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Abstract: Emissions generated by wildfires are a growing threat to human health and are character-
ized by a unique chemical composition that is tightly dependent on geographic factors such as fuel
type. Long noncoding RNAs (lncRNAs) are a class of RNA molecules proven to be critical to many
biological processes, and their condition-specific expression patterns are emerging as prominent
prognostic and diagnostic biomarkers for human disease. We utilized a new air-liquid interface (ALI)
direct exposure system that we designed and validated in house to expose immortalized human
tracheobronchial epithelial cells (AALE) to two unique wildfire smokes representative of geographic
regions (Sierra Forest and Great Basin). We conducted an RNAseq analysis on the exposed cell
cultures and proved through both principal component and differential expression analysis that each
smoke has a unique effect on the LncRNA expression profiles of the exposed cells when compared to
the control samples. Our study proves that there is a link between the geographic origin of wildfire
smoke and the resulting LncRNA expression profile in exposed lung cells and also serves as a proof
of concept for the in-house designed ALI exposure system. Our study serves as an introduction to the
scientific community of how unique expression patterns of LncRNAs in patients with wildfire smoke-
related disease can be utilized as prognostic and diagnostic tools, as the current roles of LncRNA
expression profiles in wildfire smoke-related disease, other than this study, are completely uncharted.

Keywords: lncRNAs; biomarkers; signature; wildfire

1. Introduction

Wildfires have been and will remain a huge problem for both environmental and
human health and are expected to increase in severity and frequency in several parts of the
world [1]. Emissions generated by wildfires are considered one of the most serious threats
to public health [2], and it is estimated that 260,000 to 600,000 deaths annually are caused
by wildfire smoke exposure [2]. Each wildfire smoke is characterized by a unique chemical
composition that is tightly dependent on the geographic origin of the smoke due to factors
such as burn type (smoldering vs. flaming), biomass fuel composition, atmospheric aging,
and interaction with urban pollutants [3,4]. However, the differential respiratory health
impacts induced by unique smokes are largely understudied, and most conclusions have
been epidemiologic [5] or focused on tobacco smoke [6].

Classic methods to simulate in vitro wildfire smoke exposure consist of treating lung
tissue cultures with liquid wildfire smoke extracts [7]. However, the use of wildfire smoke
extracts poses several limitations, as the whole process consists of collecting smoke compo-
nents using a filter and then extracting them using organic solvents that change particle
chemical composition and agglomeration state. Additionally, the exact exposure dosage
cannot be determined, and the exposure dose is delivered as a bolus, whereas during
inhalation, particles are distributed evenly over a defined period [7]. This method also only
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extracts soluble compounds and therefore underestimates wildfire smoke as a complex
mixture [8].

The 3 Rs (replacement, reduction, and refinement) are a series of principles that
serve as the ethical framework for animal research and are designed to improve animal
welfare throughout the scientific community [9]. One of the main principles stated in 3R
is that the use of animals in studies should be avoided whenever possible [10]. Studies
have employed the use of an air-liquid interface (ALI) system to expose in vitro or ex
vivo cultures to aerosolized wildfire smoke generated in a burning chamber without the
use of an extraction process. The air-liquid interface therefore allows for modeling lung
tissue exposure to wildfire smoke without the need for animal models [11]. This therefore
supports 3R principles by reducing the number of animals needed to conduct investigations
in wildfire smoke toxicology. While scientists are defining specific methodologies for ALI
as well as clear standardization and criteria for system validation, the consensus is that ALI
provides a more advanced approach to in vitro exposure than classic methods [12].

Little research has been conducted to comparatively examine the effects of exposure
to wildfire smoke generated by different fuel types on the unique biological responses in
human and mammalian cells. We hypothesized that the chemical composition of wildfire
smoke is a critical factor in determining the differential biological effects induced in human
lung cells by exposure to unique fuels representative of geographic regions. Moreover,
we generated a comprehensive ALI wildfire smoke exposure protocol that accounts for
alterations in smoke composition caused by atmospheric aging as smoke travels from the
site of origin to the site of exposure in humans and animals. Additionally, our protocol
more closely mimics a real-life exposure compared to more classic methods that have all
the limitations discussed in the previous section.

Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are longer than
200 nucleotides [13]. They do not contain open reading frames and therefore cannot directly
generate peptides or proteins [14]. lncRNAs are the second most abundant class of non-
coding RNAs, following pseudogenes [15]. They execute their biological functions with
a variety of different mechanisms. They can act as scaffolds to facilitate protein-protein
interactions, or directly interact with DNA via specific consensus sequences, through steric
3D structures that repress or enhance the transcription of specific genes. lncRNAs are also
reported to interact with mRNA and play a crucial role in the post-transcriptional regulation
of several genes [16]. lncRNAs are a very heterogeneous class of RNAs, and even if their
roles in regulating the critical aspects of cellular life are now well established and accepted,
the molecular biology details of most members of this class are understudied or not studied
at all. However, several research groups have begun to shed light on their biogenesis and
function. In the past decade, it has been proven that lncRNAs have critical roles in various
biological processes, such as inflammation, cell growth, oxidative stress, and apoptosis.
For example, lncRNA HIX003209 plays a key role in promoting inflammation in patients
with rheumatoid arthritis by sponging miR-6089 via the Tool like receptor 4 (TLR4)/NF-κB
signaling pathway [17], and the lncRNA pseudogene PTEN 1 (pg1PTEN) regulates the
mRNA of a well-described tumor suppressor gene with apoptotic and anti-proliferative
activity [18]. Previous research has also identified lncRNAs as being dysregulated in a
variety of human diseases, and they are known to functionally interact with environmental
factors such as cigarette smoke [19–21]. Moreover, lncRNAs present condition-specific
expression patterns that are increasingly being implemented as prognostic and diagnostic
biomarkers for human diseases. For example, a three-lncRNA signature accurately predicts
the survival of patients with esophageal squamous cell carcinoma (ESCC) [22], and mea-
surement of the lncRNA prostate cancer antigen 3 gene (PCA3) in patient urine samples is
an effective method for the diagnosis of early prostate cancer [23]. Additionally, lncRNAs
are being investigated as potential diagnostic biomarkers for chronic respiratory diseases
such as asthma and chronic obstructive pulmonary disease (COPD) [24].

While several areas of research are currently focused on understanding the role of
lncRNAs in tobacco or traffic air-pollution-related respiratory disease, little to no research
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has been conducted to investigate the response of lncRNAs to wildfire smoke exposure.
Here, we utilized a new ALI direct exposure system that we designed and produced in
house to prove that exposure to two unique wildfire smokes representative of geographic
regions (Sierra Forest and Great Basin) causes aberrant lncRNA expression profiles in a
human tracheobronchial cell line (AALE).

2. Materials and Methods
2.1. Cell Culture Conditions and Seeding

Human immortalized bronchiotrachial cells (AALE) were obtained from the Amer-
ican Type Culture Collection (Manassas, VA, USA. Cells were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and
100 units/mL penicillin in standard cell culture conditions [25].

AALE were counted in a 1:1 dilution of 0.4% trypan blue using a brightfield cell
counter 24 h prior to direct smoke exposure (DSE) (DeNovix Celldrop, Wilmington DE,
USA), and 1 × 106 cells were replated in 0.35 cm Nunclon-treated cell culture dishes
(Thermo Scientific, Waltham, MA, USA, cat. no. 150460) to be incubated in standard cell
culture conditions overnight. 10–60 min prior to exposure, the dishes containing cells were
transported on ice to the site of the ALI exposure system, and the dishes were placed within
the smoke exposure chamber.

2.2. Smoke Generation

Wildfire smoke using two different biomass fuels was generated using the Desert
Research Institute (DRI) combustion facility under controlled conditions. The facility
consists of a burning chamber of aluminum panels (1.83 m × 1.83 m × 2.06 m), an exhaust
pipe with multiple sampling ports, and an air inlet at the bottom of the chamber. For each
experiment, we burned 150 ± 20 g of biomass fuel. We used Sierra Forest (Smoke A) and
Great Basin (Smoke B) fuels to represent the US Western regional fuel characteristics. The
Sierra Forest fuel consists of Jeffrey Pine, Ponderosa Pine, Douglas fir, California incense-
cedar, Manzanita, and oak, which are found in the Sierra Nevada Mountain region across
California and Nevada. The Great Basin region stretches across the western US. Sagebrush,
rabbitbrush, antelope bitterbrush, Nevada Mormon tea, pinyon, juniper, and native grasses
are commonly found in this region. Each species was collected in appropriate proportions
to capture vegetation variability in the regions.

2.3. Direct Smoke Exposure (DSE) Using Air-Liquid Interface (ALI) Chamber

The generated smokes were collected within a 1.8 m3 Teflon smoke chamber for the
direct smoke exposure experiment described in the below section. AALE cells plated as
described in Section 2.1 were placed inside the custom-built ALI direct smoke exposure
chamber shown in Figure 1c. During exposure, the chambers were placed in a water-bead
bath at 37 ◦C.

2.4. Chemical Analysis

We simultaneously collected the Teflon Impregnated Glass Fiber (TIGF) filter (Pall
Corporation, Port Washington, NY, USA) followed by the XAD-4 resin (Sigma-Aldrich, St.
Louis, MI, USA) cartridge samples for polycyclic aromatic hydrocarbons (PAHs) analysis.
The TIGF filter and XAD resin samples were sealed in antistatic zip-lock bags and stored
at –20 ◦C until analysis. After spiking deuterated internal PAH standards, the filters and
XAD resin samples were extracted separately with dichloromethane and acetone using an
accelerated solvent extractor (ASE) instrument (DIONEX, ASE350, Salt Lake City, UT, USA),
then solvents were replaced with toluene (200 µL) for gas chromatography (GC) mass
spectrometer (MS) analysis. A Varian CP-3800 GC equipped with a CP-8400 autosampler
and interfaced to a Varian 4000 Ion Trap Mass Spectrometer (Varian, Inc., Walnut Creek,
CA, USA) was used to perform splitless injections onto a DB-5MS capillary column (30 m,
Agilent Technologies, Folsom, CA, USA).
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Figure 1. Direct smoke exposure affects cell viability in a time dependent manner. (a) Schematics
of smoke exposure system; (b) Concentrations of most abundant Polycyclic aromatic hydrocarbon
(PAH) compounds for two tested fuels; (c) In vitro exposure system setup consisting of smoke inlet
(1, 5, and 6), ALI chamber housing. (2) In-vitro cell culture (4), and incubator with metal beads (3,
7); (d) Cell growth rates of AALE seeded and incubated within the exposure system; (e) Graphic
representation of experimental design to validate cell viability in the ALI exposure system; (f) Crystal
Violet assay performed on cells exposed to smoke in the ALI device; (g) Quantification of Crystal
Violet results with statistical significance *** indicate a statistical significance with a p value < 0.001;
ns indicates a non-significant statistical difference; (h) graphic representation of experimental design
for sample collection for RNA seq analysis.
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2.5. Cellular Growth Assay

AALE were fixed in 10% formalin, washed once with PBS, and stained with 0.1%
crystal violet solution (Sigma-Aldrich, St. Louis, MI, USA, prod. no. C0775) 24 h following
DSE. Following completion of staining, crystal violet dye was solubilized in 500 µL of 10%
acetic acid (Fischer Scientific, Waltham, MA, USA, cat. no. AC124040250) overnight, and
the absorbance (OD) of the resulting solution was measured in triplicate at 595 nm using a
microplate reader (Spectramax iD5, Molecular Devices, San Jose, CA, USA). Absorbance
values were normalized to the non-treated samples.

2.6. RNA Extraction

Cells were lysed in 400 uL of TRIzol Reagent (Invitrogen, Waltham, MA, USA cat
no. 15596026), and RNA purification including DNAse treatment was conducted using a
Direct-zol RNA miniprep (Zymo Research, Irvine CA, USA cat no. R2050S) kit according
to the manufacturer’s protocol 8 h following DSE. Purified RNA was eluted in 50 uL of
RNAse/DNAse-free water, and 260 nm/230 nm absorbance ratios were confirmed to be
greater than 1.5 using a spectrophotometer (Nanodrop One, Waltham, MA, USA).

2.7. Library Preperation and Sequencing

RNA was submitted to the Nevada Genomics Core, where libraries were prepared for
sequencing using the QuantSeq 3′ mRNA-Seq Library Prep Kit (Lexogen, Vienna, Austria)
based on the provided manufacturer instructions and sequenced on an Illumina NextSeq
2000 (Illumina, San Diego, CA, USA) with the P2 100 cycle kit, (Illumina, San Diego, CA,
USA) as single reads (SE).

2.8. Quality Control and Read Mapping

Sequence data (fastq files) were processed by the Nevada Bioinformatics Core (RRID:
SCR_017802). The quality of sequencing reads from the 3′ mRNA-seq was assessed using
FastQC v0.11.9 [26] for each sample pre- and post-trimming, and a unified multi-sample
report was generated with MultiQC v1.11 [27]. Adapter and primer sequences were
removed, and trimming and filtering were conducted with bbduk v38.90 [28]. Quality
sequences were then mapped with STAR v2.7.10a [29] to the human reference genome
grch38 from GENCODE [30] with the default parameters. To obtain a count table, reads
were then quantified with featureCounts v2.0 [31].

2.9. Differential Expression Analysis

The count table was imported into the statistical software R v4.2.1 [32]. Transcripts and
genes with insufficient count coverage and gene types other than lncRNA were removed
for any further analyses. Changes in the gene expression pattern were evaluated using the
DESeq2 pipeline v1.36.0 [33]. Pairwise comparative gene expression analyses of smoke
exposure to controls for each smoke type (A and B) were conducted, and the variance
stabilized transformed data were used for visualization. The false discovery rate (FDR) was
calculated to rectify the p-values and only genes with a q-value < 0.05 were deemed to be
differentially expressed. Further, the distributions of the log2 fold changes were evaluated
to determine a data-dependent threshold to imply practical significance. Count values,
variance stabilized transformed data, and differential analysis results were summarized
(Supplementary Table S1).

3. Results
3.1. Exposure System Setup, System Validation and Optimization, and Smoke Exposure Duration

We designed an innovative and novel interface for ALI. To ensure the functionality
of the exposure system, we tested, validated, and optimized it by recording the growth
curves of different concentrations of AALE cells seeded within the ALI exposure chamber.
We also observed the effects on cellular growth after smoke exposure at various lengths of
time and confirmed the sensitivity of the system/method.
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3.2. Exposure System Setup

A detailed description of the ALI experiment set-up that we designed is provided
in the Method section. Briefly, as shown in Figure 1a, we set up a system consisting of a
burning chamber, a Tedlar smog bag for collecting wildfire smoke, filter-XAD sampler for
polycyclic aromatic hydrocarbons (PAHs) sampling, and an ALI exposure chamber. Our
system was able to mimic the difference in chemical composition of smoke generated by
different types of fuel (Sierra Forest (Smoke A) and Great Basin (Smoke B) fuels).

Figure 1b shows the fraction (%) of the 10 most abundant PAH compounds from
the two different fuels. Detailed PAH results are tabulated in Supplementary Table S1.
Total PAHs concentration (particle and gas phase) of Smoke A was 297.8 µg/m3, which
was approximately 1.7 times higher than Smoke B (174.3 µg/m3). Smoke A and B show
different PAH components in smoke. Gas-phase PAHs in both fuels’ emissions mainly
consisted of naphthalene and methylnaphthalene. Anthrone, 1,4,5-trimethylnaphthalene,
and phenanthrene were the most abundant in the Smoke A particles, while the Smoke B
particles mostly contained 1-methylfluorene and fluorene. For both smoke A and B, carcino-
genic PAHs were found in the particle phase. Smoke B had a slightly higher carcinogenic
benzo[a]pyrene (BaP) concentration (0.664 µg/m3) than smoke A (0.533 µg/m3). However,
dibenzopyrans (e.g., dibenzo[a,h]pyrene and dibenzo[a,i]pyrene), which had 30–100 times
higher carcinogenicity than BaP, in smoke A were much higher than in smoke B. AALE
cells were exposed to the two distinct wildfire smokes using the ALI custom designed
exposure chambers showed in Figure 1c and detailed in the Materials and Methods section
to achieve a direct smoke exposure (DSE).

3.3. Validation and Optimization of Cell Seeding within ALI Exposure Chambers

For the validation of cell viability within the ALI exposure chambers and optimization
of seeding concentration, AALE were plated at several different concentrations ranging
from 5 × 103 to 1 × 106 within the ALI exposure chamber; these were observed, and hours
were recorded when 100% confluency was reached. As shown in Figure 1d, AALE cells
were viable inside the ALI exposure chamber, and their numbers were in line with the
expected growth curves for each seeding concentration. Cells seeded at 1 × 106 cells per
mL became 100% confluent within 48 h; therefore, 1 × 106 cells per mL was designated as
the optimal seeding concentration.

3.4. Validation and Optimization of Smoke Exposure Duration and Experimental Setup

For optimization and validation of exposure time length, AALE were exposed in
duplicate to wildfire smoke A for the following lengths of time: non-treated, 5 min, 15 min,
30 min, 60 min, 120 min, and 240 min (an overview of the experiment design is provided in
Figure 1e). Results shown in Figure 1f and quantified in Figure 1g demonstrate that cellular
growth was dramatically reduced following 120 min of exposure. Therefore, 60 min was
identified as the optimal exposure time allowing for workable yield of RNA collection from
viable cells.

To test our hypothesis, we designed the experiment presented in Figure 1h, and we
proceeded to extract total RNA from AALE cells after 8 h of smoke exposure. Cells were
exposed to smokes from the Sierra Forest (Smoke A) or the Great Basin (Smoke B), or no
smoke (NT), representing the control samples. Extracted RNA was purified and sequenced
to determine how different smokes induce specific transcriptomic changes in human lung
epithelial cells.

3.5. RNA Seq Analysis of LncRNA

For the nine sequenced samples, we obtained 10.1–15.3 million (M) aligned reads.
After filtering, 2326 lncRNAs with good read coverage remained for further analyses. The
principal component analysis (PCA) of the variance stabilized transformed data distinctly
grouped the experimental conditions, indicating that each smoke has a unique lncRNA
expression signature (Figure 2a). This was further strengthened by the differential analysis,
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which resulted in 26 and 256 differentially expressed (DE) lncRNAs between Smoke A and B
compared to control, respectively (Figure 2b, left). In addition to the statistical significance,
a practical significance threshold was also employed to determine the lncRNAs with the
largest expression changes compared to the control. Applying a log2 fold change (log2 FC)
threshold of 6, the number of lncRNAs reduced substantially for the Smoke B comparison
to the control; about 17% of DE lncRNAs have at least an absolute log2 FC of 6 in Smoke
B compared to the control, whereas 23% of DEs are retained in the Smoke A comparison
(Figure 2b, right). The 48 lncRNAs presented in Figure 2b, right, are further visualized in
the heatmap (Figure 2c). The heatmap shows that many lncRNAs are suppressed when
exposed to Smoke B. Figure 2d presents the results of the differentially analyzed data
by plotting the log2 FC against the significance value. Here, a threshold of log2 FC of 2
was used to highlight genes, resulting in 11 and 205 lncRNAs, respectively. These results
indicate that smoke A has less of an effect on the healthy lung cells compared to smoke
B, although the identified changes are noticeable in both smoke exposures. Furthermore,
smoke B has notably more downregulated lncRNAs compared to upregulated lncRNAs,
177 and 28, respectively.

These results further demonstrate that each smoke has a unique effect on healthy lung
tissue cells; thus, the health effects caused by wildfires cannot be generalized and depend
on the composition of the smoke.
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Figure 2. Differential lncRNA signatures correlate with DSE for different fuels. (a). Principal
component analysis (PCA) of variance stabilized transformed (vst) lncRNAs data, n = 2326; (b) Venn
diagram of differentially expressed lncRNAs; (left) includes all lncRNAs with a false discovery
rate adjusted p-value < 0.05 (right) is a subset of (left) with an imposed log2 fold change threshold
of greater or less than 6 or −6; (c). Expression heat map of variance stabilized transformed (vst)
lncRNAs data showing the largest changes in expression patterns compared to control (NT), this
is the set of lncRNAs in (b-right), n = 48; (d) Volcano plot of each pairwise comparison to control
(NT), highlighted genes are down (blue) or upregulated (orange), with a false discovery rate adjusted
p-value < 0.05 and a log2 fold change of greater or less than 2 or −2.

4. Discussion

LncRNA signatures are emerging as powerful biomarkers in both prognostic and
diagnostic applications. For example, a 6-lncRNA prognostic signature for predicting the
prognosis of patients with colorectal cancer metastasis [34]. With the already hazardous air
quality resulting from wildfire smoke in several areas of the world projected to increase, it
is important to improve the understanding of health outcomes caused by wildfire smoke
exposure [35,36]. Being able to recognize unique expression patterns of lncRNAs in patients
with wildfire smoke-related disease would provide avenues for healthcare professionals to
provide specialized and unique treatments based on improved prognostic and diagnostic
tools. However, the current roles and expression patterns of lncRNAs in wildfire smoke-
related disease are completely uncharted.

Results obtained from our investigation prove that the effects of wildfire smoke on
the cellular transcriptome are unique and strictly linked to the chemical composition of
the smoke. Therefore, we demonstrate that the common misconception that wildfire-
generated smokes are all equally dangerous for human health is an oversimplification
because each smoke can induce specific transcriptomic changes in the same human lung cell
line. Moreover, linking the lncRNA expression profiles to a specific type of wildfire smoke
provides a rationale for designing a specific panel of lncRNA that can be used to understand
which type of wildfire a patient has been exposed to and provides a deeper insight on how
smoke from different fuels uniquely affects human health. Our data proves that different
types of smoke can have differential effects on respiratory health and provide clues for
future studies investigating the roles of lncRNAs in wildfire smoke-related disease. Our
study describes for the first time, the lncRNA landscape of a human lung cell line directly
exposed to wildfire smoke, and it is the first study to analyze the unique transcriptomic
effects induced by multiple wildfire smokes representative of geographic areas. Our results
elucidate the importance of chemical composition (and therefore geographic origin) in
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assessing the respiratory health risks that may result from wildfire smoke exposure. We
used the RNA-seq data generated through our experiments to run an unbiased analysis
aiming to identify differentially expressed transcripts, and here, through both stringent and
global analysis, we demonstrate that different wildfire smokes induce aberrant expression
of lncRNAs. Additionally, our results suggest that lung cell lncRNA expression profiles of
patients exposed to wildfire smoke may be used to identify, to some degree, the chemical
composition and/or geographic origin of the emissions they inhaled. This opens the
possibility of lncRNA expression profiles being used in the prognosis and diagnosis of
patients facing acute or chronic exposures to wildfire smoke.

Furthermore, this proof-of-concept study, along with the known fact that different
lncRNAs have a dramatic differential effect on cellular processes such as inflammation [37],
is a very strong rationale to hypothesize that different smokes derived from different fuels
can generate a diverse inflammation response in the human lungs, promoting the activation
of different pro-inflammatory pathways or the inhibition of anti-inflammatory mechanisms.
Dissecting the molecular mechanisms that control different types of inflammation is the
first step to design and develop new therapeutic approaches and strategies that can be
extremely effective and provide strong benefit to patients affected by wildfire-induced
lung toxicity, preventing the inflammation from becoming chronic and preventing further
complications that may lead to serious health conditions culminating with lung cancer.

Our observation provides a strong proof of principle, and we recognize that more
studies should be conducted to corroborate them. Additional studies should be conducted
to investigate fuel types in other global regions heavily impacted by wildland fire emis-
sions. Environmental factors such as photochemical aging, interaction with urban traffic
pollutants, and anthropogenic materials should also be investigated to provide a more
comprehensive view of wildfire exposure resulting from smoke that has traveled from
the site of origin to populated communities. Different cellular models are needed, for
example, human bronchial epithelial cells (BEAS-2B) or human non-small cell lung cancer
cells (H3255), to understand differential cellular responses to exposure to the same type
of smoke. This will elucidate differential respiratory health risks for sensitive populations
(patients with lung cancer, asthma, etc.) on a molecular level.

Since we proved that alteration of the cellular transcriptome is fuel-specific, we also
speculate that the coding area is affected by the same factors. We foresee that the medical
and research fields will soon disentangle the differences in the expression of protein or
peptide-coding genes that result from exposure to unique wildfire smoke. The cumulative
knowledge that the scientific community can obtain from the perturbation of the transcrip-
tome from both a coding and non-coding perspective will allow patients experiencing
illness as a result of wildfire smoke exposure to be treated on an exposure-specific level, ac-
counting for the unique pathological differences of unique smoke types. This will allow for
the most rapid and effective treatment of individuals suffering from wildfire smoke-related
pulmonary disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13010155/s1, Table S1: PAHs concentration (µg/m3) for the
two different fuel smokes.
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