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Abstract: Peptides possessing antihypertensive attributes via inhibiting the angiotensin-converting
enzyme (ACE) were derived through the enzymatic degradation of Trichiurus lepturus (ribbonfish)
using alkaline protease. The resulting mixture underwent filtration using centrifugation, ultrafil-
tration tubes, and Sephadex G-25 gels. Peptides exhibiting ACE-inhibitory properties and DPPH
free-radical-scavenging abilities were isolated and subsequently purified via LC/MS-MS, leading to
the identification of over 100 peptide components. In silico screening yielded five ACE inhibitory
peptides: FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and GPTGPAGPR. Among these,
IFPRNPP and AGFAGDDAPR were found to be allergenic, while FAGDDAPRR, QGPIGPR, and
GPTGPAGP showed good ACE-inhibitory effects. IC50 values for the latter peptides were obtained
from HUVEC cells: FAGDDAPRR (IC50 = 262.98 µM), QGPIGPR (IC50 = 81.09 µM), and GPTGPAGP
(IC50 = 168.11 µM). Peptide constituents derived from ribbonfish proteins effectively modulated
ACE activity, thus underscoring their therapeutic potential. Molecular docking and modeling cor-
roborated these findings, emphasizing the utility of functional foods as a promising avenue for the
treatment and prevention of hypertension, with potential ancillary health benefits and applications
as substitutes for synthetic drugs.

Keywords: Trichiurus lepturus; ACE inhibitory peptides; in silico; molecular docking

1. Introduction

Angiotensin-converting enzyme is considered a major determinant of the control of
blood pressure and cardiovascular-disease-related morbidity as it is responsible for releas-
ing angiotensin-II, a potent vasoconstrictor, by cleaving angiotensin-I while simultaneously
allowing renin inactivation of the vasomotor factor bradykinin in the angiotensin system,
ultimately leading to enhanced vasoconstriction, which leads to hypertension [1]. Bioactive
peptides have attracted a great deal of interest among researchers because of their great
potential as functional food ingredients. Collagen peptides from various sources have been
used in various products, such as food, cosmetics, pharmaceutical/biomedical products,
and nutritional products [2]. Collagen sourced from aquatic animals was more susceptible
to enzymatic hydrolysis and thus more efficient for preparing bioactive peptides compared
to mammalian collagen. Therefore, it is considered one of the hydrolysates with superior
nutritional properties.

Edible aquatic animals, such as seafood and their by-products, possess substantial
potential for functional food applications and other dietary interventions [3]. In addition,
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aquatic peptides can be tolerated by most people with religious beliefs [4]. However, ACE-
inhibitory peptides derived from ribbonfish are currently less studied. Food processing
often yields a substantial number of by-products or waste materials that possess the
potential for producing bioactive peptides. In our previous work, we optimized the process
parameters for generating bioactive peptides from Trichiurus lepturus (ribbonfish). The
objective of this study was to purify bioactive peptides from ribbonfish protein hydrolysate
and assess their antihypertensive properties.

2. Materials and Methods
2.1. Materials

Ribbonfish (Jiadefu Supermarket, Lianyungang, China), Angiotensin I-converting
enzyme (ACE) with an activity of 0.25 U/mg sourced from rabbit lungs, captopril, and
2,2-diphenyl-1-picrylhydrazyl (DPPH) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Alcalase, trypsin, pepsin, papain, and neutral protease were purchased from Aladdin
Biochemical Technology Co., Ltd., Shanghai, China. All remaining chemicals utilized in
this study were of either chromatographic or analytical grade.

2.2. Methods
2.2.1. Preparation of Enzyme Digests

Ribbonfish protein was prepared using the method outlined by Priscilla et al. [5] with
minor adjustments. Hydrolysis was carried out at a substrate concentration of 100 g/L
in 1 L conical flasks. Incubation was carried out at various optimal temperatures and pH
levels for protease activity for 4 h at 100 rpm. The reaction was terminated via heating at
85 ◦C for 20 min. Subsequently, the hydrolysate was centrifuged at 8000× g for 20 min at
10 ◦C, followed by freeze-drying and storage at 4 ◦C until further use.

2.2.2. Separation of Peptides via Ultrafiltration

The products displaying the highest in vitro ACE-inhibitory activity following alkaline
protease hydrolysis were separated using Amicon® Ultra 15 mL centrifugal filters compris-
ing molecular weight (MW) cut-off membranes, specifically with respect to 10 kDa and
3 kDa (EMD Millipore; Billerica, MA, USA). Three filtrates were obtained with MW < 3 kDa,
3 < MW < 10 kDa, and MW > 10 kDa, respectively. These filtrates were subsequently freeze-
dried for the evaluation of their biological activity.

2.2.3. Separation of Peptides via Gel Chromatography

The ultrafiltrate (50 mg) with potent antioxidant and ACE-inhibitory properties was
subjected to screening and dissolution in 1 mL of distilled water before separation via a
Sephadex G-25 (Sigma Aldrich, St. Louis, MO, USA) column measuring 2.5 × 100 cm. The
elution buffer was maintained at a pH of 6.5, concentration of 50 mM of Tris-HCl, and flow
rate of 1.5 mL/min, with detection performed at 280 nm. The fractions were individually
collected based on absorption peaks, and subsequent lyophilization was carried out to
confirm ACE-inhibitory activity.

2.2.4. Peptide Sequencing and Identification via LC-MS/MS

After desalination, the peptide samples were dried through centrifugation and then
re-dissolved in 100 µL of Nano-LC mobile phase A, which is composed of 0.1% formic
acid and water. The reconstituted samples were then loaded onto a nano Viper C18 pre-
column (3 µm, 100 Å) with an up-sampled volume of 2 µL, followed by a 20 µL volumetric
rinse for desalination. The liquid phase system used was an Easy nL C 1200 nL (Thermo
Fisher, Waltham, MA, USA). The samples were desalted on the pre-column before their
separation on the analytical column, which was a C18 reversed-phase column (Acclaim
PepMap RSLC, Thermo Fisher, Waltham, MA, USA, 75 µm × 25 cm C18-2 µm 100 Å). The
gradient employed for the experiments was a 30 min gradient of mobile phase B (80%
acetonitrile, 0.1% formic acid) increased from 5% to 38%. The mass spectra were obtained
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using a Thermo Fisher Q Exactive system (Thermo Fisher, USA) coupled with a nanolitre
spray Nano Flex ion source (Thermo Fisher, USA) with a spray voltage of 1.9 kV and an
ion transfer tube heated to 275 ◦C. The mass spectra were acquired in an information-
dependent mode. Mass spectrometry was performed using the information-dependent
acquisition mode (DDA, Data Dependent Analysis). The primary mass spectrometry
scanning resolution was set to 70,000, covering a scanning range of 100–1500 m/z, with a
maximum injection time of 100 ms. Within each data-dependent acquisition (DDA) cycle,
a maximum of 20 secondary scans with charges ranging from 1+ to 3+ were obtained,
with a maximum injection time of 50 ms for the secondary mass spectrometry ions. The
collision energy in the collision chamber for all precursor ions was fixed at 28 eV using
high-energy collision-induced dissociation (HCD), and a dynamic exclusion period of 6 s
was employed. The acquired raw spectrum files from mass spectrometry were processed
and analyzed using PEAKS Studio 8.5 software developed by Bioinformatics Solutions Inc.
(Waterloo, Canada).

2.2.5. Screening of Peptides

Identified peptides were analyzed in the peptide Ranker database accessible via the
following link: http://distilldeep.ucd.ie/PeptideRanker/ (Accessed 29 November 2023)
Peptides with bioactive potential were distinguished using a threshold of 0.5 [6]. Ac-
tive peptides were assessed using the AHTpin database (http://crdd.osdd.net/raghava/
ahtpin/index.php (Accessed 29 November 2023)) and identified as antihypertensive pep-
tides if their scores exceeded 0 [7]. Subsequently, antihypertensive peptide activity was
determined using the BIOPEP database (https://biochemia.uwm.edu.pl/biopep-uwm/
(Accessed 29 November 2023)) by utilizing parameter B with a cut-off of 0.03 to estimate po-
tential antihypertensive activity [8]. To predict the peptides’ hypoallergenicity, the AllerTOP
database (https://www.ddg-pharmfac.net/allertop/index.html (Accessed 29 November
2023)) was employed [9]. The stability of non-hazardous peptides in the gastrointestinal
tract was determined using the HLP database (https://webs.iiitd.edu.in/raghava/hlp/
(Accessed 29 November 2023)) to identify peptides that are tolerant to digestive fluids [10].
The ToxinPred database (https://webs.iiitd.edu.in/raghava/toxinpred/index.html (Ac-
cessed 30 November 2023)) was used to predict the prospective toxicity and separation
locations of the selected peptides [11]. Physical properties were determined using the
AHTpin database (http://crdd.osdd.net/raghava/ahtpin/index.php (Accessed 30 Novem-
ber 2023)), while plasma stability was assessed through the PlifePred database (https:
//webs.iiitd.edu.in/raghava/plifepred/batch.php (Accessed 30 November 2023)) [12].

2.2.6. ACE-Inhibitory Property

ACE-inhibitory activity was assessed by following the experimental procedure re-
ported by Dou et al. [13], with slight modifications. A solution of borate-buffered HEPES
(50 mM, pH 8.3) was dispensed into a 96-well plate, followed by the addition of sam-
ples (100 µL), ACE (50 µL, 0.1 U/mL, prepared from 50 mM borate buffer pH 8.3), and
FAPGG(N-[3-(2-Furyl)acryloyl]-Phe-Gly-Gly) (50 µL, 1 mM) into each well. The negative
control group was substituted with 100 µL of borate-buffered HEPES. The initial absorbance
values of a1 and b1 for both the blank and sample groups were then measured at 340 nm
(Thermo Fisher, Waltham, MA, USA). The sample group was then incubated at 37 ◦C for
30 min, and subsequently, the absorbance values were read again at 340 nm (a2, b2).

ACE inhibition rate =
A − B

A
× 100% (1)

where A = a1 − a2, and B = b1 − b2. The initial absorbance of the blank: a1—blank;
b1—sample. a2: the absorbance values after incubation at 37 ◦C for 30 min. a2: blank;
b2: samples.

http://distilldeep.ucd.ie/PeptideRanker/
http://crdd.osdd.net/raghava/ahtpin/index.php
http://crdd.osdd.net/raghava/ahtpin/index.php
https://biochemia.uwm.edu.pl/biopep-uwm/
https://www.ddg-pharmfac.net/allertop/index.html
https://webs.iiitd.edu.in/raghava/hlp/
https://webs.iiitd.edu.in/raghava/toxinpred/index.html
http://crdd.osdd.net/raghava/ahtpin/index.php
https://webs.iiitd.edu.in/raghava/plifepred/batch.php
https://webs.iiitd.edu.in/raghava/plifepred/batch.php
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2.2.7. DPPH Scavenging Activity

After mixing 0.1 mL of the sample with 0.1 mL of 0.1 mM DPPH solution, the mixture
was placed in a dark area. Following a 30 min incubation period (Thermo Fisher, Waltham,
MA, USA), the OD 517nm value of the mixture was measured. The DPPH scavenging
activity was then calculated using the following formula:

DPPH clearance =

(
1 − ax − ax0

a0

)
× 100% (2)

where ax represents the absorbance of the peptide–DPPH reaction, ax0 indicates the ab-
sorbance of the peptide–ethanol reaction, and a0 refers to the absorbance of the
DPPH–water reaction.

2.2.8. Molecular Docking of Peptides with ACE

The three-dimensional structure of human ACE (PDB ID 1O8a) was obtained from
Protein Data Bank (https://www.rcsb.org/) [14]. Pymol 2.5 software was used to optimize
1O8a for the removal of water molecules and small-molecule ligands. The peptide structures
were constructed with Discovery Studio 2019 with the addition of the CHARMm force field
to all peptides. Subsequently, the peptides underwent energy minimization utilizing the
Smart Minimizer algorithm, with a maximum of 2000 steps and an RMS gradient value set
to 0.01. Molecular docking was carried out using 1O8a as the receptor and the peptides as
the ligand. The binding energy was calculated, and the results were then visualized using
PyMol 2.5 software. The affinity value (kcal/mol) represents the binding capacity. The
lower the binding capacity, the more stable the ligand–receptor binding.

2.2.9. In Vitro Simulation of Oral Gastrointestinal Digestion

The in vitro digestion process was utilized [15]. A quantity of 1 mg of the sample was
dissolved in 1 mL of water and preheated in a water bath at 37 ◦C. Then, it was mixed with
1 mL of artificial saliva whose pH was adjusted to pH 6.8. The mixture was then agitated
at 100 rpm for 1 min at 37 ◦C. Subsequently, the pH was adjusted to pH 2.0 using 1 M
HCl and added in equal amounts to the simulated gastric digest. The mixture was then
incubated at 37 ◦C for 90 min. This mixture was then combined with the simulated enteric
digest in a 1:1 ratio and incubated at −4 ◦C for 120 min. After the initial gastric digestion,
the pH was adjusted to 7.5 using 1 M of NaHCO3. For the subsequent stage of digestion,
the pH was again adjusted to 7.5 using 1 of M NaHCO3, and the samples were added to
the simulated intestinal digest in a 1:1 ratio. This mixture was then incubated at 37 ◦C for
120 min. Following each stage of digestion, the samples were collected and centrifuged at
8000× g for 10 min at 4 ◦C. The supernatant was then extracted and stored at −80 ◦C for
later use [16].

2.2.10. Cell Culture

Cell culture procedures were carried out according to the literature. Human umbilical
vein endothelial cells (HUVEC cells) were purchased from Bena Bioengineering Company
(Wuhan, China) and cultured in high-glucose DMEM medium supplemented with 10%
fetal calf serum and 100 units/mL of penicillin at 37 ◦C and 100 µg/mL of streptomycin.
For in vitro experiments, cells were divided into control, peptide (250 µg/mL), and peptide
(500 µg/mL) groups.

2.2.11. Cell Viability Analysis

HUVEC cells at a density of 3 × 105 cells/mL were seeded into 96-well plates and
then incubated at 37 ◦C for 24 h. Thereafter 100 µL of Cell Counting Kit-8 (CCK-8) solution
(Beyotime, Beijing, China) was added to each well and incubated at 37 ◦C for 4 h. The
optical density was then measured at 450 nm using a microplate reader (Thermo Fisher,
Waltham, MA, USA).

https://www.rcsb.org/
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2.2.12. Determination of ACE Inhibition Mode

Different concentrations of FAPGG were used to measure ACE-inhibitory activity as de-
scribed in Section 2.2. The Michaelis–Menten constant (Km), maximum reaction rate (Vmax),
and inhibitor constant (Ki) of the peptides were determined using Lineweaver–Burke plots
according to the Michaelis–Menten equation [17].

2.2.13. Statistical Analysis

All experiments were conducted in triplicate, and the results are expressed as
means ± standard deviations (SDs). The data analysis was performed using SPSS soft-
ware (usedIBM SPSS Statistics 23) (Chicago, IL, USA), identifying significant differences
between results (p < 0.05) using one-way ANOVA and Duncan’s method. Duncan’s multi-
ple extreme variance test was also employed to compare the mean values and determine
significant differences between the results (p < 0.05).

3. Results
3.1. Preparation of Enzyme Digests

The ACE-inhibiting activities of the neutral-protease- [18], trypsin-, papain-, pepsin-,
and alkaline-protease-treated samples are demonstrated in Figure 1. The hydrolysate
treated with alkaline protease displayed the greatest ACE-inhibitive activity, amounting
to 86.7% [19]. Proteases have selectivity towards the amino acid compositions of peptide
bonds when they hydrolyze substrates. Therefore, screening enzymes were beneficial for
improving the biological activity of the hydrolysates [20].
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3.2. Separation of Peptides through Ultrafiltration

Alkaline protease hydrolysates are categorized based on their molecular weights:
>10 kDa, 3~10 kDa, and <3 kDa. Previous studies have indicated that peptides possessing
low molecular weight exhibit greater inhibitory activity against ACE [21]. Hence, it can
be inferred that the <3 kDa fraction may display stronger inhibitory activity against ACE.
Another supposition suggests that there exists a direct correlation between the hydropho-
bicity of peptides and ACE-inhibitory activity. Hence, we isolated the <3 kDa fraction
through G25 gel chromatography and acquired four fractions that were lyophilized for
further examination (Figure 2a). Amongst all the fractions (Figure 2b), only fraction 4 (F4)
demonstrated an ACE-inhibitory activity of 0. This could suggest that the sample had
already gone through the G25 dextran gel column, which was the endpoint of fraction 3.
Fractions 1 (F1) and 3 (F3) demonstrated similar inhibitory activity, which is likely due to
the lower concentration of solutes in the collection solution at the beginning and end of
the process. Peptides with molecular weights greater or less than the weight of fraction
2 were less abundant in fractions less than 3 kDa. The peptides’ greater hydrophobicity
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increased their effectiveness in inhibiting ACE compared to their counterparts. Hence, F2
had the highest ACE-inhibitory activity among all four sites. We hypothesize that specific
structural features of these peptides favor ACE inhibition [22,23].
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3.3. LC/MS-MS Chromatography and Peptide Synthesis

LC-MS/MS peptide sequence analysis identified over 100 peptides in F2. The three
peptides are displayed based on the screening results in Section 3.4, and they are FAGDDAPR,
QGPIGPR, and GPTGPAGPR (Figure 3). This text adheres to the principles of clarity,
objectivity, and logical structure in line with academic conventions. The diverse bioactive
functions of peptides stem from the composition and sequence of a peptide as well as
the size and type of amino acids at the amino or carboxy terminus [24]. These factors
impact the solubility and hydrophobicity of peptides, directly influencing their activity
and ability to be absorbed by the body. A website was used to predict that the secondary
structures of six peptides were randomly coiled. Ossama Daoui et al. demonstrated a
strong correlation between 2D and 3D structural properties and inhibitory activity [25].
Jarosław Ruczyński et al. reported that the α-helical structure of a peptide had a significant
impact on its interaction with negatively charged membranes. They also found a strong
correlation between the helix content of a peptide and antimicrobial activity [26]. This
study demonstrated a correlation between the structure of peptides and their biological
activity. However, David Salehi et al. indicated that there was no correlation between
peptide morphology and cellular uptake properties [27]. In the cited study, secondary
structure related to the peptides’ antioxidant activity [28]. A greater proportion of irregular
curls indicates a looser peptide structure, leading to better exposure of the active site and
thereby enhancing receptor binding [29].
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3.4. In Silico Sieve

Table 1 presents the corresponding in silico results (Supplementary Materials is pre-
sented in Table S1). PeptideRanker, for which a neural network model was leveraged,
was consistently employed to forecast peptide bioactivity. Peptides with a score exceed-
ing 0.5 were deemed biologically active. Subsequent to the initial screening, 43 peptides
were chosen based on their sequence length. Effective ACE-inhibitory peptides (ACEIPs)
typically comprise 2–12 amino acids. Hence, we conducted further analysis on peptides
with sequence lengths of up to 10 to assess their anti-hypertensive properties. Using AHT-
PDB, an additional bioinformatics platform utilizing support vector machine calculations,
peptides scoring above 0 were designated as antihypertensive peptides. Furthermore, the
selected peptides underwent evaluation via the BIOPEP-UWM database using parameters
A (the frequency of peptide occurrence in the protein sequence) and B (ACE inhibition
potential in µM). A crucial screening threshold for highly active ACEIPs was established,
namely, a parameter B value exceeding 0.03. Subsequently, the five peptides identified
through screening with parameter B were assessed using the AllerTOP and HLP databases
to forecast their sensitization and intestinal stability. The peptides were predicted to possess
high ACE-inhibitory activity, be non-sensitizing, and exhibit stability in the gut. Ensuring
the safety of food is paramount. Thus, the ToxinPred database was utilized to predict the
toxicity of five peptides, namely, FAGDDAPR, QGPIGPR, IFPRNPP, AGFAGDDAPR, and
GPTGPAGPR, all of which were found to be non-toxic. While calculations can swiftly
and cost-effectively assess peptide safety, validation through cellular and preclinical ex-
periments remains necessary. The peptides’ molecular weights were all below 1 kDa,
facilitating rapid absorption by the gastrointestinal tract and subsequent development of
their biological activities. The predicted half-lives of the peptides in plasma ranged from
775.81 to 878.81 s. Additionally, these peptides exhibited efficacy in treating liver and
kidney conditions. The physical properties of the target peptides, including hydrophobicity,
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hydrophilicity, amphiphilicity, and isoelectric point, serve as crucial indicators of their suit-
ability in food processing. The hydrophobicity of the studied ACEIPs correlated with their
hydrophobic amino acid content [30]. Notably, QGPIGPR displayed a high amphiphilicity
value of 0.53, suggesting its potential for use in both polar and nonpolar food systems.
Moreover, the pH value of FBSSH was determined to be 5.0, and the isoelectric points
of the five peptides (all greater than 5) were alkaline, indicating their relative stability in
food systems.

Table 1. Results of in silico screening and characterization of different peptides.

Peptide
Sequence FAGDDAPR QGPIGPR IFPRNPP AGFAGDDAPR GPTGPAGPR

Peptideranker Score 0.641 0.762 0.712 0.562 0.698
AHTpin SVM Score 0.230 0.530 1.450 0.240 0.800
AHTpin prediction AHT AHT AHT AHT AHT

Parameter A 0.750 0.857 0.714 0.800 1.111
Parameter B 0.042 0.037 0.036 0.033 0.030
Allergenicity Non-Allergen Non-Allergen Allergen Allergen Non-Allergen

Intestinal stability High High High High High
Toxicity Non-Toxic Non-Toxic Non-Toxic Non-Toxic Non-Toxic

Molecular weight (Da) 847.970 723.930 840.080 976.130 809.010
Half-Life in plasma (s) 845.510 834.410 874.210 878.810 775.810

Hydrophobicity −0.250 −0.220 −0.180 −0.160 −0.160
Hydropathicity −0.890 −1.070 −0.790 −0.570 −1.040
Amphiphilicity 0.310 0.530 0.350 0.250 0.270
Isoelectric point 5.756 6.710 6.653 5.802 6.581

3.5. Molecular Docking of Peptides with ACE

Molecular docking is a technique that mimics small-molecule ligand–receptor biomole-
cules. It is a technique used to simulate the interaction between a small-molecule ligand
and a receptor biomolecule, helping to form a binding site on the surface of the protein
after the complex and to determine the binding mode and affinity of the small molecule
to the receptor [31]. Table 2 displays the docking sites of the molecular docking between
peptides and ACE. Figure 4 provides a 3D model map of docking.

Table 2. Results of molecular docking peptides with ACE.

Name C Docker Energy Mode of Action

1o8a_FAGDDAPRR −10.8 GLU162, GLU376, and SAP377 are involved in facilitating conventional
hydrogen-bonding interactions. Additionally, ALA354, GLU162, SAP377,

ASN66, ASN70, GLN281, HIS353, ALA356, HIS383, HIS387, LYS511,
ARG522, and TYR523 engage in conventional hydrogen-bonding

interactions, carbon–hydrogen bonding interactions with HIS387 and
HIS513, and Pi-Alkyl interactions with HIS383, PHE457, and TYR523.

1o8a_GPTGPAGP −10.4 This peptide engages in an attractive charge interaction and forms a salt
bridge with GLU162. Additionally, it engages in conventional

hydrogen-bonding interactions with ASP377, TYR62, ASN66, ARG124,
GLN281, HIS353, HIS383, HIS387, and HIS513. Carbon–hydrogen bonding
interactions are established with ALA356, SER516, and SER355, while alkyl
interactions occur with LEU139. Finally, pi-alkyl interactions are engaged in

with HIS383 and TYR523.

1o8a_QGPIGPR −9.2 The target protein engages in an attractive charge interaction with ASP358.,
Furthermore, it engages in conventional hydrogen bonding interactions with
TYR62, ASN85, GLU411, TYR394, ARG402, ASP358, ASN66, ASN70, ASN85,
and ARG522; alkyl hydrophobic interactions with ALA63 and VAL518; and

pi-alkyl interactions with TYR62 and TRP357.
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3.6. In Vitro Simulation of Oral Gastrointestinal Digestion

Figure 5 shows that at all stages of digestion, the DPPH radical-scavenging rate of
all three peptides decreased with digestion, using glutathione as a reference, and in the
initial stage, the highest DPPH radical-scavenging rate of the three peptides was exhibited
by GPTGPAGPR, whose DPPH radical-scavenging rate was 10.32% lower than that of
glutathione, and the lowest was FAGDDAPR, whose DPPH radical-scavenging rate was
18.76% lower than that of glutathione. Th is was 32% lower than that of glutathione,
and the lowest was exhibited by FAGDDAPR, whose DPPH radical-scavenging rate was
18.76% lower than the DPPH radical-scavenging rate of glutathione. The low DPPH
free-radical-scavenging activity may be due to the fact that alkalase is a serine protease
and endopeptidase with serine as the main catalytic site. Thus, alkaline phosphatase
produces peptides with no significant activity. In contrast, hydrolysis by pepsin significantly
increased DPPH radical-scavenging activity. This is due to the fact that pepsin cleaves the
peptide bonds of adjacent aromatic amino acids such as phenylalanine, tryptophan, and
tyrosine, and it has been shown that some dipeptides and tripeptides containing aromatic
amino acid residues (tryptophan, tyrosine, etc.) exhibit higher antioxidant activity by
providing hydrogen ions [22]. Using captopril as a reference, the ACE-inhibitory activity of
the three peptides also decreased with digestion, but the difference was that, initially, the
peptide with the lowest DPPH radical-scavenging rate of the three peptides, FAGDDAPR,
had the highest ACE-inhibitory activity, and the ACE-inhibitory activity of FAGDDAPR
was 31.17% lower than the ACE-inhibitory activity of captopril.
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digestion. (a) DPPH activity of three peptides following oral gastrointestinal simulation; (b) ACE-
inhibitory activity of six peptides determined after oral gastrointestinal simulation.

3.7. Determination of ACE Inhibition Mode

To evaluate whether the peptides inhibited ACE in a substrate-competitive manner,
Lineweaver–Burk plot analysis was conducted (Figure 6). This involved examining the
inhibition of ACE at varying peptide concentrations alongside different substrate concen-
trations (0.5, 1 mg/mL). The data analysis was carried out using the Michaelis–Menten
equation program developed in Origin. ACE inhibitors interact primarily with key residues
in the ACE catalytic site and act as competitive inhibitors [32]. Similarly, a wide range
of non-competitive ACE inhibitors have been identified [33,34]. Non-ACE competitive
inhibitors may inhibit ACEs by inducing conformational changes [35]. Further explanation
is required regarding the specific mechanism of inhibition. Additionally, there have been
reports of ACE-inhibitory peptides with a mixed mode of inhibition [36]. This suggests
that these peptides may interact with ACE in a multifaceted manner, possibly involving
both competitive and non-competitive inhibition pathways. In Figure 6, the Vmax values
have decreased, and the Km values have increased, suggesting the peptide might interact
with both the active site (competitive) and the variable structural site (non-competitive) of
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ACE, similar to LEPWR [17]. Further investigation is necessary to fully understand these
peptides’ complex mechanisms of action.
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3.8. Cell Viability Analysis

According to the literature [6], ACE-inhibitory peptides with an IC50 between about
0.32 and 1000 µM have the potential to lower blood pressure. The literature suggests a
possible relationship between IC50 and the amount of hydrogen bond formation [37]. For
example, VGINYW (IC50 15.1 µM) from α-lactalbumin and WAGP (IC50 140.70 µM) from
carnosine protein have demonstrated antihypertensive effects. We therefore hypothesized
that the peptides from FAGDDAPR, QGPIGPR, and GPTGPAGPR may have antihyperten-
sive effects. The IC50 values of FAGDDAPR, QGPIGPR, and GPTGPAGPR are shown in
Figure 7. The C-terminal structural domain is deemed crucial for blood pressure regulation.
Consequently, hydrophobic peptides tend to exhibit a stronger affinity for ACE due to the
hydrophobic environment of the ACE C-terminal structural domain. Numerous studies
have reported that peptides with higher ACE-inhibitory potency often possess an aromatic
amino acid (such as Trp, Tyr, or Phe) at the C-terminus, along with positively charged
amino acids (such as Lys or Arg) at either the C- or N-terminus, particularly if the latter
comprises hydrophobic aliphatic branched chain amino acids (such as Ile, Ala, Met, and
Leu). This observation aligns with previous research findings (regarding Arg, Lys, and
His). Prolonged use of peptides targeting ACE might lead to the development of resistance,
diminishing their effectiveness over time. Furthermore, the antihypertensive effects of
peptides need to be assessed. Blood pressure measurements, cardiac function assessments,
and biochemical analyses could be performed to evaluate the efficacy and safety of peptides
in vivo.
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4. Discussion

The hydrolysis process of ribbonfish was meticulously optimized using five proteases
to obtain hydrolysates with the highest ACE-inhibitory activity. Subsequently, peptides
from the ribbonfish hydrolysates were isolated and identified through a combination of
filtration and gel filtration chromatography techniques. Among the identified peptides,
FAGDDAPRR, QGPIGPR, and GPTGPAGP exhibited notable antioxidant activity and
robust ACE-inhibitory activity, demonstrating IC50 values of 262.98 µM, 81.09 µM, and
168.11 µM, respectively. Similarly, Dong et al. used alkaline protease to hydrolyze tilapia
(Oreochromis niloticus) skin, and the oligopeptide VGLFPSRSF was obtained. Its ACE-
inhibitory IC50 value was 61.43 µM [38]. Li et al. identified peptides from Pinctada fucata
with potential ACE-inhibitory activity, and the IC50 value of the FRVW was 18.34 µM [39].
Wang et al. hydrolyzed Pacific Saury (Cololabis saira) via neutral protease to select ACE-
inhibitory activity peptides, and they found the peptide LEPWR, for which the ACE-
inhibitory IC50 value was 99.5 µM [17]. Based on the IC50 of ACE inhibition, our results
were slightly higher.

Analysis of binding sites between ACE and peptides and inhibition kinetics would
lead to a better understanding of the modes of activity of peptides [40–42]. In addition, the
C-terminal amino acid of peptides could affect their ACE-inhibitory activity significantly,
and the hydrophobicity and three-dimensional structure of the C-terminal amino acids
are crucial factors for their ACE-inhibitory activity [13,41,43]. Moreover, gastrointesti-
nal digestion results could determine whether peptides are affected by enzymes of the
gastrointestinal tract [44–46].

Our study underscores the potential of peptide synthesis and molecular dynamics
simulations as valuable tools for further exploration and understanding of peptides’ mech-
anisms of action. Further in vivo studies are warranted to validate the contribution of
specific amino acids to enzyme inhibition and evaluate the health benefits and metabolic
effects of bioactive peptides derived from ribbonfish. This study provides a technical and
theoretical basis for the potential use of ribbonfish hydrolysate as a functional food to
combat hypertension. The next step is to evaluate them for their stability, bioavailability,
immunogenicity, specificity, and off-target effects in suitable preclinical models.
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