
Citation: Hua, L.; Luo, Y.; Qi, Q.;

Long, J. MedicalCLIP: Anomaly-

Detection Domain Generalization

with Asymmetric Constraints.

Biomolecules 2024, 14, 590. https://

doi.org/10.3390/biom14050590

Academic Editor: Mohsin Saleet Jafri

Received: 20 April 2024

Revised: 13 May 2024

Accepted: 14 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

MedicalCLIP: Anomaly-Detection Domain Generalization with
Asymmetric Constraints
Liujie Hua 1 , Yueyi Luo 2, Qianqian Qi 3 and Jun Long 3,*

1 School of Computer Science and Engineering, Central South University, Changsha 410083, China;
liujiehua@csu.edu.cn

2 School of Mathematics and Statistics, Central South University, Changsha 410083, China; luoyueyi@csu.edu.cn
3 Big Data Institute, Central South University, Changsha 410083, China; qiqianqian@csu.edu.cn
* Correspondence: junlong@csu.edu.cn

Abstract: Medical data have unique specificity and professionalism, requiring substantial domain
expertise for their annotation. Precise data annotation is essential for anomaly-detection tasks, making
the training process complex. Domain generalization (DG) is an important approach to enhancing
medical image anomaly detection (AD). This paper introduces a novel multimodal anomaly-detection
framework called MedicalCLIP. MedicalCLIP utilizes multimodal data in anomaly-detection tasks and
establishes irregular constraints within modalities for images and text. The key to MedicalCLIP lies
in learning intramodal detailed representations, which are combined with text semantic-guided cross-
modal contrastive learning, allowing the model to focus on semantic information while capturing
more detailed information, thus achieving more fine-grained anomaly detection. MedicalCLIP relies
on GPT prompts to generate text, reducing the demand for professional descriptions of medical
data. Text construction for medical data helps to improve the generalization ability of multimodal
models for anomaly-detection tasks. Additionally, during the text–image contrast-enhancement
process, the model’s ability to select and extract information from image data is improved. Through
hierarchical contrastive loss, fine-grained representations are achieved in the image-representation
process. MedicalCLIP has been validated on various medical datasets, showing commendable domain
generalization performance in medical-data anomaly detection. Improvements were observed in
both anomaly classification and segmentation metrics. In the anomaly classification (AC) task
involving brain data, the method demonstrated a 2.81 enhancement in performance over the best
existing approach.

Keywords: anomaly detection; multimodal contrastive learning; domain generalization; GPT

1. Introduction

Anomaly detection is widely applied across various sectors including industrial pro-
duction [1–3], finance, autonomous driving [4], and disease diagnosis [5–10]. In the medical
field, anomaly detection can help reduce misdiagnoses and missed diagnoses caused by
human error during manual inspections. Compared to the industrial sector, medical data
requires a higher degree of specialization. The rarity and diversity of anomaly data make
model construction in this context particularly challenging. Traditional methods, which
rely on the completeness and availability of data [11,12], often struggle in this context.
Constraints related to data privacy and the scarcity of anomaly data further complicate the
direct training of anomaly-detection models.

Existing anomaly-detection methods typically train specifically on certain datasets,
requiring the construction of multiple models and extensive training to adapt to different
application scenarios [13]. This limits the performance of supervised methods and has
become a significant bottleneck in medical-data anomaly detection [14–17]. Additionally,
in multi-category anomaly-detection tasks, multiple models necessitate substantial compu-
tational power and storage resources. Accordingly, the pursuit of a unified generalization
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model for anomaly detection, applicable across diverse data categories, has become a
pivotal area of research. Domain-generalization methods offer new solutions to tackle these
challenges, enabling models to perform effectively across various unknown environments
by leveraging generalized features that are not tied to the specifics of any single dataset.

Domain generalization [5,18–20] aims to build models for data from unknown do-
mains, which addresses challenges such as data scarcity and inaccessibility in new fields.
Given the limitations of available data and the diversity of anomalies, enhancing the domain
generalization of models for such tasks is crucial. However, current research in image-
based anomaly detection tends to focus excessively on single-modal, domain-specific data,
neglecting broader, domain-independent representations. Traditional anomaly detection
typically involves only image modality data. Relying exclusively on image data’s feature
distribution for constructing classification representations, single-modal approaches signifi-
cantly limit the model’s ability to generalize across different domains [21]. Various methods
such as distribution-based representation [11], distance optimization [22,23], and adver-
sarial generation [24–26] are employed. However, domain-generalization representations
based on single-modal data lack diversity.

Single-type, single-modal anomaly detection relies heavily on the construction of classi-
fiers and the distribution of normal samples, leading to models that are significantly tailored
to specific datasets. Significant variations in data distributions across different categories
present substantial challenges for domain generalization in models reliant on single-modal
data. The development of multimodal contrastive models offers a new research direction
for domain generalization in the medical-data anomaly-detection field [14]. Multimodal
approaches leverage the strengths of multiple types of data inputs, such as combining
image and text data, to enhance the robustness and generalization of anomaly-detection
systems across different domains. This integration not only expands the representational
diversity but also improves the adaptability of models to new, unseen datasets, overcoming
the limitations associated with traditional, single-modal anomaly-detection methods [27].

Medical anomaly detection is a complex and resource-intensive task. It relies heavily
on professionals to meticulously annotate features in datasets, a critical step that ensures
accuracy during the training process [28]. Establishing orthogonal domain spaces and
distributions helps to create clear representational boundaries, which are essential for
effective anomaly classification. However, while the construction of medical image anomaly-
detection datasets has demonstrated improved model performance due to its orthogonality,
this characteristic also poses challenges to the model’s generalization ability [29]. Moreover,
the distribution of source-data representations is closely related to the representation space
of specific domains. Establishing orthogonal domain spaces and distributions helps to create
clear representational boundaries, which are essential for effective anomaly classification.

Traditional anomaly-detection models, including self-supervised [6,22,30] and genera-
tive models [25], are capable of learning image-representation distributions and normal
representations from extensive medical image datasets. However, changes in the detection
data lead to corresponding shifts in the distributions of data presentations and normal
representations. Relying solely on single-modal data representation makes it difficult to
achieve a rich information representation for domain generalization and to distinguish
between normal and anomalous conditions effectively.

Therefore, anomaly-detection methods enhance model domain-generalization capa-
bilities by incorporating multimodal approaches. The integrated constraints between
multimodal data enhance the model’s ability to represent information from the data [31–33].
Image–text models enrich the model’s capability for information representation by apply-
ing hierarchical representational constraints and building a more diversified information
representation [34,35]. The inclusion of linguistic information allows a single description
to correspond to multiple objects and categories, as shown in Table 1. For example, the
representation of holes is more dispersed and abstract than image representations. The
constraints it constructs are more broadly applicable, enhancing the model’s ability to relax
the representation of broad-domain data. Supervised methods often build orthogonal fea-
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ture encoding, but this approach is not conducive to domain generalization [13]. Different
objects have different characteristic representations and should be measured using different
orthogonal representations. In the context of unsupervised feature encoding, the resulting
vectors deviate from orthogonality, with distinct objects assuming unique positions that
more accurately reflect real-world conditions. The advantage of using natural language for
supervision is that it allows for more diverse expansions. Linking language representations
with image representations allows for more flexible transformations.

Table 1. Compared to traditional anomaly-detection methods that use a single class and a single
model, the method proposed in this paper has extremely strong domain-generalization capability.
✓ indicates possessing the corresponding capability.

Methods Anomaly Score Anomaly
Segmentation

Model
Unification

Domain
Generalization

Traditional methods ✓ ✓
Few-shot methods ✓ ✓

Lvlms ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓

The purpose of anomaly detection is to identify data that does not conform to the
normal distribution [36,37]. Due to the scarcity of anomalous data, a common approach is
to distinguish anomalies by learning only the feature distribution of normal data [11,22].
This requires the extracted data representations to be highly orthogonal, and the model is
constructed using a single type of data. Image generation methods generate images of the
normal distribution for specific categories of data and reconstruct feature distributions [25].
Common detection methods include classification-based [2,7] and generation-based meth-
ods [38]. Given the scarcity of anomalous data, learning the feature distribution of normal
data is key to effective detection. Data representations are typically orthogonal and tailored
to specific data categories [1,22]. On the other hand, image generation methods focus on
reconstructing the distribution of normal samples for specific categories.

Domain-generalization techniques are employed to enhance anomaly detection in
image-based texture and surface defect identification [31]. Large-language pre-trained mod-
els (such as VLP [39], ALIGN [40]) demonstrate great adaptability in feature consistency
expression and model generalization capabilities, achieving cross-modal information inter-
action through global information expression and similarity comparison. Multimodal large
models have shown good results in anomaly detection through contrastive learning [41],
generative learning, and large model denoising methods. The multimodal invariant rep-
resentation anomaly-detection method improves model generalization performance by
learning domain-invariant representations [42]. For more granular detection, image patch
and meta-learning-based methods are applied in anomaly detection.

Based on the issues discussed, MedicalCLIP explores a unified medical anomaly-detection
model with strong generalization capabilities. By utilizing spatially consistent representations
of multimodal data, the model achieves not only unification but also an enhancement of its
generalization capabilities. Through image–text comparative learning, a category-independent
model for domain generalization in anomaly detection is implemented [43]. Constructing
a unified anomaly-detection model with robust domain-generalization capabilities is of sig-
nificant practical value for improving model efficiency and achieving model generalization.
Figure 1 demonstrates the classification capabilities of MedicalCLIP.

For anomaly-detection tasks, through the comprehensive comparative representations
within and between modalities, we find that the intramodal representation constraints of
different modal data have varying impacts. Common anomaly-detection methods involve
contrastive learning among normal samples, but they often overlook the model limitations
caused by spatial differences. A unified anomaly-detection model should be able to extract
more applicable representational data, utilizing multimodal data integration and multitask
loss for adaptive feature extraction. In the processing of single-image modal data, models



Biomolecules 2024, 14, 590 4 of 17

primarily focus on the visual representation of the image, lacking guidance from other
modal data, making it difficult to extract logical information from the image. Introducing
textual descriptions, such as “This is a bottle with cracks”, enables the accurate identifica-
tion and extraction of key elements in the image, such as the number of bottles and defects,
by leveraging semantic information. Multimodal integrated contrastive encoding, when
compared to image data, enhances the textual representation’s guidance on image repre-
sentation. MedicalCLIP explores a medical-data anomaly-detection method with strong
generalization capabilities that uses multi-angle, cross-modal reasoning. This prevents any
single modality from dominating the entire model-training process, therefore learning more
universal information representations and enhancing the associative capabilities between
different modal data.

Movtivation: For medical-data anomaly-detection tasks, this paper proposes an asymmetric
constraint MedicalCLIP domain-generalization method for anomaly detection and segmentation.
By implementing intramodal constraints within image and text modalities, the consistency
of image modality representations and the constraints within and between modalities are
enhanced, thus balancing the model’s domain generalization and detection effectiveness.

Figure 1. Domain-generalization model for zero-sample anomaly classification method for different
data. Compared to the existing methods, our method shows competitive results.

2. Materials and Methods

The purpose of MedicalCLIP is to train a unified model capable of achieving anomaly
detection through zero-shot learning. For the given training data Dtrain = {Itrain,Ytrain},
the images xI ∈ Itrain and label of images Ytrain ∈ {0, 1}. The test dataset Dtest =
{D1

test,D2
test, . . . ,Dm

test}, m is the classes of test dataset, Dtrain ∩ Dtest = ∅. The model is
trained by the given dataset Dtrain, resulting in superior anomaly-detection performance
on the test set Dtest. There are information differences between different categories of
data, i.e., D1

test,D2
test, making it difficult to distinguish between different types of data in

the feature space. We employ a multimodal approach to develop a unified model capable
of handling multiclass anomaly detection. For the given image, we introduce textual T to
guide the representation of the image data and conduct multimodal contrastive analysis
based on textual information. The calculation method for anomalies is to compute the
similarity between data of different modalities. We characterize the data using the image
encoder fϕ

(
xI

)
and the text encoder gθ

(
xT

)
. The intermodal contrast losses are as follows:

L(I , T ) = min < fϕ

(
xIi

)
, gθ

(
xTj

)
> (1)
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where LCL denotes the contrast loss, fϕ(xIi ) and gθ(xI
j ) denotes text and images of the same

category, and fϕ(xI
i ), gθ(xI

j ) denotes text and images of different categories.

Lcl,I→T =
−1
n

n

∑
i=1

log
exp(⟨ fϕ

(
xIi

)
, gθ

(
xTi

)
/τ)

∑j∈[n] exp(⟨ fϕ

(
xIi

)
, gθ

(
xTj

)
/τ)

(2)

The purpose of MedicalCLIP is to establish fine-grained constraints within modalities
for comprehensive representation and to achieve more fine-grained information filtering
using comprehensive constraints L between image-image fϕ(xI ) and text-text gθ(xT ).
The CLIP model possesses powerful feature extraction capabilities by comparing text and
image contrast representations. MedicalCLIP optimizes the fine-tuning of the training
data through contrast embedding between image modalities and textual modalities and
guides the image learning anomaly-detection data representation by adaptively generating
textual cues.

2.1. Overview of Framework

As illustrated in Figure 2, the framework of MedicalCLIP is structured into four
primary components: 1. Promote Embedding. GPT [44] is utilized to generate textual
corpora T , and leveraging the Contrastive Language-Image Pre-training (CLIP) [45] tem-
plate, we craft both standard and anomalous textual descriptions tailored for diverse
image categories. 2. Hierarchical image representation Constructing an image–text cor-
pus X = {xTi , xIi }n

i=1 from the generated text, we construct comprehensive comparison
methods based on the same modality and different modalities. 3. In-Modal Learning By
integrating an asymmetric image–text constraint L, we bolster the synergy between modal-
ities, ensuring the model offers a harmonized representation of anomalous data. Image T
and textual I intermodal comparison module, which deepens cross-modal understanding
by comparing feature differences between text and images; Text and image intramodal com-
parison module, which focuses on feature comparisons within their respective modalities
to improve the model’s detailed representation of the data, as is shown in Figure 3.

Multimodal comparative learning The vision–language model (VLM), which aims
to maximize consistency between xT and xI , has a limited ability to characterize details.
For AD tasks, anomalies are often not obvious, and therefore, more detailed image repre-
sentations need to be extracted. Relying on intermodal contrast constraints alone is not
sufficiently capable of characterizing the lower-order information of an image. We propose
a novel irregular multimodal constraint(IRC) technique to improve the model’s understand-
ing of the distribution of image and text modalities through intramodal data constraints.

LIRC =< fϕ(xIi , fϕ(xIj ) > −λ < fϕ(xTi , fϕ(xTj ) >, (3)

λ is the asymmetry factor. The representation of multimodal semantic information
can bolster the invariance of features during the domain-generalization process. Within
multimodal information, the capability of text fϕ

(
xI) to represent data information is

enhanced through adaptive text generation. Given the limited capacity of intermodal
contrastive representations for detailed information, we employ irregular constraints to
improve the model’s ability to represent data across different modalities. Moreover, in the
process of anomaly segmentation, models constrained by local intermodal interactions can
focus more on local detail information. For these irregular constraints, we consider two
types of comprehensive constraints across different modalities.
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Figure 2. Overall framework of MedicalCLIP. The prompt embedding section includes prompt
generation and text feature extraction. The hierarchical image-representation section preserves
features at different levels of the image feature extraction representation and refines the image
representation through a filtering module. The asymmetric constraint module contains cross-modal
constraints and modal content.

2.2. Promote Embedding

In multimodal contrastive models, textual information T serves as an anchoring guide
for image representation I . We achieve a comprehensive representation of images fϕ(xI )
through adaptive generation, facilitating a more thorough information portrayal. During
the text-generation process, we construct two textual generation strategies: specific image
descriptions spd and category-agnostic descriptions cad. For specific image descriptions,
text is generated based on the acquired image category information [cls], containing
more detailed image-specific details. In contrast, category-agnostic representations lean
towards general textual descriptions unrelated to specific categories. Using text as an
anchor point for contrastive optimization allows for the acquisition of more generalized,
domain-invariant information representations.

T = T (spd) + T (cad) (4)

Prompt information generation The foundational corpus of the CLIP model was specif-
ically designed for classification tasks, encompassing both the template M = m1, . . . , mn
and the state D = d1, d2, . . . , dl . Recognizing the multifaceted nature of anomalies, we
aimed to curate a corpus tailored for anomaly detection. For a given image xi, we first
obtain the category information of the image and combine it with the template informa-
tion for image description generation. Subsequently, leveraging an automated prompt
generation strategy, we sculpt a corpus apt for anomaly detection. The crafted template
for anomaly-detection resonates with the structure “A photo of a state object”, exem-
plified by “A photo of a healthy brain”. For the descriptor ensemble D = d1, . . . di,
the embedding is achieved via the prompt template. The illustration delineates both the
normal and anomalous data, showcasing their respective textual representations.

spd: A [domain] photo of a [state] [class] .
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For anomaly detection in medical imaging, each characterization is multifaceted,
with each facet boasting an array of templates and descriptor terms D, such as “nor-
mal”, “enhanced contrast”, and “intact structure” for typical annotations. In the
context of atypical scans, descriptors might encompass phrases like “presence of le-
sions” or “indications of calcifications”. Harnessing the robust text-generation
prowess of GPT, we are equipped to craft intricate textual categorizations for distinct
diagnostic categories.

a. Image to image b. Image to text

c. Image to image and text to text d. Image to image and text to text

Abnormal 

image feature

Normal 

image feature

Abnormal 

text feature

Abnormal 

text feature

Figure 3. Irregular constraints. (a) represents the constraints for image category data. Crossing
constraints between graphics are represented in (b). (c) represents constraints between image and
image, text and text. (d) represents the multimodal irregular constraint method. The blue and orange
circles indicate the sample constraints for different modes, respectively

cad: An [image] photo of a [state] .

xT =
N

∑
i=1

FillTemplate{mi, di} (5)

Merging templates with descriptor terms empowers us to formulate textual portrayals
for images. When assimilating unknown data, pinpointing the image’s category and
integrating it into the query template suffices for automated text generation. In juxtaposition
with handcrafted corpora, this automated narrative is notably more exhaustive and intricate,
particularly for datasets demanding niche expertise.

fnormal , fabnormal = textencoder(promptn
normal, promptm

abnormal) (6)

For the given text feature representation, it consists of a combination of normal and
anomalous representations. An example of the generated text representation is shown in
Figure 4.

fϕxI = { fnormal , fabnormal} (7)

T = Generate{GPT(class, model)} (8)
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P：

M：a jpeg corrupted photo of the Brain.

Image GPT Prompt Texts and Generative Image prompts

P：What does good Brain look like in the picture?

M： a photo of a {Brain} for anomaly detection.

A one-sentence description of a picture of what a 

problematic Brain looks like.

a photo of a Good picture for anomaly detection.

a cropped photo of an anomaly.

a

b

Abnormal Image

Normal Image

Figure 4. Image Text Generation. Leveraging textual cues to generate textual representations that
conform to the template. (a) is a textual description of a normal image; (b) is a textual description of
an abnormal image. P is the prompt message, and M denotes the text generated according to the
template form.

2.3. Hierarchical Feature Representation

In our method, image anomaly classification is achieved through global representa-
tions, while anomaly segmentation is accomplished using local feature representations. By
employing multi-scale image feature representations, more fine-grained feature extraction
is achieved.

fϕxI , fϕxIP = imageencoder{image, patch(image)} (9)

2.4. Image Feature Adaptation

The CLIP model, as a visual-language model, is primarily designed for classification
tasks. Classification models, through training, make data of different categories cluster in
the feature space, displaying clear, orthogonal boundaries. However, this method of data
representation fundamentally differs from what is required in anomaly-detection tasks.
In the context of anomaly detection, anomalies are typically sparser compared to normal
data, leading to blurred boundaries and potentially non-orthogonal representations in
the feature space. Confronting this challenge, we present a feature adapter, Eψ, aimed at
adjusting and aligning text and image features so that they can better adapt to the needs of
anomaly-detection tasks.

oT , oI = Eψ{(gθ(xT ), fϕ(xI )} (10)

In the field of anomaly detection, the problem of domain generalization focuses on
detecting and locating anomalies within normal images and generalizing them to untrained
target domains. This primarily addresses the challenge of limited training data during
the production process. For given source domain data Isl = {isl

m, ysl
m}

Nsl
m=1, where im ∈ I,

y ∈ {0, 1}, and assuming all training data are normal, the objective is to train on this
normal data to achieve anomaly detection, and then apply this detection capability to
data in untrained target domains. The source domain data includes image data I and
the generated textual data T. The aim is to use normal image data in conjunction with
adaptively generated textual data. By contrasting the representations of text and image data,
a comprehensive representation and analysis of the source domain data is achieved. Within
the source domain, the generation of textual data adaptively incorporates domain expert
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knowledge, resulting in well-characterized textual data. By contrasting data intra-modally
and inter-modally, detection efficacy is enhanced. During the domain-generalization
process, bridging the gap between the representations of normal and anomalous data and
enhancing adaptability to the source domain data is crucial.

The vision–language model demonstrates good performance in cross-modal con-
trastive learning. For the given image encoder fi and text encoder ft, given an image
xI ∈ I and text data xT ∈ T , the encoders fϕ

(
xI) and gθ

(
xT) represent the image and text

encoders, respectively.
Asymmetric Image-Text Constraints In anomaly detection, the generated textual

information is categorized into two types: normal class descriptions and anomaly class
descriptions. All images are represented as vectors of these two classes, and the textual
information serves as an anchor point for calculating the loss between images and textual
information. The specific process is shown in Algorithm 1.

Algorithm 1 Feature self augmentation process
1: # I Input Image
2: # T Input Text
3: # F ← Image_Encoder()
4: # T ← Feature_Extractor()
5: # A ← Adaptor()
6: # N ← Feature_Filter()
7: pretrain_init(F)
8: for each x in data_loader do
9: # Asymmetry constraint

10: # extract feature representations of different modes
11: I_f = image_encoder(I)
12: T_f = text_encoder(T)
13: # Loss function
14: loss_cl = cross_entropy_loss (I_f, T_f)
15: loss_IRC = cross_entropy_loss (I_f, I_f) - β cross_entorpy_loss (T_f,

T_f)
16: loss = loss_(cl) +loss_(IRC)
17: F ← F.detach()
18: update(T, D)
19: end for

Contrastive Segmentation For image-segmentation tasks, the model needs to focus
more on the fine-grained details of images. To enhance the model’s attention to image
details, local representations of the image are extracted and compared with textual represen-
tations. Furthermore, during the feature extraction process of images, features at different
levels contain various types of image information. Therefore, this paper implements a hier-
archical representation of images to achieve a diversified association between image and
text. For the given anomaly-detection method, we propose an asymmetric clip constraint
domain-generalization method for anomaly detection and segmentation, which is used
to perform anomaly detection and segmentation. The asymmetric constraint improves
the consistency of image modality representation and the constraints within and between
modal representations, enhancing the model’s balance between domain generalization and
detection effectiveness.

In a manner similar to the feature similarity calculation method used in CLIP, we first
obtain the hierarchical representation x of images and the representations t of various types
of text. Then, we compare the similarity of intra-class features for each modal data. The
input image data xT , xI is first constrained by the original CLIP model method, where the
original model establishes the xT ⊙ xI clip constraint by constraining the data between
different modalities.
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LC−clip =
1
N

N

∑
j=1

N

∑
i=1

(
⟨xI

j , xT
i ⟩ − λ⟨xI

k, xT
j ⟩
)2

. (11)

Constraints between different modalities tend to focus more on the representation
of semantic information. In contrast, modal content comparison constraints are more
about the representation of fine-grained information. As for irregular constraints within
modalities, they are as follows:

LI−clip =
1
N

N

∑
j=1

N

∑
i=1

(
⟨xI

j , xI
k⟩ − β⟨xT

k , xT
j ⟩
)2

. (12)

β is the irregular factor in irregular constraints. We use the input image and enhanced
image to perform intermodal contrast constraints. The intermodal constraints are enforced
in the form of element-wise dot products, xT , xI , and the intramodal constraints are enforced
by associating various types of image representations with text representations, enhancing
the model’s understanding of a single modality. Beyond the constraints between images,
there are also constraints between texts represented by Lclip. Since image data tend to
represent more detail-oriented features, while text data have a more nuanced understanding
of higher-order information, the intermodal constraints for images and texts are looser for
images and tighter for texts.

3. Results

Datasets To demonstrate the wide adaptability of the MedicalCLIP model in the field
of anomaly detection, we conducted validations on datasets such as brain, chest, and
liver, covering various areas including multiple types of data within the medical field.
During the training process, the training data only contains normal data, while the testing
data includes both normal data and annotated anomaly data for evaluating the model’s
performance. Moreover, through extensive ablation studies and comparative experiments
across datasets from different domains, we further confirmed the generalization ability of
our method in anomaly detection.

Metrics The performance of our model is evaluated on our medical public datasets.
These datasets include brain and chest, and include normal and abnormal data, as well
as annotated segmentation data. Figure 5 shows the sample image of the medical dataset.
To measure the performance of the model in the process of anomaly classification (AC)
and anomaly segmentation (AS), the anomaly-detection task is set to evaluate the model
performance. The AUROC metrics for image anomaly detection and anomaly segmentation
are used to evaluate the classification results. In anomaly detection and segmentation
tasks, data categories are often imbalanced. Although anomaly-detection segmentation
tasks involve pixel-level segmentation, the ultimate goal remains to distinguish between
abnormal and normal areas. AUROC can evaluate the model’s ability to detect anomalies
at different thresholds, and it is not affected by the imbalance in data categories.

Implementation In the image and text feature extraction models, we employ the CLIP
model pre-trained by OpenAI, and the text is automatically generated by leveraging the
GPT-3.5 model for template construction. The pre-training model is ViT-L/14 [46] as the
MedicalCLIP backbone, and the obtained image representations and text representations
are compared. CLIP’s original text features and image representations are trained for classi-
fication tasks. To align better with anomaly detection and segmentation tasks, this paper
introduces an adaptive network layer for feature adaptation. The feature adaptive layer
utilizes a shallow network to facilitate task adaptation for image and text representations.

In hierarchical feature representation, we use 6, 12, 18, 24 layers of representations
for extraction. The software pytorch-2.1.1 used in the experiments was run using a single
NVIDIA V100 32 GB GPU(The equipment was sourced from NVIDIA Corporation, located
in Santa Clara, CA, USA), with an epoch setting of 50, a batch size of 16, and a learning rate
of 0.0002. Throughout the model-training process, the irregular constraint β was set at 0.4
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to obtain optimal results. During the training process, we adopted a multi-category unified
training approach, inputting multiple different categories into the model for simultaneous
training. Concurrently, while constructing a multi-category unified model, we aimed to
establish an anomaly-detection model with strong domain-generalization capabilities.

Normal

Abnormal

Brain Chest Retina_OCT17 Retina_RESC Liver Histopathology
Medical
Data

Figure 5. Partial samples from the Medical datasets are presented, where blue boxes indicate normal
samples, while red boxes denote anomalous samples.

3.1. Domain Adaptation Anomaly Detection

To evaluate the generalization ability of the model for different classes of data, we
validate it on 6 different medical data. The anomaly-detection results for different categories
and methods are shown in Table 2. The different models show some domain-generalization
ability in medical data. Among all the methods, MedicalCLIP shows better generalization
ability and superior domain-generalization performance for data such as the brain and liver.

Table 2. In domain generalization, different methods are compared. The main criteria for evaluation
are the AUC for anomaly classification and anomaly segmentation. Bold indicates the best result, and
underline indicates the second-best result.

Metrics Methods Brain Chest Histo
Pathology Liver Retina

OCT2017
Retina
RESC Metrics Brain Liver Retina

RESC

AC
AUROC

WinCLIP [41] 66.49 70.86 69.85 64.20 46.64 42.51

AS
AUROC

85.99 96.20 80.56
April-GAN [47] 76.43 57.49 72.36 70.57 92.61 75.67 91.79 97.05 85.23

CLIP [45] 55.63 60.62 61.87 55.78 40.42 40.46 80.11 82.35 76.46
+ Prompt ens. [45] 55.95 61.45 62.53 58.62 41.78 41.32 91.26 89.86 79.65

CoOp [21] 73.26 65.83 71.09 65.89 68.93 66.54 90.53 88.56 77.85
Ours 78.61 72.51 72.73 71.79 85.79 76.54 92.67 95.63 86.33

Analysis of results Traditional anomaly-detection evaluation metrics include two
primary tasks: anomaly detection and anomaly segmentation. Intramodal constraints aim
to achieve a more compact feature representation within the same type of modal data.
In contrast to classification models, the distributions of normal and abnormal data are
largely represented within a similar data space, with only local outliers deviating from the
typical representations. By constructing intramodal data contrasts between images, such as
the comparison of similarity between xT and xI , the focus tends to be more on semantic
representation, often overlooking details. In the course of generating text, establishing a
more diverse linguistic representation enriches the types of data representation.

Table 2 indicates that our method demonstrates excellent anomaly detection and
segmentation performance on most datasets. However, it does not perform optimally on
the OCT17 dataset. From an overall perspective, the MedicalCLIP model exhibits relatively
balanced generalization capabilities across different domains, but it falls short in higher-
precision detection tasks, such as on the OCT17 dataset, indicating room for improvement.
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For instance, on the OCT dataset, the April-GAN shows superior detection performance,
yet its overall generalization ability remains limited.

Given the frequent changes in data distribution, anomaly detection becomes crucial
for identifying distributional anomalies within normal data representations. The primary
challenge lies in enhancing the model’s sensitivity to shifts in data distribution while
simultaneously improving its capacity to detect such changes within similar types of data.
In the process of enforcing intermodal constraints, we enhance the model’s capability
for diversity transfer. Concurrently, applying intramodal constraints boosts the model’s
relevance transfer. The improvement in classification and segmentation results is shown in
the Figure 6.

Figure 6. Introducing the irregular constraint, overall results demonstrate that the improvement in
performance due to this constraint is more significant in segmentation tasks compared to classification
tasks. The yellow color indicates an increase in the classification (AC) effect, and the green color
indicates an increase in the segmentation (AS) effect.

3.2. Irregular Constraints

In the context of irregular constraints, different degrees of constraints have varying
impacts on the effectiveness of detection. During the process of anomaly segmentation, the
model pays more attention to the details of the image, thus imposing stronger constraints
on the image.

The given text discusses the concept of constraint rate β in models, specifically in
the context of handling modal data. It states that different constraint rates reflect the
model’s tolerance towards data within a particular mode. For image data, the constraint
rate, represented by β, is crucial. The text finds that a constraint rate of 0.4 yields the best
results for image tolerance in the model, as is shown in Figure 7. Furthermore, it suggests
that constraining image data is particularly beneficial for enhancing the model’s ability to
represent image features effectively. This insight indicates that adjusting the constraint rate
can significantly impact the model’s performance, especially regarding image data.
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(a) (b)
Figure 7. The figure shows that different constraint values have varying impacts on the results.
Both anomaly classification (AC) and anomaly segmentation (AS) are similarly affected. (a) The
figure demonstrates the impact of different constraint values on anomaly classification (AC) results.
The optimal results are achieved when the constraint value is set to 0.4. (b) The results of anomaly
segmentation (AS) are different for different constraint values. The results demonstrate the importance
of irregular constraints for anomaly segmentation.

3.3. Text Prompt

MedicalCLIP explores the relationship between the domain-generalization capabilities
of the model and the types of data categories. For models pertaining to different data
categories, we examined the variation of the model in relation to changes in data categories.
Within the brain dataset, we conducted separate validations to assess the impact of varying
numbers of categories and different types of object categories on the model’s performance.

To validate the impact of different text-generation methods on model performance,
we conducted comparative tests for both category-dependent and category-independent
text-generation. The results indicate that category-dependent textual descriptions enhance
the model’s ability to guide anomaly-detection tasks. Conversely, category-independent
text formulations exert a greater influence on the model’s domain-generalization capabili-
ties.The results are shown in the Table 3.

Table 3. The impact of different types of text generation on model outcomes. Compared to category-
specific generated text, category-independent text effectively enhances the model’s generalization
ability for anomaly-detection tasks. Overall comparisons show that text generation has a greater im-
pact on classification tasks than on segmentation tasks. Red indicates × that the relevant description
was not used, green indicates ✓ that it was used.

Textpormpt AC AUROC AS AUROC

spd cad Brain Chest Histo
Pathology Liver Retina

2017
Retina
RESC Brain Liver Retina

RESC

✓ × 76.45 68.28 68.75 68.93 81.98 72.93 89.34 92.53 83.49
× ✓ 77.56 69.93 69.91 71.36 83.47 74.84 91.45 93.56 85.28
✓ ✓ 78.61 72.51 72.73 71.79 85.79 76.54 92.67 95.63 86.33

Feature Adaptation The initial CLIP model was primarily designed for classification
tasks and has limited adaptability to anomaly-detection tasks. This paper refines the
feature selection and adaptation through fine-tuning of image representations. The feature
representation adaptive module employs a shallow network architecture for fine-tuning.
As illustrated in Figure 8, after processing through the feature adaptive layer, the model is
capable of delineating clearer boundaries. The results are shown in Table 4.
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Figure 8. A fine-tuned adaptor layer allows filtering of features for anomaly-detection tasks. Fil-
tering and constraints on image features can improve the model’s ability to discriminate between
representations.

Table 4. The effect of whether or not fine-tuning is performed on the model for which the image was
acquired. The fine-tuned image representations are more suitable for anomaly-detection tasks. A
more clearly differentiated representation of normal and abnormal can be created. AC denotes the
anomaly classification indicator, and AS denotes the anomaly segmentation indicator.

Anomaly Classification Withadaptor Noadaptor

Class AC AS AC AS

Brain 78.61 92.67 75.38 88.46
Chest 72.51 - 69.26 -

Histopathology 72.73 - 66.17 -
Liver 71.79 95.63 59.36 84.4

RetinaOCT2017 85.79 - 78.09 -
RetinaRESC 76.54 86.33 68.58 82.53

4. Discussion

Limited by the CLIP model’s understanding of semantic objects, it demonstrates
weaker performance in anomaly-detection tasks. Through the customization of text
prompts for anomaly detection, WinCLIP shows improved results. WinCLIP boosts per-
formance using customized text prompts that are manually set, with their effectiveness
critically dependent on the thoroughness of their text prompt. The textual information
representation learned by CoOp relies more on training data, which, to some extent, limits
the model’s generalization ability for unknown data. To make CLIP lean more towards
semantic representation and enhance the model’s performance in segmentation tasks, a
hierarchical and image block form of information representation is adopted. By using
automatically generated text prompts, the restrictions of text prompts on visual repre-
sentation are reduced, therefore improving generalization capability. Furthermore, to
capture the details of image data, this paper establishes an asymmetric constraint-based
intermodal contrast method. MedicalCLIP can perform fine-grained anomaly segmentation
on different types of medical data, showcasing its ability to handle detailed information.
This provides a new perspective for the application of the CLIP model in medical image
anomaly-detection tasks.

5. Conclusions

In conclusion, this paper introduces an image–text irregular constraint method applied
to medical image anomaly detection to achieve the ability to generalize the anomaly detec-
tion of different categories of data. A more professional and comprehensive description of
textual information is established by generating textual hints through GPT. In this paper,
modal content constraints are applied to text and images, and hierarchical information
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representation of image information is used to achieve more fine-grained textual semantic
guidance and obtain more detailed anomaly-detection information. Combined with the
multimodal contrast learning strategy, the method can be flexibly generalized to different
types of data. This method provides new research ideas for anomaly detection of different
categories of data due to existing methods in domain-generalization anomaly detection.
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