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Abstract: Recently, natural silk nonwoven fabrics have attracted attention in biomedical and cosmetic
applications because of their excellent biocompatibility, mechanical properties, and easy preparation.
Herein, silk nonwoven fabrics were prepared by carding silk filaments to improve their productivity,
and the effect of sericin content on the structure and properties of silk nonwoven fabrics was
investigated. Owing to the binding effect of sericin in silk, a natural silk nonwoven fabric was
successfully prepared through carding, wetting, and hot press treatments. Sericin content affected the
structural characteristics and properties of the silk nonwoven fabrics. As the sericin content increased,
the silk nonwoven fabrics became more compact with reduced porosity and thickness. Further, with
increasing sericin content, the crystallinity and elongation of the silk nonwoven fabrics decreased
while the moisture regain and the maximum stress increased. The thermal stability of most silk
nonwoven fabrics was not affected by the sericin content. However, silk nonwoven fabrics without
sericin had a lower thermal decomposition temperature than other nonwoven fabrics. Regardless
of the sericin content, all silk nonwoven fabrics exhibited optimal cell viability and are promising
candidates for cosmetic and biomedical applications.

Keywords: sericin content; silk nonwoven fabric; carding; structural characteristics; mechanical
properties; cell viability

1. Introduction

Silk is a naturally occurring biomaterial composed of fibroin and sericin. It is biodegrad-
able [1,2] and has excellent biocompatibility [3–5], excellent cell adhesion and prolifera-
tion [6–8], high water retention capacity [9], and wound healing effect [10,11]. Due to
these advantageous properties, silk has attracted attention in biomedical and cosmetic
applications [12,13].

For these applications, silk must be prepared into various forms, including sponge [14,15],
film [16,17], gel [18–20], fiber [21–23], web [24,25], nonwoven fabric [26–28], and bead/
particle [29,30]. Among these, the porous silk forms (e.g., sponge and web) hold fluids
and provide spaces where cells can proliferate [31–33]. Consequently, porous silk forms
have been studied for membrane applications for guided bone regeneration [34–36], nerve
conduit [37], bone substitute [38], wound dressing [10,11,39], drug delivery [40], and mask
pack [41,42].

In fabricating porous silk materials, the electrospinning technique has been extensively
employed. However, it requires several preparation steps (e.g., degumming, drying,
dissolution, dialysis, and electrospinning) and is time-consuming [24,25,43]. Furthermore,
the high crystallinity and molecular weight of silk are affected during the regeneration
process (i.e., degumming and dissolution), resulting in poor mechanical properties of
silk [44–46].
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Recently, natural silk nonwoven fabrics were prepared by utilizing the binding char-
acter of sericin [27,28,47–49] to eliminate the drawbacks of electrospun regenerated silk
webs. In this method, silk fibers were reeled from silkworm cocoons to form a silk web.
Although natural silk nonwoven fabrics exhibit excellent mechanical properties [27,28,49],
if silk fibers are broken during reeling, the reeling (winding) process becomes economically
inefficient. In addition, a reeling bath at elevated temperatures (>50 ◦C) is necessary to reel
the silk fibers [50].

Meanwhile, in the conventional mass production of nonwoven fabrics, dry fibers are
arranged to prepare a web following the carding process. In this method, the webs can be
mass-produced with no breakage of fibers and no requirement of additional equipment
(heating bath), making the process economically efficient. However, although the prepara-
tion of new natural silk nonwoven fabrics using the reeling process has been studied, the
new silk nonwoven fabrics using the binding character of sericin have not been prepared
by arranging silk fibers with a carder.

Herein, raw silk filaments and silk filaments degummed with different methods (i.e.,
with varying sericin content) were prepared. Subsequently, they were carded, wet-treated,
and hot-pressed to prepare natural silk nonwoven fabrics. In addition, the effects of sericin
content in silk filaments on the structural characteristics and properties of the fabrics were
investigated.

2. Materials and Methods
2.1. Materials

Bombyx mori Baekokjam silkworm cocoons were provided by the National Institute of
Agricultural Science (Wanju, Republic of Korea). The silkworm cocoons were dried for 4 h
at a high temperature (90 ◦C) to kill the pupa.

2.2. Preparation of Silk Fibers with Varying Sericin Contents

Initially, silkworm cocoons were immersed in a 70% (v/v) ethanol aqueous solution
at 50 ◦C for 2 d to remove nonprotein components (e.g., wax, carbohydrates, organic
matter, and pigment). The ratio of the cocoon and ethanol aqueous solution was 1:30 (w/v).
Then, the silkworm cocoons were washed with purified water and then dried at room
temperature. Consequently, 2.0% (±0.2%) of nonprotein components for the whole weight
of the cocoon were removed from the cocoons, which are determined by the weight change
of the cocoon between before and after the 70% ethanol solution treatment.

Silk fibers with varying sericin contents (0–24%) were obtained by controlling the
degumming conditions (i.e., degumming method and time), as shown in Table 1. Bom-
byx mori silkworm cocoons were degummed by the high-temperature high-pressure (HTHP)
method or the soap/soda method. The degumming ratio was calculated using
Equation (1) [51,52]:

Degumming ratio (%) =

(
1− W1

W2

)
× 100 (1)

where W1 denotes the dry mass of the degummed cocoons and W2 denotes the dry mass of
the cocoons.

Since the sericin content of the silkworm cocoon used herein was 24% [53], the content
was calculated using Equation (2):

Sericin content (%) = [1− {(1− 0.24)/(1− degumming ratio)}]× 100 (2)

The HTHP method was employed to prepare silk fibers with sericin contents of 3.2%–
21.5%. That is, the silk was degummed using purified water at 120 ◦C for 1, 3, 15, 22,
and 30 min using an autoclave (JSAC-60, JSR, Gongju, Republic of Korea). The cocoon-
to-water ratio was 1:50 (w/v) [54]. Meanwhile, the soap/soda method was employed to
remove sericin completely from silk to prepare silk fibers with 0% sericin (i.e., fibroin). The
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silkworm cocoons were degummed in a boiling aqueous solution containing 0.3% (w/v)
sodium oleate and 0.2% (w/v) sodium carbonate at 100 ◦C for 1 h. The cocoon-to-solution
ratio was 1:25 (w/v). The degummed silk was washed with purified water and dried at
105 ◦C for 24 h. Purified water was obtained using a water purification system (RO50, Hana
Science, Hanam, Republic of Korea) with a reverse osmosis membrane. The preparation
conditions of the silk fibers with varying sericin contents are summarized in Table 1.

Table 1. Sample code and degumming conditions of silk nonwoven fabrics with varying sericin
contents.

Sericin Content (%) 0% 3.2% 7.5% 10.4% 16.1% 21.5% 24%

Sample code of silk
nonwoven fabric SNFS0 SNFS3.2 SNFS7.5 SNFS10.4 SNFS16.1 SNFS21.5 SNFS24

Degumming ratio (%) 24.0% 21.5% 17.8% 15.2% 9.4% 3.2% 0%
Degumming method Soap/soda HTHP HTHP HTHP HTHP HTHP —

Degumming time 1 h 30 min 22 min 15 min 3 min 1 min —

2.3. Preparation of Silk Nonwoven Fabrics

The preparation process of silk nonwoven fabric is depicted in Figure 1. First, the silk
fibers with varying sericin contents (0–24%) were carded (arranged) using a lab-scale hand
carder and a blending board (Standard Hand Cards, Brother Drum Carder, Silverton, CO,
USA). One gram of silk fiber was used to prepare a 10 cm × 10 cm silk nonwoven fabric.
The carded fiber assembly was sprayed with distilled water for 10 min and pressed twice
using a hot presser (HK 2008-1-5, Hankuk Industry Co., Gwangju, Republic of Korea) at
200 ◦C for 90 s to produce a silk nonwoven fabric [49]. Polyester nonwoven fabrics were
placed on top and at the bottom of the silk nonwoven fabric during wetting and hot press
treatments to prevent the silk nonwoven fabric from adhering to the hot presser plates.
After hot-pressing, the silk nonwoven fabric was obtained by removing the polyester
nonwoven fabrics. The code names of the silk nonwoven fabrics with varying sericin
contents are listed in Table 1.
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2.4. Measurement and Characterization

Photographic images of the silk nonwoven fabrics were obtained using a digital
camera (iPhone 11 Pro, Apple Inc., Cupertino, CA, USA). The silk nonwoven fabrics were
coated with Pt–Pd for morphological examination by field-emission SEM (FE-SEM, S-4800,
Hitachi, Tokyo, Japan).

The yellowing index (YI) of the silk nonwoven fabrics was measured in CIE 1931
color space. CIE tristimulus (XYZ) values were based on the CIE standard illuminant C
and the specular component excluded mode of the colorimeter (Konica Minolta, CM-700d
Chroma Meter, Osaka, Japan). YI (ASTM method D1925) was calculated in accordance with
Equation (3) [55].

YI =
(1.28X− 1.06Z)

Y
× 100 (3)

To measure the porosity of silk nonwoven fabrics, they were immersed in a known
volume of ethanol V1 for 5 min. After the silk nonwoven fabrics were completely immersed
and the ethanol permeated the nonwoven fabric sample, the total volume V2 of the ethanol
and silk nonwoven fabric was measured. The silk nonwoven fabric was removed from
ethanol, and the residual ethanol volume (V3) was measured. The porosity of the silk non-
woven fabric was obtained using Equation (4) [28,56]. This measurement was performed
three times for each condition, and the average and standard deviation of the porosity of
the silk nonwoven fabric was reported.

Porosity (%) =
V1 −V2

V2 −V3
× 100 (4)

The thickness of the silk filament was obtained from the SEM images using an image
analysis program (DIMIS-PRO 2.0, Siwon Optical Technology, Anyang, Republic of Korea).

The molecular conformation and crystallinity of the silk nonwoven fabrics with vary-
ing sericin contents were determined using FTIR (Nicolet 380, Thermo Fisher Scientific,
Waltham, MA, USA) using the ATR (Smart iTR ZnSe) method. The scan range, scan number,
and resolution were 4000–650 cm−1, 32, and 8 cm−1, respectively.

The crystallinity index was calculated as the intensity ratio of the peaks occurring at
1620 and 1643 cm−1 in the FTIR spectrum, as represented by Equation (5) [57,58]. The FTIR
measurements were performed seven times. The mean and the standard deviation of the
crystallinity index were obtained from these seven FTIR measurements.

Crystallinity index (%) =
A1620cm−1

A1643cm−1 + A1620cm−1
× 100 (5)

where A1620cm
−1 is the absorbance at 1620 cm−1 caused by the β-sheet crystallite (crys-

talline region), and A1643cm
−1 is the absorbance at 1643 cm−1 attributed to random coil

conformation (amorphous region).
The crystalline structures of the silk nonwoven fabrics were determined using a micro

X-ray scattering system (D8 Discover, Bruker, Karlsruhe, Germany) using CuKα radiation.
The irradiation conditions were 50 kV and 1000 µA, and the measurement time was 300 s.

The silk nonwoven fabrics were stored under standard conditions (20 ◦C and 65%
relative humidity (RH)) for 24 h to determine their moisture regains, which were calculated
using Equation (6) [58]. The dry weights of the silk samples were determined using a
moisture-balance instrument (XM60, Precisa Gravimetrics, Dietikon, Switzerland).

Moisture regain (%) =
Initial weight−Dry weight

Dry weight
× 100 (6)

DSC analysis was performed using a Thermal Analysis Instrument Q 10 (DS25, TA
Instrument, New Castle, DE, USA) in the range of 60–270 ◦C at a scanning rate of 10 ◦C/min.
The analysis was conducted under 50-mL/min nitrogen gas flow.
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The mechanical properties of the silk nonwoven fabrics were evaluated using a uni-
versal testing machine (OTT-003, Oriental TM, Ansan, Republic of Korea). In the case of
silk nonwoven fabric, the mechanical test was performed using a 20 kgf load cell. The
extension speed and gauge length were 10 mm/min and 30 mm, respectively. The silk
nonwoven fabric samples were cut into 50 mm × 10 mm pieces and preconditioned at
20 ◦C and 65% RH for more than 24 h. Seven nonwoven fabric samples were tested for
each condition, and the average and standard deviation of the measurement results were
obtained from the five results after the maximum and minimum values were excluded.

The effects of silk nonwoven fabrics on cytotoxicity were assessed using the CCK-8
assay. The silk nonwoven fabric was cut into 6 cm × 3 cm pieces. L929 mouse fibroblast
cells (CCL-1) were provided by ATCC (USA) and grown in an RPMI1640 medium (Gibco)
supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic–antimycotic
solution. The L929 cells were incubated at 37 ◦C in a humidified 5% CO2 atmosphere.
When 80% confluence was observed, subculturing was conducted twice per week. In vitro
cytotoxicity tests of the silk nonwoven fabric samples were conducted using an extraction
method following ISO 10993-5. Before the extraction, each silk nonwoven fabric sample
was sterilized with ethylene oxide gas. The extraction was performed by immersing the
silk nonwoven fabric samples in the 6-mL RPMI1640 culture medium with gentle shaking
at 37 ◦C for 24 h. Latex and HDPE, respectively, were used as the positive and negative
controls. The cells were seeded into 96-well plates at a 1× 105 cells/mL ratio and incubated
at 37 ◦C for 24 h in a 5% CO2 atmosphere. The culture medium was then replaced with
100 µL/well of sample extracts. After 24 and 48 h of incubation, the extracts were discarded
for the CCK assay, and CCK-8 solution was added to each well. After 1 h of incubation, the
absorbance was measured at 450 nm. Subsequently, the cell viability of the silk nonwoven
fabrics was obtained by Equation (7) [48,59].

Cell viability (%) =
Absorbance of the test sample

Absorbance of the control
× 100 (7)

The cytotoxicity was also examined with a live/dead viability/cytotoxicity kit (L3224,
Invitrogen, Waltham, MA, USA). The culture medium was replaced with 300 µL/well of
the nonwoven fabric sample extracts. After 24 and 48 h of incubation, the extracts were
discarded, and a staining solution was added to each well. After the incubation, the staining
solution was removed, and the cells were observed by an inverted fluorescence microscope
(IX83, Olympus, Tokyo, Japan).

3. Results and Discussion
3.1. Morphology of the Silk Nonwoven Fabric

Table 2 shows the external features of silk nonwoven fabrics after carding, wetting,
and hot-pressing the silk fibers with varying sericin contents. Regardless of the sericin
content, the preparation of silk nonwoven fabrics was possible. However, in the case of 0%
sericin content (SNFS0), the structure was bulky, and silk fibers were loose. Since layers
in this fabric were not bound tightly, they separated easily, even with a weak extensional
force. As seen from Table 3, the cross-sectional structure of SNFS0 was also loose, whereas
SNFS3.2 exhibited a thin and tight cross-sectional structure. This was due to the absence
of a binder (sericin) in SNFS0. Moreover, the silk nonwoven fabrics were prepared by
binding silk fibers by utilizing the binding character of sericin [27]. Accordingly, in the case
of SNFS0, silk fibers could not be bound together because of the absence of a binder (i.e.,
sericin), resulting in a loose silk nonwoven fabric.
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Table 2. Photographs of silk nonwoven fabrics with varying sericin contents. The white bar represents
1.0 cm length for reference.

SNFS0 SNFS3.2 SNFS7.5 SNFS10.4 SNFS16.1 SNFS21.5 SNFS24
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Unlike SNFS0, other silk nonwoven fabrics (SNFS3.2–SNFS24) exhibited tight and 
stable structures. Notably, SNFS3.2 exhibited a tightly structured fabric, indicating that 
3.2% sericin content successfully bound silk fibers in fabricating silk nonwoven fabrics. 
This result is consistent with that of a previous report, where 2.6% sericin sufficed in fab-
ricating silk/rayon nonwoven fabrics [48]. 

The morphologies of the silk nonwoven fabrics with varying sericin contents were 
observed, and the images are shown in Table 4. Unlike silk nonwoven fabrics prepared by 
reeling (winding) silk fibers in previous studies [27,47–49], the silk fibers in the fabrics 
prepared herein were arranged randomly. Considering that the silk fibers were arranged 
in a single direction using a hand carder, the silk fibers were expected to be arranged in a 
certain direction. Thus, the randomly arranged silk fibers in the fabrics in Table 4 were 
unexpected. This can be attributed to the original form of the silk samples. That is, silk 
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3.2% sericin content successfully bound silk fibers in fabricating silk nonwoven fabrics. 
This result is consistent with that of a previous report, where 2.6% sericin sufficed in fab-
ricating silk/rayon nonwoven fabrics [48]. 

The morphologies of the silk nonwoven fabrics with varying sericin contents were 
observed, and the images are shown in Table 4. Unlike silk nonwoven fabrics prepared by 
reeling (winding) silk fibers in previous studies [27,47–49], the silk fibers in the fabrics 
prepared herein were arranged randomly. Considering that the silk fibers were arranged 
in a single direction using a hand carder, the silk fibers were expected to be arranged in a 
certain direction. Thus, the randomly arranged silk fibers in the fabrics in Table 4 were 
unexpected. This can be attributed to the original form of the silk samples. That is, silk 
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Unlike SNFS0, other silk nonwoven fabrics (SNFS3.2–SNFS24) exhibited tight and 
stable structures. Notably, SNFS3.2 exhibited a tightly structured fabric, indicating that 
3.2% sericin content successfully bound silk fibers in fabricating silk nonwoven fabrics. 
This result is consistent with that of a previous report, where 2.6% sericin sufficed in fab-
ricating silk/rayon nonwoven fabrics [48]. 

The morphologies of the silk nonwoven fabrics with varying sericin contents were 
observed, and the images are shown in Table 4. Unlike silk nonwoven fabrics prepared by 
reeling (winding) silk fibers in previous studies [27,47–49], the silk fibers in the fabrics 
prepared herein were arranged randomly. Considering that the silk fibers were arranged 
in a single direction using a hand carder, the silk fibers were expected to be arranged in a 
certain direction. Thus, the randomly arranged silk fibers in the fabrics in Table 4 were 
unexpected. This can be attributed to the original form of the silk samples. That is, silk 
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Unlike SNFS0, other silk nonwoven fabrics (SNFS3.2–SNFS24) exhibited tight and 
stable structures. Notably, SNFS3.2 exhibited a tightly structured fabric, indicating that 
3.2% sericin content successfully bound silk fibers in fabricating silk nonwoven fabrics. 
This result is consistent with that of a previous report, where 2.6% sericin sufficed in fab-
ricating silk/rayon nonwoven fabrics [48]. 

The morphologies of the silk nonwoven fabrics with varying sericin contents were 
observed, and the images are shown in Table 4. Unlike silk nonwoven fabrics prepared by 
reeling (winding) silk fibers in previous studies [27,47–49], the silk fibers in the fabrics 
prepared herein were arranged randomly. Considering that the silk fibers were arranged 
in a single direction using a hand carder, the silk fibers were expected to be arranged in a 
certain direction. Thus, the randomly arranged silk fibers in the fabrics in Table 4 were 
unexpected. This can be attributed to the original form of the silk samples. That is, silk 
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Unlike SNFS0, other silk nonwoven fabrics (SNFS3.2–SNFS24) exhibited tight and 
stable structures. Notably, SNFS3.2 exhibited a tightly structured fabric, indicating that 
3.2% sericin content successfully bound silk fibers in fabricating silk nonwoven fabrics. 
This result is consistent with that of a previous report, where 2.6% sericin sufficed in fab-
ricating silk/rayon nonwoven fabrics [48]. 

The morphologies of the silk nonwoven fabrics with varying sericin contents were 
observed, and the images are shown in Table 4. Unlike silk nonwoven fabrics prepared by 
reeling (winding) silk fibers in previous studies [27,47–49], the silk fibers in the fabrics 
prepared herein were arranged randomly. Considering that the silk fibers were arranged 
in a single direction using a hand carder, the silk fibers were expected to be arranged in a 
certain direction. Thus, the randomly arranged silk fibers in the fabrics in Table 4 were 
unexpected. This can be attributed to the original form of the silk samples. That is, silk 
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Unlike SNFS0, other silk nonwoven fabrics (SNFS3.2–SNFS24) exhibited tight and 
stable structures. Notably, SNFS3.2 exhibited a tightly structured fabric, indicating that 
3.2% sericin content successfully bound silk fibers in fabricating silk nonwoven fabrics. 
This result is consistent with that of a previous report, where 2.6% sericin sufficed in fab-
ricating silk/rayon nonwoven fabrics [48]. 

The morphologies of the silk nonwoven fabrics with varying sericin contents were 
observed, and the images are shown in Table 4. Unlike silk nonwoven fabrics prepared by 
reeling (winding) silk fibers in previous studies [27,47–49], the silk fibers in the fabrics 
prepared herein were arranged randomly. Considering that the silk fibers were arranged 
in a single direction using a hand carder, the silk fibers were expected to be arranged in a 
certain direction. Thus, the randomly arranged silk fibers in the fabrics in Table 4 were 
unexpected. This can be attributed to the original form of the silk samples. That is, silk 
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Unlike SNFS0, other silk nonwoven fabrics (SNFS3.2–SNFS24) exhibited tight and
stable structures. Notably, SNFS3.2 exhibited a tightly structured fabric, indicating that
3.2% sericin content successfully bound silk fibers in fabricating silk nonwoven fabrics. This
result is consistent with that of a previous report, where 2.6% sericin sufficed in fabricating
silk/rayon nonwoven fabrics [48].

The morphologies of the silk nonwoven fabrics with varying sericin contents were
observed, and the images are shown in Table 4. Unlike silk nonwoven fabrics prepared
by reeling (winding) silk fibers in previous studies [27,47–49], the silk fibers in the fabrics
prepared herein were arranged randomly. Considering that the silk fibers were arranged
in a single direction using a hand carder, the silk fibers were expected to be arranged
in a certain direction. Thus, the randomly arranged silk fibers in the fabrics in Table 4
were unexpected. This can be attributed to the original form of the silk samples. That
is, silk fibers used herein were obtained from silkworm cocoons or degummed cocoons.
Apparently, the isotropic arrangement of the silk fibers was maintained despite the carding
process. Considering that silk nonwoven fabrics can be used in various applications, the
fact that isotropic and anisotropic arranged silk nonwoven fabrics can be prepared by
selecting a suitable preparation method (i.e., winding or carding) benefits the use of silk
nonwoven fabrics in such applications.

The bulky structure of SNFS0 could be observed through scanning electron microscopy
(SEM). Meanwhile, at sericin contents >3.2%, the morphological structure of the fabrics
became compact. As the sericin content increased, the fabrics became more compact, and
the silk fibers became tighter. This was due to the binding effect of sericin. That is, as
the sericin content in the silk fibers increased, the fibers became swollen following wet
treatment and deformed after hot-pressing, resulting in more compact and structured
fabrics with smoother surfaces [27].
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Table 4. Field-emission scanning electron microscopy images of silk nonwoven fabrics with varying sericin contents. The white bars represent 1.0 mm (low
magnification) and 100 µm (high magnification) lengths for reference.

Magnification Silk Nonwoven Fabric
SNFS0 SNFS3.2 SNFS7.5 SNFS10.4 SNFS16.1 SNFS21.5 SNFS24

Low
magnification
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As seen from Table 2, the color of the silk nonwoven fabrics becomes yellowish with
increasing sericin content. Hence, the yellowness index was measured to quantitatively
examine the color change of the fabrics, and the results are shown in Figure 2. As the sericin
content increased up to 21.5%, the yellowness index increased linearly, and it increased
considerably to 24%. This confirmed the yellowing of the fabrics shown in Table 2 and
indicated that sericin caused the yellowing of the silk nonwoven fabrics.
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Figure 2. Effect of sericin content on the yellowness index of silk nonwoven fabrics (n = 3).

The yellowing was consistent with the results of previous reports [27,48,49,60]. For
instance, Setoyama reported that the yellowing index of silk increases with increasing
temperature because of the loss of hydroxyl amino acids due to the application of heat [61].
Particularly, silk sericin has higher amounts of hydroxyl amino acids, including serine
(32%), aspartic acid (16.8%), and threonine (8%), as compared to silk fibroin [62,63]. This
explains the increase in the yellowness index of fabrics with increasing sericin content in
Figure 2.

Porous nonwoven fabrics have been widely used in cosmetics (e.g., mask packs) [15,57]
and biomedical applications, including wound dressings [3,5] and membranes for guided
regeneration [6–8,12] because they can hold water [30] and allow cell adhesion and pro-
liferation [29,31,33] through their pores. Meanwhile, porosity determines the mechanical
properties of porous materials [25,32]. Therefore, the porosity of silk nonwoven fabrics has
been studied as an important structural factor [28,48,49].

Figure 3 shows the porosity and thickness of the silk nonwoven fabrics with varying
sericin contents. The porosity of SNFS0 was 94.1%. However, porosity decreased with
increasing sericin content; the porosity of SNFS24 was 72.7%. This result further confirms
the increase in the compactness of the silk nonwoven fabrics with increasing sericin content,
as shown in Tables 2–4. As shown in Figure 3B, the thickness of silk nonwoven fabrics
showed a trend similar to that of the porosity of silk fabrics. This indicates that the decrease
in porosity of silk fabrics is closely related to their thicknesses. The decreased thickness
of the fabrics with increased sericin content was due to the increased binding effect of
sericin. As discussed earlier, increased sericin content bound the fibroin fibers largely,
which became more deformed, making the structure of the nonwoven fabrics denser. These
results indicate that the porosity of silk nonwoven fabrics can be controlled by varying the
sericin content.
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3.2. Structural Characteristics of Silk Nonwoven Fabrics

Since the physical properties of silk are strongly affected by crystalline structures and
molecular conformations [23,52,64], studies on these have been extensively conducted.
Herein, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) mea-
surements were performed to examine the crystalline structures and molecular conforma-
tions of silk nonwoven fabrics; the results are shown in Figure 4.

SNFS0 showed a strong infrared (IR) absorption peak at 1620 cm−1 attributed to
β-sheet crystallite [65,66]. As the sericin content increased, IR absorption at 1643 cm−1

attributed to random coil conformation increased constantly. Finally, SNFS24 showed a
shoulder at 1643 cm−1. This indicated that the random coil conformation of silk fabrics
increased with increasing sericin content. This was because the β-sheet crystallite of sericin
was transferred to a random coil conformation when the sericin was exposed to the hot
press at 200 ◦C [27,49]. The crystallinity index was calculated to quantitatively examine the
molecular conformational change of the silk nonwoven fabrics depending on the sericin
content, and the results are shown in Figure 4B. The crystallinity index of the fabrics
exhibited a negative linear correlation with the sericin content (R2 = 0.97), confirming the
FTIR results in Figure 4A.

Figure 4C shows the results of XRD analysis on silk nonwoven fabrics. Regardless
of the sericin content, all silk nonwoven fabrics showed XRD peaks at 8.8◦, 20.0◦, and
24.0◦ attributed to the β-sheet crystallite [48,67–70]. As the sericin content increased,
the diffraction peak at 24.0◦ became less evident, indicating that the overall crystallinity
of the silk nonwoven fabrics decreased. This result is consistent with that of the FTIR
measurements.

The water absorption property of materials is important in cosmetic and biomedical
applications. It prevents the drying of the wet ingredients of mask packs and helps in
absorbing and holding the exudate in wound dressings, thereby healing wounds. Figure 5
shows the effect of sericin content on the moisture regain of silk nonwoven fabrics. The
silk nonwoven fabrics exhibited moisture regain values ranging from 9–10%. As the sericin
content increased, the moisture regain values of the fabrics increased slightly (R2 = 0.96).
The increase in moisture regain of the fabrics with increasing sericin content was attributed
to the crystallinity and hydrophilicity of sericin. That is, a larger amorphous region (i.e.,
decreased crystallinity) facilitates higher water absorption and a correlation between these
quantities was reported in previous studies [52,58]. Further, sericin is more hydrophilic than



Biomolecules 2023, 13, 1186 10 of 17

fibroin as it has higher contents of hydrophilic and polar amino acids [51]. Therefore, the silk
nonwoven fabrics with increasing sericin contents naturally exhibit higher hydrophilicity.
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The thermal behavior of the silk nonwoven fabrics with varying sericin contents was
evaluated through differential scanning calorimetry (DSC), and the results are shown in
Figure 6. SNFS0 showed an endothermic peak at ~314 ◦C attributed to the decomposition
of fibroin [70,71]. However, in the cases with sericin contents of 3.2–24%, the endothermic
peak was observed at 320 ◦C. Considering that the endothermic peak was due to the
thermal decomposition of silk fibroin, the thermal decomposition temperature of the silk
nonwoven fabrics did not change with the variation in the sericin content. SNFS0 had a
lower decomposition temperature (i.e., 314 ◦C) than other silk fabrics (320 ◦C) due to the
partial disruption of the crystalline region of fibroin during the degumming process. That
is, when sericin was completely removed from silk by degumming, the molecular weight
(MW) and crystallinity of fibroin were affected [46,72,73].
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3.3. Mechanical Properties of Silk Nonwoven Fabrics

Figure 7 shows the mechanical properties of the silk nonwoven fabrics with varying
sericin contents. Without the addition of sericin, the silk nonwoven fabrics exhibited a
maximum stress of 0.3 MPa and an elongation at the end of 55%. As the sericin content
increased to 21.5%, the silk nonwoven fabrics exhibited a maximum stress of 2 MPa, and the
elongation decreased to 2.5%. At a sericin content of 24%, the maximum stress increased
to 12 MPa, but the elongation was unchanged. Overall, as the sericin content increased,
the maximum stress increased, and the elongation at the end decreased. This trend was
associated with the binding effect of sericin [27]. As the sericin content increased, the
sericin in the silk fibers bound tightly with the neighboring silk fibers, leading to a stiffer
nonwoven fabric. Further, the compact structure at higher sericin content (as shown in
Table 4 and Figure 3) was responsible for the higher maximum stress of the fabrics. As
discussed earlier, the surface crystallinity (FTIR-attenuated total reflection; ATR) and overall
crystallinity (XRD) of the silk fabrics decreased with increasing sericin content. The increase
in the maximum stress with increasing sericin content, despite the decrease in crystallinity,
indicated that the binding effect of sericin dominated the effect of crystallinity in the fabrics.
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Figure 7. (A) Representative stress–strain curves, (B) maximum stress, (C) elongation at the end, 
and (D) initial Young’s modulus of silk nonwoven fabrics with varying sericin contents (n = 5). 
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(D) initial Young’s modulus of silk nonwoven fabrics with varying sericin contents (n = 5).
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The low maximum stress of the silk fabrics with 3.2% or less sericin content indicated
that the binding force between the silk filaments was weak. Notably, the maximum stress
(12 MPa) increased considerably at a sericin content of 24%. This may be due to the changes
in compactness, porosity, and thickness, as shown in Table 4 and Figure 3.

3.4. Cell Viability of Silk Nonwoven Fabrics

Since silk nonwoven fabrics can be used in biomedical and cosmetic applications,
their cell viability was evaluated. The results are shown in Figure 8. In the case of 24 h
incubation, regardless of the sericin content, all silk nonwoven fabrics exhibited similar or
slightly higher cell viability than the control and negative control (i.e., >100%). That is, silk
nonwoven fabric samples did not show significant differences among them. For reference,
in the cell viability test, cell viability >80% was considered low cytotoxicity [74,75]. As
the incubation duration increased to 48 h, the cell viability of all silk nonwoven fabrics
increased up to >140%. Further, for an incubation time of 48 h, all silk nonwoven fabrics
exhibited optimal cell viability comparable with that of the control and negative control,
regardless of the sericin content. As for the effect of the sericin content, the silk fabric
with sericin contents of 21.5% and 24% exhibited slightly lower cell viability than that
of the other silk nonwoven fabrics. That is, the silk nonwoven fabric with 24% sericin
content showed significant differences with 3.2% sericin content (** p < 0.01) and 16.1%
sericin content (* p < 0.05) samples. In addition, the 21.5% sericin content sample showed a
significant difference from the 3.2% sericin content sample (* p < 0.05). This slight decrease
in cell viability with increasing sericin content was consistent with the results of a previous
report [27].
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The cell images of silk nonwoven fabrics with varying sericin contents shown in
Table 5 further confirm the cell counting kit (CCK) test result shown in Figure 8. Regardless
of the sericin content, all silk fabrics exhibited excellent cytocompatibility. The number of
live cells of the silk fabrics at an incubation time of 24 h was comparable with that of the
control and negative control and increased with increasing incubation time up to 48 h.
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Table 5. Fluorescence images of the cell viability assay of the silk nonwoven fabric with varying
sericin contents. The white bar represents 500 µm length for reference.

Incubation Time Control Negative Control Positive Control

24 h
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4. Conclusions 
Herein, silk nonwoven fabrics were successfully prepared by carding silk fibers, and 

the effect of sericin content on the structural characteristics and properties of silk fabrics 
was investigated. As the sericin content increased, its binding effect increased, leading to 
more compact morphology of nonwoven fabrics with reduced porosity and thickness. The 
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mum stress increased with increasing sericin content. Regardless of the sericin content, all 
silk nonwoven fabrics exhibited excellent cytocompatibility. Further, the results indicated 
that the structure and properties of silk nonwoven fabrics could be manipulated by vary-
ing the sericin content, although the optimal cell viability of the fabrics was maintained. 
With advantages such as easy mass production and varied performances, new silk nonwo-
ven fabrics prepared through carding are promising candidates for biomedical and cos-
metic applications in the future. 
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