its therapeutic use for this condition. Melatonin is non-patentable and cheap;
therefore, the pharmaceutical business has little motive to encourage its usage. Meanwhile,
several potentially harmful and costly medications have been repackaged as therapies for
this disease [94].

In critical situations, such as an Ebola outbreak or the COVID-19 pandemic, it is
ethical to use all accessible and safe medicines, even if their usefulness has not been fully
demonstrated, especially if the therapy has no major adverse side effects. From an analysis
of 27 publications that were surveyed on the ability of drugs to successfully treat COVID-19,
it was concluded that melatonin is at least twice as effective as remdesivir or tocilizumab
in reducing the inflammatory markers of a coronavirus 2019 infection [94]. Given the
substantial number of deaths caused by SARS-CoV-2 infections throughout the world, it
seems to us that it is immoral to not take advantage of any such safe therapy, especially if
the vaccinations become less effective as the virus continues to evolve. At the very least,
well-controlled and powered clinical trials are essential to further establish the current
evidence that melatonin is safe and efficacious in treating COVID-19 and its sequelae.
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published version of the manuscript.
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