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Abstract: RAMOSA1 (RA1) is a Cys2-His2-type (C2H2) zinc finger transcription factor that controls
plant meristem fate and identity and has played an important role in maize domestication. Despite
its importance, the origin of RA1 is unknown, and the evolution in plants is only partially under-
stood. In this paper, we present a well-resolved phylogeny based on 73 amino acid sequences from
48 embryophyte species. The recovered tree topology indicates that, during grass evolution, RA1
arose from two consecutive SUPERMAN duplications, resulting in three distinct grass sequence
lineages: RA1-like A, RA1-like B, and RA1; however, most of these copies have unknown functions.
Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking a traditional
nuclear localization signal. Here, we report that copies diversified their coding region and, with it,
their protein structure, suggesting different patterns of DNA binding and protein–protein interaction.
In addition, each of the retained copies diversified regulatory elements along their promoter regions,
indicating differences in their upstream regulation. Taken together, the evidence indicates that the
RA1 and RA1-like gene families in grasses underwent subfunctionalization and neofunctionalization
enabled by gene duplication.

Keywords: zinc finger; embryophyte; phylogeny; paralogs; collinearity; nuclear localization;
secondary structure; divergent motifs; promoter

1. Introduction

RAMOSA1 (RA1) is a C2H2 zinc finger protein first cloned and studied in Zea mays
(maize), a major crop species [1,2]. The RA1 is a small protein (175 amino acids) that is
localized in the nucleus despite lacking a traditional nuclear localization signal [3]. The
coding sequence of RA1 is characterized by having a unique zinc finger domain and two
well-characterized ethylene-responsive element binding factor-associated amphiphilic re-
pression (EAR) motifs towards the C-terminal. In ra1 mutants, long indeterminate branches
replace short determinate branches in both the male and female maize inflorescences,
suggesting that RA1 controls meristem fate and identity. Protein–protein interaction in
yeast showed that RA1 interacts with RAMOSA1 ENHANCER LOCUS2 (REL2), a co-
repressor homolog of Arabidopsis thaliana (Arabidopsis) TOPLESS (TPL), to repress the
expression of target genes [4]. Indeed, it is well documented that RA1 and REL2 interact
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in vitro and in vivo via the two EAR motifs of RA1 with the Lissencephaly type1-like
homology (LISH/CTHL) region of REL2 [4]. Although RA1 was originally suggested as a
strong repressor of transcription, chromatin immunoprecipitation (CHIP-seq) experiments
in maize showed that it acts primarily to promote gene expression and that it controls
several regulatory and developmental pathways [5]. In addition, recent studies suggest
that cis-acting regulatory elements upstream of RA1 are a key factor in modulating branch
meristem determinacy affecting ear and tassel morphology in maize and grass inflorescence
architecture [6]. Indeed, previous studies have found evidence that RA1 was a selected
locus during maize domestication [7].

So far, the origin and evolution of RA1 in plants is uncertain. In terms of sequence
similarity, RA1 is similar to the Arabidopsis SUPERMAN (SUP) protein [2,8]. Within the
functional context, SUP is involved during floral development, preventing the initiation of
supernumerary stamens, while RA1 has a central role in inflorescence development and
does not seem to intervene in floral development [2,8]. The overexpression of RA1 (35S:RA1)
in Arabidopsis sup5 mutants fails to restore the number of stamens in the flower [9].
Likewise, the 35S:RA1 transgenic plants of Arabidopsis generate pleiotropic effects in the
plant, such as an increase in the size of the reproductive organs due to cell expansion [10].
These results indicate that the role of RA1 differs from SUP. In particular, within grasses,
RA1 was cloned in maize and its closest relatives, but it is absent in the genomes of other
grass species of the BOP clade (such as rice, wheat, and oat) [1,11].

Given the (1) importance of RA1 during maize inflorescence development and do-
mestication, (2) its central role as a regulator of various plant development pathways, and
(3) the fragmentary knowledge that exists about the evolution and role of the RA1 in other
cereals, we decided to study RA1 to deepen our understanding of the protein evolutionary
history. For that, we reconstructed the phylogeny of RA1 in embryophytes and identified
homologs and paralogs protein sequences. Additionally, phylogeny reconstruction results
were analyzed considering genome and chromosome collinearity. Homologs and paralogs
of RA1 sequences were comparatively characterized with a focus on conserved/divergent
motifs along coding and promoter regions, subcellular protein localization, protein sec-
ondary structure, and conformational plasticity. We found a complex pattern of gene
duplication followed by different patterns of gene copy retention and losses. Retained
copies showed partial conservation of the coding sequences and secondary structure as well
as cis-elements in the promoter regions, suggesting diversification of protein functionality
and upstream regulation. The resulting information will be useful to further explore the
mode of action of these proteins in the future.

2. Materials and Methods
2.1. Data Sets

Protein sequences were retrieved from Phytozome Database v13 [12], National Center
for Biotechnology Information [13] and Gramene Released 66 [14] in March 2023 (Datasheet
1 available at Mendeley Digital Repository, https://doi: 10.17632/m45fk8hxs4.1, accessed
on 8 February 2024, Table S1). Three annotated protein sequences of A. thaliana (SUP,
AT3G23130), Setaria viridis (XP_034583085), and Z. mays (NP_001143449) were used as
templates for a BLASTp search in each of the 50 studied embryophyte genomes: Amborella
trichopoda (AmTr), Anana comosus (Ac), Aquilegia coerulea (AqCo), A. thaliana (At), Brachy-
podium distachyon (Bd), Brachypodium sylvaticum (Bs), Brachypodium stacei (BrSt), Brassica rapa
(Br), Carica papaya (Cp), Capsella rubella (Cr), Cenchrus americanus (Ca), Ceratodon purpureus
(CePu), Citrus clementina (Cc), Dioscorea alata (Da), Eleusine coracana (Ec), Hordeum vulgare
(Hv), Joinvillea ascendens (Ja), Leersia perrieri (Lp), Marchantia polymorpha (Mp), Medicago
truncatula (Mt), Miscanthus sinensis (Ms), Olea europaea (Oe), Oryza barthii (OrBa), Oryza
brachyantha (Ob), Oryza glaberrima (Og), Oryza glumipatula (OrGl), Oryza meridionalis (Om),
Oryza nivara (On), Oryza punctata (Op), Oryza rufipogon (Or), Oryza sativa (rice) (Os), Panicum
hallii (Ph), Panicum virgatum (Pv), Pharus latifolius (Pl), Physcomitrella patens (Pp), Populus
trichocarpa (Pt), Prunus persica (PrPe), Ricinus communis (Rc), Selaginella moellendorffii (Sm),
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Setaria viridis (Sv), Sorghum bicolor (Sb), Solanum tuberosum (St), Theobroma cacao (Tc), Thinopy-
rum intermedium (Ti), Thuja plicata (Tp), Urochloa fusca (Uf), Vaccinium darrowii (Vd), Zea
luxurians (Zl), Z. mays (Zm), and Zizania palustris (Zp). Duplicated sequences were pruned,
and raw datasets were scanned using Multiple Expectation maximizations for Motif Elic-
itation (MEME) search with MEME v5.5.2 [15]. The search was set up to a maximum of
15 motifs and default settings. Based on MEME exploratory scans, sequences containing
an incomplete zinc finger motif and/or truncated C-terminal EAR motif were discarded.
Protein sequences were aligned with the online version of MAFFT using an E-INS-i strat-
egy [16]. The alignments were manually inspected using MEGA v.10.2.4 [17]. The final
aligned dataset containing a total of 73 sequences is presented in Figure S1.

2.2. Phylogeny

Phylogenetic trees were built with MrBayes 3.2.6 [18] via the CIPRES Science Gate-
way [19] using a fixed substitution model and run for 15 million generations (sampling
every 1000 generations). Four Markov chains were run simultaneously in two independent
runs, starting with a random tree until the convergence diagnostic (standard deviation of
split sequences) dropped below 0.01. The first 3.75 million generations were discarded as
burn-in (25%), and the rest of the samples from the two replicates were combined. The
convergence and the effective sample size (>100) of each replicate were checked using
Tracer v1.7.2 [20]. A majority rule consensus of 22,502 trees was constructed and visualized
using Mesquite [21]. Further tree edition was performed using inkscape v1.2.2. To search
for chromosomal collinearity (synteny) among duplicated genes, we used the GENES-
PACE Synteny Viewer available at Phytozome Database v13 [12,22] using A. thaliana
TAIR10, O. sativa v7.0, S. viridis v2.1, Z. mays Zm-B73-REFERENCE-NAM-5.0.55, and
Z. mays RefGen_V4 as reference genomes.

2.3. Conserved Domain Analysis

To identify conserved motifs, sequences from 16 grass species (of 27) were selected to
have, at least, one representatives of each studied genus. In total, 35 amino acid sequences
were scanned with MEME using MEME v5.5.1 [23]. Based on the E-values cut-off (greater
than 0.01), the search was set to 15 domains ranging from 6 to 50 amino acids with default
settings after preliminary optimization runs. For each lineage, a box scheme was presented
graphically to show the distribution and frequency of occurrence of their specific motifs.

2.4. Subcellular Localization of RA1 and RA1-Like Proteins
2.4.1. Plant Growth Conditions

Nicotiana benthamiana (tobacco) seeds were grown directly on soil at 22–24 ◦C and
120 µE (µEinstein = µmol m−2 s−1) in a growth chamber under long-day conditions (16 h
of light and 8 h of darkness). Setaria viridis accession A10 seeds were grown in a growth
chamber at 24–28 ◦C and 300 µE under long-day conditions. Zea mays cultivar B73 seeds
were grown in a greenhouse (Instituto de Agrobiotecnología del Litoral) at 25–28 ◦C and
800–1000 µE under long-day conditions. The wild-type and transgenic seeds used in this
work are deposited at the CRBIAL biological repository of the Instituto de Agrobiotec-
nología del Litoral (Santa Fe, Argentina).

2.4.2. Genetic Constructs

The open reading frame of RA1 homologs from Z. mays and S. viridis and paralogs of
S. viridis were amplified by PCR using Taq Pegasus DNA polymerase (Productos Bio-
Lógicos PBL SA, Buenos Aires, Argentina) with specific primers carrying restriction sites
(Table S2). Amplicons were digested with the corresponding enzymes (Promega Corpora-
tion, Madison, WI, USA) and ligated into the entry vector pENTR3C (Invitrogen) using T4
DNA ligase (Invitrogen, Carlsbad, CA, USA). For the subcellular localization analyses, each
sequence-verified entry vector clone was sub-cloned into the pFK247 destination vector
by site-specific recombination using Gateway LR Clonase II Enzyme Mix (Invitrogen) [24].
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The pFK247 vector is derived from the pGreen vector series in which a 35S CaMV promoter
drives the expression of an N-terminal fusion protein with Green Fluorescent Protein
(GFP) [25].

2.4.3. Transient Transformation

Tobacco leaves were agro-infiltrated with Agrobacterium tumefaciens LBA4404 cells car-
rying the appropriate translational fusion construct described above. In order to suppress
gene silencing, A. tumefaciens cells that express the tomato bushy stunt virus p19 protein [26]
were used in the co-infiltration method, as previously reported by Belda-Palazón et al. [27].
For that, an equal mixture of Agrobacterium strains containing the appropriate transla-
tional fusion constructs and the p19 plasmid was prepared for co-infiltration. For transient
transformation, the abaxial side of four-week-old tobacco leaves were co-infiltrated with
a needleless syringe, as previously described [28]. After infiltration, the plants were ex-
posed to light for one hour and moved into a dark chamber overnight. Seventy-two hours
after infiltration, samples were collected at the beginning of the photoperiod and used
for visualization under confocal laser scanning microscopy. Fluorescence of at least two
transformed leaves from three plants of similar age was analyzed with confocal microscope.
The experiments were repeated at least two times for each construct.

2.4.4. Nuclei Staining

The reagent 4′,6-diamidino-2-phenylindole (DAPI; Sigma, St. Louis, MO, USA) was
used to stain the nuclei. Before fluorescence confocal microscopy analysis, the agro-
infiltrated tobacco leaves were removed from the plant and cut into one-inch-diameter
circles; these were incubated in distilled water supplemented with 1µg/mL DAPI for 5 to
45 min. Then, leaf sections were mounted on a microscope slide and covered with distilled
water for observation through the leaf abaxial side.

2.4.5. Fluorescence Microscopy

Digitized confocal images were acquired at 1024 × 1024 pixel resolution with a ×20 dry
objective on a TCS ST8 inverted confocal laser scanning microscope (Leica Microsys-
tems GmbH) by using a 488 nm excitation line laser for GFP, and spectral detection was
made at 497 and 537 nm for GFP. For DAPI laser excitation, the wavelength was set to
405 nm, and detection was carried out at 410–492 nm. Image plates were assembled with
inkscape v1.2.2.

2.5. Molecular Structure

Molecular structure predictions were carried out using the PsiPred Workbench
(http://bioinf.cs.ucl.ac.uk/psipred, accessed on 4 October 2023). Predictions on secondary
structure we carried out with PsiPred 4.0 tool [29]. Information on residues that can be
predicted as disordered and that are structured by joining other proteins were extracted
using DisoPred 3.1 tool [30].

2.6. Molecular Dynamic Simulations

Molecular dynamics studies in solution were carried out using the GROMACS 2021.5
package [31] in conjunction with the AMBER99SB-ILDN force field [32]. The molecular
dynamics protocol was performed for a fragment peptide that comprises the zinc finger
domain regions of SUP (aa: 42–78), which was used in the Nuclear Magnetic Resonance
(NMR) structure determination [33]. Indeed, this fragment was chosen from a multiple
sequence alignment of plant QALGGH proteins that contains only a single zinc finger
domain, most of them from A. thaliana [33]. A multiple sequence alignment of SUP and RA1
proteins identifies the fragment of RA1 (aa: 32–77) as the one corresponding to the peptide
from SUP used in the NMR experimental determination. Since experimental structure
determination of the RA1 zinc finger region is not available, the initial structure of the
RA1 fragment peptide used for starting the molecular dynamics simulation was taken

http://bioinf.cs.ucl.ac.uk/psipred


Biomolecules 2024, 14, 550 5 of 21

from the AlphaFold best scored model of the complete protein [34]. The AlphaFold server
assigns a high level of confidence to the predicted structure of the RA1 zinc finger region.
Values of the predicted local distance difference test (pLDDT), which are used to assess
the confidence level, are higher than 90/100 for residues from Y46 to H68 and higher than
75/100 for residues from R69 to H83. This initial model has a helix feature spreading
beyond the RA1 fragment limits obtained from the multiple sequence alignment; therefore,
we decided to use an extended fragment of RA1 (aa: 32–83) for the peptide simulation to
avoid disturbing this secondary structure element.

The simulation protocol was the same for each simulation, and it consisted of (1) total
energy minimization of the initial system using the steepest descent energy minimization
algorithm and a tolerance of 100 kJ/mol; (2) molecular dynamic simulations with posi-
tion restraint of the protein heavy atoms for 2 ns in order to allow the water molecules
to rearrange around the protein; (3) simulated annealing with position restraint of the
zinc finger heavy atoms, increasing the temperature from 300 K to 400 K during 200 ps,
equilibrating the temperature for 600 ps, and finally gradually cooling the system back
to 300 K during 4.2 ns (5 ns in total) in order to enhance conformational sampling; and
(4) molecular dynamics production run at a temperature of 300 K for 1 µs. In all cases, the
proteins were inserted into an octahedral box of simple point charge (SPC) water molecules.
The minimum distance between the protein and the simulation box was 1.1 nm, to avoid
any inappropriate behavior of the water molecules. The timestep of 2 fs was used for the
integration of the equations of motions. The Berendsen thermostat and barostat were used
to couple the systems to a temperature of 300 K (with coupling time constant 0.1 ps) and
a pressure of 1 bar (with coupling time constant 2.0 ps) baths, respectively. The particle
mesh Ewald method [35] was used to treat long-range Coulombic interactions. The LINCS
algorithm [36] was used to constrain bond lengths of protein atoms and SETTLE for the
water molecules [37]. Van der Waals forces were considered up to distances of 1.2 nm, and
Coulomb interactions were truncated at 1.2 nm. The root-mean-square deviation (RMSD)
of backbone atoms was calculated over the 1µs simulated time, while the root-mean-square
fluctuation (RMSF) was computed using the final 200 ns of the molecular dynamic’s trajec-
tory. Both RMSD and RMSF were calculated using the central structure as the reference for
rigid fitting and distance calculations. This central structure is determined from the RMSD
matrix in a preliminary calculation performed using as reference the initial structure of the
simulation, as it is the one with the lowest average RMSD to all the structures within the
equilibrated time interval after the fitting procedure (see gmx cluster module in ref. [31]).
This central structure is significant since it is representative of the geometry of the peptide
in equilibrium.

2.7. Analysis of Promoter cis-Acting Regulatory Elements in Grasses

To identify conserved regulatory motifs on the promoter regions, we downloaded 2 kb
upstream genomic sequences from the translation initiation site of RA1, RA1-like A, and
RA1-like B of 16 grass species. Downloaded sequences were screened to search for codified
genes using FGENESH (http://www.softberry.com/berry.phtml, ccessed on 10 August
2023) [38]. When additional genes were identified, retrieved sequences were shortened
accordingly. Retrieved sequences were organized in eight different datasets: (a) RA1 Andro-
pogoneae dataset, comprising RA1 promoter sequences from four Andropogoneae species;
(b) RA1 Paniceae dataset, comprising RA1 promoter sequences from four Paniceae species;
(c) RA1-like A Andropogoneae dataset, comprising RA1-like A promoter sequences from
three Andropogoneae species; (d) RA1-like A Paniceae dataset, comprising RA1-like A
promoter sequences from four Paniceae species; (e) RA1-like A BOP dataset, comprising
RA1-like A promoter sequences from five species of BOP clade; (f) RA1-like B Andro-
pogoneae dataset, comprising RA1-like B promoter sequences from three Andropogoneae
species; (g) RA1-like B Paniceae dataset, comprising RA1-like B promoter sequences from
five Paniceae species; and (h) RA1-like B BOP dataset, comprising RA1-like B promoter
sequences from six species of BOP clade. Potential cis-acting regulatory elements were de-
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termined against the JASPAR CORE 2022 database of nonredundant transcription binding
profiles from plants [39] using XSTREME [40]. Each dataset was scanned for motifs ranging
from 6 to 30 characters and default settings. We considered motifs with E-value < 0.05.

3. Results
3.1. Phylogenetic Analysis
3.1.1. SUP Evolution and the Origin of RA1

The BLASTp searches recovered SUP sequences along most of the embryophyte
species, except from M. polymorpha and S. moellendorffii. To identify the origin of RA1 and
understand its evolution, we reconstructed a phylogenetic tree with amino acid sequences
obtained from genomes of grasses and other embryophytes. For that, we used SUP se-
quences from non-seeds plants (P. patens and C. purpureus) as outgroups. The recovered
tree topology, and the presence of a single copy sequence of the grass P. latifolia suggests
that RA1 originated from two successive duplications of SUP that occurred at the split of
the BOP and PACMAD clade (Figure 1). As a result of these duplications, three lineages of
sequences were generated; one of them includes RA1 sequences, and the other two are here
named arbitrarily RA1-like A and RA1-like B. In this tree, the evolutionary relationships
among RA1 and RA1-like remain unclear.

3.1.2. Evolution of RA1 in Grasses

To gain resolution on the relationship between RA1 and RA1-like, we reconstructed a
new phylogeny with amino acid sequences obtained from 16 genomes of grass species using
as an outgroup the SUP sequence from the monocot J. ascendence (Figures 2a, S2 and S3).
The obtained tree topology suggests the possibility that (1) RA1 was originated after a
second duplication around the split of the BOP and PACMAD clades, (2) RA1 is sister
to the RA1-like B proteins, (3) RA1 was lost in the BOP clade and currently is present in
the PACMAD clade, (4) RA1-like A and RA1-like B are found in species of both BOP and
PACMAD clades, and (5) species-specific duplications and loss of some copies of RA1 and
RA1-like suggest a complex evolution of these molecules during the diversification of the
grasses (Figure 2a and Figure S4). Overall, SUP, RA1, and RA1-like are single-copy genes,
except for the two RA1 variants found in S. bicolor, as previously described [2] (Figure 2a).

Genome annotations indicate that SUP is on Chr3:8242256. . .8243372 of the Ara-
bidopsis genome, whereas RA1, RA1-like A, and RA1-like B are on maize chromosomes
Chr7:114958642. . .114959398, Chr5:68312034. . .68312578, and Chr10:103427449. . .103428364,
respectively. Chromosomal collinearity visualization maps indicate that Arabidopsis chro-
mosome 3 lacks synteny with maize chromosomes 7, 5, and 10 (Figure S5). In contrast, RA1
and RA1-like genes are placed in syntenic chromosome blocks among maize, Setaria, and
rice (Figure S6). These results suggest that RA1 and RA1-like are syntenic paralogs.

3.2. Conserved Motifs Analysis among RA1 and RA1-Like Coding Sequences

To discover specific features that characterize the coding region of each lineage, we
performed a motif analysis (Figure 2b). We searched for 15 different motifs using MEME to
better understand sequence plasticity (Figures S7 and S8). Some of them are lineage-specific
(for instance, Motif 7 (WPPPQVRS), Motif 8 (PPPNPNPSCTVLDL), Motif 11 (FPWPPQ),
Motif 12 (VVCSCSST), and Motif 13 (MESRSAARAGDQQH)), and others are shared by
lineages, such as Motif 3 (ARAPJPNLNYSPPHPA), which is present in RA1-like A and RA1-
like B sequences, whereas Motif 4 (APPVVYSFFSLAASA) is shared by RA1 and RA1-like B
sequences (Figure 2b and Figure S7). All the sequences have in common the presence of one
C2H2 zinc finger domain (Motif 1 (SSSSSYTCGYCKREFRSAQALGGHMNVHRRDRARL-
RHGQSP)) (Figure 2b and Figure S9). In particular, sequences from RA1 lineage have the
variant QGLGGH in the zinc finger domain, as it was previously reported [2] (Figure 2c).
In addition, Motif 2 (GDGAEEGLDLELRLG) appeared two to three times towards the
C-terminal of all the sequences. Our analysis identified two Motif 2 along the C-terminal of
the RA1-like sequences, whereas three Motif 2 were detected on most of the RA1 sequences
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of the PACMAD clade (Figure 2b and Figure S9). In addition, we found that the number
of Leu (L) and the distances between the Motifs 2 vary among clades (Figures 2b and S9).
According to the literature, Motif 2 is a putative EAR-like repressor motif [2,41–45].
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transcription factor in embryophytes generated by Bayesian inference using 73 peptide sequences
(Figure S1 and Table S1). Black dots indicate Bayesian posterior probability (PP) = [0.9 to 1]. Green
arrows indicate gene duplication events. Black asterisk points out proteins with known function
(Table S2).

3.3. Subcellular Localization

To determine the in vivo subcellular localization of the RA1 and RA1-like proteins
of maize and S. viridis, we generated a N-terminal translational fusion with GFP. The
35S:GFP:RA1 and 35S:GFP:RA1-like constructs were analyzed by a transient expression
system in agro-infiltrated young tobacco leaves. The fluorescence was observed through a
laser scanning confocal microscope. DAPI staining was used to visualize nuclei localization.
As shown in Figure 3, the RA1 and RA1-like proteins are localized in the nuclei of tobacco
epidermal cells.
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Figure 2. Evolution of RA1 in grasses. (a) Majority rule consensus tree (N = 22502 trees) of RA1 and
RA1-like transcription factors in grass species generated by Bayesian inference using 35 amino acid
sequences (Figures S2 and S3 and Table S1). Each clade is identified by a color. Black dots indicate
Bayesian posterior probability (PP) = [0.9 to 1]. Black asterisk points out proteins with known function
(Table S3). (b) Motif distribution patterns on RA1 and RA1-like amino acid sequences in grass species.
Colored boxes represent motif occurrence (Figures S7 and S8). (c) Sequence representation logo of
Motif 1 obtained from the multiple sequence alignment (Figure S9). Black arrowhead indicates the
amino acid variant (A- > G) in Motif 1.

3.4. Molecular Modeling
3.4.1. Proteins’ Secondary Structure and Conformational Plasticity

The secondary structure properties of the SUP/RA1 members are poorly charac-
terized [33,46]. Only the zinc finger C2H2-type of SUP has had its secondary structure
experimentally solved by NMR [33]. So, to gain perspective on protein structure among
SUP, RA1, and RA1-like, secondary structures predictions were carried out using the
PsiPred Workbench (http://bioinf.cs.ucl.ac.uk/psipred) and its PsiPred 4.0 tool [29]. We
also used the server’s tool DisoPred 3.1 [30] to predict regions that cannot be assigned a

http://bioinf.cs.ucl.ac.uk/psipred
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known secondary structure, which are termed as disordered regions. The same algorithm
also predicts regions with high probability of binding other proteins. These properties are
graphically shown in Figure 4 and Figure S10 and Table S4 as a function of the residue
number/name. Overall, the N-terminal region of SUP, RA1, and RA1-like is predicted as
disordered with protein binding affinities. Allocated within the N-terminal disordered
segment are common motifs shared between lineages, such as Motif 4 and 5 (Figure 2b).
The N-terminal disordered region is followed by a region defined as a coil that continues
with the C2H2-type domain. The structural predictions suggest the zinc finger to be formed
by a β-sheet (two consecutive β-strands) followed by an α-helix (Table S4). In general, the
C-terminal of RA1 and RA1-like is presented as a disordered region with protein binding
affinities. Allocated within the C-terminal disordered segment is Motif 3 shared by RA1-like
A and RA1-like B (Figure 2b). In addition, we found stabilized ordered segments, such as
two to three α-helices. These ordered segments are mostly correlated with the allocation of
Motif 2 (Figure 4 and Figure S10 and Table S4).

3.4.2. Zinc Finger Molecular Dynamics Simulation

The zinc finger of SUP (1NJQ) is a structure resolved by NMR (20 models), which has
75% sequence identity with the zinc finger of RA1 (Figure S11a). There is no experimental
structure of RA1. Given differences in sequence identity between SUP and RA1, we
performed 1µs molecular dynamics simulations of each protein zinc finger domain to
evaluate differences in the structural stability of these variants. The RMSDs of these
simulations as a function of simulated time (Figure S11b) show small departures from
their initial values (average RMSD values lower than 0.5Å). This fact is associated with the
robustness of the structure of the zinc finger domain of both proteins and the proximity
of the initial models to the equilibrated structures. We assumed that the simulated time
in the period [0.8µs, 1.0µs] is adequate to calculate equilibrium properties of the systems
since the RMSDs of the simulations of both proteins show small fluctuations without any
appreciable definite tendency.

Analysis of the time evolution of the secondary structure of SUP and RA1 peptides
showed the classical pattern of a zinc finger with a β-sheet composed of two strands
(Y47T48-F55E56 and Y46T47-F54E55 in SUP and RA1, respectively) and a turn stabilized by
H-bonds (S50F51C52 and G49Y50C51 for SUP and RA1), followed by an α-helix (A59:H69
and A58:R72 for SUP and RA1) (Figure 5a, Table S4). The α-helix structural motif is four
residues longer for the case of RA1 (an additional turn). Beyond the α-helix structural motif,
the SUP peptide presents a turn of a 310-helix (D72:R75) (Figure 5a, Table S4). We observed
an additional structure with fluctuating characteristic 310-helix, α-helix, and turns in RA1
peptide (I76:Y80) (Figure 5a, Table S4).

Previous work suggests that the change of Ala (A) to Gly (G) in the QALGGH motif of
the RA1 zinc finger could lead to an enhanced mobility of the residues in the α-helix [2].
However, such a hypothesis has not been tested yet. Here, we performed a comparative
RMSF analysis between RA1 and SUP to test whether the G affects the structure dynamic
of the zinc finger α-helix (Figure 5b). The RMSF of the SUP and RA1 amino acids were
calculated in the equilibrium interval of the simulations for the backbone atoms of each
residue. We found that, at this site, the amino acids of RA1 show smaller fluctuations
than the respective amino acids of SUP (Figure 5b). One could argue that the effect of the
substitution of A by G may not be local; however, we found that the RA1 amino acids
show smaller fluctuations along all the extensions of the canonical zinc finger domain.
The existence of a longer α-helix motif in the RA1 peptide, followed by the additional
helix pattern, causes the region of small fluctuations or relative rigidity of the peptide to
extend well beyond the canonical zinc finger motif (Figure 5b). These results indicate that
substituting A for G does not impact the three-dimensional structural mobility at that site,
nor does it affect the overall structure of the zinc finger.
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3.5. Cis-Acting Regulatory Elements Analysis among RA1 and RA1-Like Promoter Sequences

When the promoter of RA1 and RA1-like genes of 16 grass species were examined,
many regulatory motifs were identified and grouped into 33 types of elements, accord-
ing to the corresponding transcription factor (TF) family (Figure 6, Table S5). Conserved
sequences containing binding motifs for well-known transcriptional regulators were rec-
ognized. We identified TF motifs involved in different biological processes related to
(1) seed germination, such as embryo development, somatic embryogenesis, and positive
regulation of cell population proliferation; (2) plant development, such as regulation of
secondary shoot formation, leaf development, flower development, and root development;
(3) response to abiotic stress, such as response to salt stress, response to light stimulus, and
response to water; and (4) response to biotic stress, such as defense response to bacterium
(Table S6). In addition, we identified TF binding sites related to positive or negative regu-
lation of hormone signaling pathways, hormone biosynthetic processes, as well as auxin,
gibberellin, abscisic acid, and ethylene responses (Table S6).
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Figure 4. Protein secondary structure and conformational plasticity. (a) Secondary structure predic-
tion of SUP, ZmRA1-like A, ZmRA1-like B, and RA1 proteins obtained by PsiPred server. α-helix
corresponding to the zinc finger domain is represented in orange. α-helix corresponding to Motif
2, putative EAR motif, is represented in violet. Other α-helices are represented in pink. β-strands
are represented in yellow. (b) Relative disorder levels of the structures measured in a range of 0
to 1.0 (Figure S10 and Table S4). Levels above 0.5 (dashed line) are considered disordered regions.
Abbreviations: ZF, zinc finger domain; EAR, EAR repressor motifs.

The conserved regulatory motifs harbored nine putative TF binding sites for RA1-like
A lineage, 22 putative TF binding sites for RA1-like B lineage, and 13 putative TF binding
sites for RA1 lineage. We found two conserved motifs shared by RA1-like and RA1 promoter
sequences: (1) ABI-motifs are present among at least 24 of 35 promoter sequences analyzed;
(2) WRKY-motifs were identified in 12 of 35 promoter sequences.

RA1-like A shares (1) TCP-motifs with the promoter sequences of RA1-like B of the
PACMAD clade, except for the ones of Andropogoneae, and (2) DREB1E-motifs with
Andropogoneae promoter sequences of RA1.

RA1-like B has five motifs in common with RA1: (1) ARF-motifs are present in all
RA1-like B and RA1 promoter sequences of the Andropogoneae tribe; (2) AGL-motifs are
well conserved in RA1-like B promoter sequences, except in the Andropogoneae tribe, while
AGL-motifs are restricted to the Andropogoneae tribe in RA1 lineage; (3) MYB-motifs were
identified in RA1-like B sequences of the PACMAD and RA1 promoter sequences from the
Andropogoneae tribe; (4–5) MNB1A-motif and ERF-motifs were identified among RA1-like
B promoter sequences of the PACMAD clade, except for the ones of Andropogoneae, and
RA1 promoter sequences from the Andropogoneae tribe.
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We found that each species lineage copy is characterized by unique cis-elements. The
RA1-like A lineage has conserved BPC-motifs outside the Andropogoneae tribe and a
RA1 binding motif in the Andropogoneae tribe. TGA9-motif, GRP9-motif, and HHO3-
motif were identified only in promoter sequences from PACMAD clade species outside
the Andropogoneae tribe. The RA1-like B lineage is characterized by the presence of
NAC-motifs on all promoter sequences analyzed, except for the one of T. intermedium.
OsRR22-motif, BZIP48-motif, and GATA20-motif are restricted to the BOP clade. Between
species from the PACMAD clade, bHLH130-motif, ANL2-motif, and an unknown motif
were identified in the Andropogoneae tribe, while PLT1-motif, FUS3-motif, ABF2-motif,
Zm00001d027846-motif, ATHB-12-motif, AHL20-motif, and DOF3.6-motif were identified
outside the Andropogoneae tribe. Finally, the promoter sequences of the RA1 lineage are
characterized by the presence of (1) SPL14-motif, TB1-motif, CDF5-motif, and O2-motif
sequences in the Andropogoneae tribe and (2) SMZ-motif outside the Andropogoneae tribe.
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Figure 5. Zinc finger molecular dynamics simulation. (a) Time evolution of the secondary structure
of SUP and RA1 proteins as determined by the DSSP algorithm using the simulated structures in
the thermodynamics equilibrium interval (0.8 to 1.0 µs). At the side of the graph, the amino acid
sequences are quoted with their residue number in the proteins. In the center of the graph, the relative
position of each residue in reference to the first one of the α-helix N-terminal is indicated. (b) RMSF
of the backbone atoms of each amino acid sequence in the equilibrium interval (0.8 to 1.0 µs), taking
as reference for fitting the structures the one with smallest RMSD in the same period.
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4. Discussion

RAMOSA1 is a small C2H2 zinc finger transcription factor that has an unquestionable
role during maize inflorescence development and domestication [1,4,5]. Indeed, RA1 is
the core of the RAMOSA circuit that regulates the fate of axillary meristem determining
the final form of the maize inflorescence architecture. Despite its remarkable role, so far,
the origin and the evolution of RA1 has remained uncertain. It has been mentioned that
SUP may be the Arabidopsis homolog of RA1 based on sequence similarity; however, it
has been documented that SUP and RA1 have different functions [1,8,47].

We identified that SUP was present, at least, from the early diversification of em-
bryophytes (land plants). Based on such results we reconstructed the evolutionary history
of SUP/RA1 in embryophytes. The phylogeny presented here suggests that RA1 arose
from two successive duplications of SUP occurred at the diversification of the BOP and
PACMAD clades. The first duplication gave rise to the RA1-like A lineage that is sister
to the paralogs RA1-like B and RA1 lineages. The phylogeny is also supported here by
genome synteny studies. Indeed, the previous literature and the collinearity analysis pre-
sented in this work suggest that both duplications may correlate with GD that occurred at
the base of BOP/PACMAD separation (at ~80 million years ago) [48–50]. Interestingly, RA1
and RA1-like paralogs genes are exclusive of grasses and show different patterns of reten-
tions and losses, as is usually observed after genome duplication events [48–50]. It is well
documented that differential gene loss or subfunctionalization and neofunctionalization
of retained copies, as the case presented here, may promote morphological, physiological,
and ecological diversification, in particular, in grasses [51,52].

The nuclear localization of RA1 is well described [3]; however, the localization of RA1-
like proteins was unknown. To generate knowledge on the general role of such proteins,
we performed protein subcellular localization studies. We observed that RA1 and RA1-like
localized in the nucleus besides lacking a classical nuclear localization signal [3]. So far, our
results indicate that RA1 and RA1-like proteins may move to the nucleus to regulate gene
expression like most of the C2H2 zinc finger proteins.
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4.1. Duplication of SUP/RA1 Correlates with Changes in the Coding Region, Secondary Structure,
and Diversification of the Binding Properties of Their Promoter Regions
4.1.1. Evolution of RA1 and RA1-Like Amino Acid Sequences

We found conserved and divergent motifs along RA1 and RA1-like amino acid se-
quences. All the sequences studied in this work presented the C2H2-type zinc finger with
the motif QALGGH, except for the variant of QGLGGH in the RA1 sequences. Overall, we
observed conserved motifs between RA1-like A and RA1-like B and between RA1-like B
and RA1 sequences as well as specific motifs that characterize each lineage. Some of these
conserved motifs were identified in regions predicted as disordered structures with binding
protein affinities, suggesting that RA1 and RA1-like have diversified their function through
variations in protein–protein interaction. The functional significance of this observation is
still to be determined.

Interestingly, we identified motifs linked to positive and negative regulators of the
transcription, as was previously identified in SUP [53]. Negative elements at the N-terminal
of the zinc finger domain (Motif 1) might affect nucleosome positioning in the core promoter
region, as was shown in SUP [53]. Also, the region around the C-terminal (Motif 2)
could be a target site for methylation and silencing the gene expression [53,54]. Likewise,
results of ChIP-seq and genome-wide analysis of RA1 occupancy showed that RA1 can
repress and also activate genes associated with nucleic acid-related processes, such as
chromatin, and TFs implicated in cell specification, with final effects on maize inflorescence
development [5].

In particular, in the present study, Motif 2 was identified as a putative EAR-like
repressor motif (xLxLxLx; [41,43–45,55–57]). Indeed, SUP has been characterized as a
repressor protein whose repression activity falls on the unique C-terminal EAR motif [42].
However, RA1 was described as a repressor protein bearing two EAR motifs: an EAR motif
towards the C-terminal of the protein as in SUP [2] and a second one close to the C-terminal
of the zinc finger domain [4]. It was documented that both EAR repressor motifs of RA1
are involved in the interaction with REL2 (a co-repressor homolog to TPL of Arabidopsis),
which, in turn, regulates their target genes promoting the formation of short branches
bearing paired spikelets in maize [4,58]. Similarly, more recently, it has been documented
that SUP acts as a repressor of B class genes in the 4th whorl during flower development
by interacting with TPL via its single EAR motif located at the C-terminal region of the
protein [59]. Indeed, a site-directed mutagenesis of the SUP EAR motif demonstrated that
the removal of a Leu will abolish the interaction between SUP and TPL [59]. Interestingly,
among RA1 sequences, we found natural Leu mutations in Motif 2 located next to the
zinc finger domain in sequences of PACMAD species, excepting the Andropogoneae. In
addition, the results presented in this work indicate that most RA1 and RA1-like proteins
also carry an additional putative EAR motif in between. So far, experiments on the role
of the third putative EAR motif observed in RA1 and RA1-like were not carried out yet.
Then, RA1 sequences of the Andropogoneae members may have up to three putative EAR
motifs. The phylogeny presented here supports the hypothesis of an increment in the
number of putative EAR motifs during the evolution of SUP/RA1. Interestingly, it is well
documented that a greater number of Leu along the EAR, a greater number of EAR motifs
along the amino acid sequences, and regions that border EAR motifs are equally important
for stabilizing binding to repressor proteins such as TPL [45]. These results suggest that,
given the differences in the number and conservation of Leu residues of the EAR motifs,
RA1 may have evolved towards an increased strength of repression activity through more
stable binding to its co-repressor counterpart.

4.1.2. Changes in Secondary Structures

Studies on how folding information is distributed along a protein sequence provide
information on the formation of different secondary structures, such as α-helices and β-
sheets, and on binding properties [60]. The secondary structure predictions carried out
in this work suggest that SUP, RA1, and RA1-like mainly differ towards the C-terminal.



Biomolecules 2024, 14, 550 15 of 21

Such differences are correlated with the presence of one to three Motif 2, identified here as
putative EAR motifs. Interestingly, EAR motifs were, previously, described as important
motifs for the interaction with co-repressors [2,45,59].

Most zinc finger proteins of plants bind DNA via a short α-helix containing the highly
conserved QALGGH sequence [61,62]. Interestingly, RA1 orthologs are characterized by
having the QGLGGH sequence instead [2]. It has been suggested that Gly may act as a
helix-relaxing residue that confers unique functional attributes [2]. Our analysis identified
that the SUP zinc finger domain secondary structure consists of a very well-defined ββα

motif, as was experimentally determined [33]. The same structure was predicted for the
RA1 zinc finger domain, suggesting that RA1 binds DNA in a similar way to all other C2H2
zinc finger proteins structurally characterized [33,62–70]. The RMSF studies presented in
this work showed that the change of Ala to Gly in the QALGGH motif of the RA1 zinc
finger does not affect the mobility of the helix region, as was suggested in a previous
work [2].

On the other hand, the zinc finger is one of the major structural motifs involved in
eukaryotic protein–DNA interaction [60,71]. Structural studies on the C2H2 zinc finger
have revealed that three positions (determinant residues) in the helical region of the zinc
finger participate in major interactions with sequences in target DNA. In animals, the three
amino acid residues of the finger that specifically make contacts with the DNA bases occupy
the helix positions +2 (Arg), +3 (Asn), and +6 (Arg), and in plants, two of them correspond
to the sequence QALGGH [55,62,72–76]. In this context, in SUP, the QALGGH sequence
occupies positions 2–7 of the helix; that is, it includes all three residues (+2, +3, and +6) [33].
In SUP, position 2 is occupied by a Gln (Q) residue, position 3 by an Ala (A), and position 6
by a Gly (G) residue [33]. Even though Q and more infrequently A residues are reported to
act as base determinants, it is difficult to conceive that G can bind a base of the nucleotide
due to the lack of a side chain [33]. Indeed, it has been proposed that the binding of SUP
is performed through residues at relative positions −1 (S), 2 (Q), and 3 (A) [33]. The G
residues at relative positions 5 and 6 could allow the helix to draw closer to the DNA, and
the residues at the C-terminal of the zinc finger helix relative positions 9 (N), 10 (V), and
12 (R), may bind the DNA, as in the case of EPF2-5 and EPF2-7 of petunia [77]. For the case
of the RA1 residue at relative position, 3 is a G; therefore. the proposal of positions -1, 2,
and 3 as base determinants can be ruled out. Nevertheless, it is still possible that G plays
a passive role in the approximation of the α-helix to the major groove of DNA, allowing
other determinant residues upstream in the structure to bind the DNA bases [33]. In the
same way, taking the alternative proposal of Isernia et al. [33], the determinant residues
would be 9 (N), 10 (I), and 12 (R) near the zinc finger α-helix C-terminal. The variability
of residues in this zinc finger sequence among zinc finger proteins could be related to
specificities for different and unique base triplet sequences, generating a huge diversity of
target sequences [62,76]. To explore these possibilities, additional experiments are needed
that, however, are beyond the scope of this work.

4.1.3. Changes in Promoter Binding Properties

Regulatory motifs in promoter regions serve as recognition sites for TFs that promote
the initiation of transcription as well as specific regulation of gene expression [78]. In gen-
eral, most of the cis-acting elements identified in all promoters suggest that these proteins
are related to plant growth and development but via different pathways or interacting with
diverse partners.

The analysis of regulatory elements in the potential promoters of RA1 and RA1-like
genes identified binding motifs for TFs involved in seed germination (ABI3, [79]; ABI5, [80];
FUS3, [81]), plant development (BPC5, BPC6, [82]; TB1, [83]; ARF4, [84]; ARF16, [85];
RA1, [2]; SMZ, TGA9, [86]; bHLH130, [87]; SPL14, [88]; ATHB12, [89]; AGL27, [90];
AGL42, [91]; CDF5, [92]; ARALYDRAFT_897773, also known as TCP4, [93]; ARALY-
DRAFT_496250, also known as TCP5, [94]; GRF9, [95]; ANL2, [96]; PLT1, [97]; HHO3, [98];
ABF2, [99]; DOF3.6, [100]), response to abiotic stress (DREB1E, [101]; ERF008, [102];
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ERF055, [103]; ERF115, [104]; NAC020, [105]; NAC045, [106]; NAC092, [107]; OsRR22, [108]),
and response to biotic stress (WRKY62, [109]; WRKY75, [110]; MYB73, [111]). The partial
conservation of RA1 and RA1-like promoters suggests that, after duplication, the genes have
partially retained the ancestral upstream network and also acquired diverse regulatory
pathways. It would be interesting to investigate how changes in the promoter region
correspond to motif diversification and protein structure.

The conserved promoter sites found in the RA1 sequences in this study are consistent
with the findings of Strable et al. [6]. The authors identified several highly conserved motifs
in the RA1 promoter sequences of Andropogoneae species, such as ARFs-motifs, which
were also identified in the present study. Also, our findings support the hypothesis that
RA1 plays a role in the transition to flowering, the integration of both developmental and
environmental cues [5], as well as the positive or negative regulation of gene expression in
specific organs and at certain stages of development [53]. Additionally, our results suggest
that these sites may also be involved in the regulation of hormonal pathways. In line with
this, previous RNA-seq and Chip-seq studies have also indicated that RA1 may be involved
in the biosynthesis and signaling of gibberellic acid and linked to auxin pathways [5].

5. Conclusions

To link the fragmented and sometimes conflicting knowledge on the evolution and
functionality of SUP/RA1 proteins, in this work, we present (1) a solid phylogenetic
framework to understand the origin and evolution of RA1 in embryophytes, (2) a detailed
SUP/RA1 homology clustering among model and non-model embryophyte species, and
(3) new insights on the RA1 gene features and protein structure evolution.

The phylogenetic reconstruction presented in this work suggests that RA1 arose from
two successive SUP duplications during the diversification of grass species. This gave
rise to three different grass sequence lineages, namely RA1-like A, RA1-like B, and RA1,
most of which have unknown functions. The phylogenetic distance and duplication events
that separated SUP and RA1 may explain the different roles reported for these proteins.
Interestingly, the genomes of most studied species have retained RA1 and RA1-like proteins,
underscoring their functional significance.

Our findings indicate that RA1 and RA1-like play roles in the nucleus despite lacking
a traditional nuclear localization signal. Here, we report that copies diversified their
coding region and, with it, their protein structure, suggesting different patterns of DNA
binding and protein–protein interaction. In addition, each of the retained copies diversified
regulatory elements along their promoter regions, indicating differences in their upstream
regulation. Overall, our analyses suggest that RA1 and RA1-like are likely involved in
different pathways of plant growth and development. Therefore, the evidence indicates
that the RA1 and RA1-like gene families in grasses underwent subfunctionalization and
neofunctionalization enabled by gene duplication.
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Figure S5: Chromosome synteny between A. thaliana and Z. mays; Figure S6: Chromosome synteny
between O. sativa, Z. mays, and S. viridis; Figure S7: Schematic distribution of conserved motifs in
RA1 and RA1-like proteins; Figure S8: Motif consensus sequences identified by MEME; Figure S9:
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Figure S10: Proteins conformational plasticity; Figure S11: Zinc finger dynamic simulation; Table
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