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Abstract: Exercise can regulate the immune function, activate the activity of immune cells, and
promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory
organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle
contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine
myokines that are regulated by exercise. These myokines have been shown to be associated with
immune responses and to regulate the proliferation, differentiation, and maturation of immune cells
and enhance their function, thereby serving to improve the health of the organism. The aim of this
article is to review the effects of myokines on intrinsic and adaptive immunity and the important role
that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides
a potential mechanism for the correlation between muscle factor expression and immunity, as well
as the involvement of exercise in body immunity. It also provides the possibility to find a suitable
exercise training program for immune system diseases.

Keywords: exercise; myokines; immune cells; skeletal muscle

1. Introduction

Exercise is planned, structured, repetitive, and purposeful physical activity that aims
to improve or maintain physical fitness [1]. Exercise has been shown to be able to participate
in immune system regulation by influencing the function of various types of leukocytes
and affecting a variety of physiological processes [2]. The influence of exercise on immune
function has two sides. Although studies have shown that excessive exercise weakens the
immune system, it is widely accepted that exercise of appropriate intensity benefits the
body’s immune defences [3,4]. Therefore, exercise is receiving increasing attention as a new
therapeutic strategy, and its molecular mechanisms for modulating the immune system
deserve more in-depth study.

Exercise activates skeletal muscle as an endocrine organ and induces the production
and secretion of small proteins (5–20 kda) and proteoglycan peptides by contraction and
elongation of skeletal muscle. These small proteins and proteoglycan peptides are called
myokines [5,6]. Irisin, interleukin-6/10/15 (IL-6, IL-10, IL-15), brain-derived neurotrophic
factor (BDNF), fibroblast growth factors 2 and 21 (FGF2/21), leukemia inhibitory factor (LIF)
and insulin-like growth factor 1 (IGF-1) and other myokines [5,7,8] have been proved to be
able to resist chronic and inflammatory diseases, such as diabetes and tumor growth [9].
They also have a benign effect on the body. The above myokines have been shown to
regulate the function of immune cells and improve their proliferation and differentiation
ability, thus enhancing the immune function of the body and promoting its health (Figure 1).
There is no article that systematically addresses the relationship between exercise, myokines,
and immune cells. The aim of this review is to summarise the positive effects of exercise-
induced myokines on immune cells, to discuss the important role played by exercise, to
understand the intrinsic mechanisms by which the relevant myokines are involved in the
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immune regulation of the organism, and to provide possibilities for the screening of suitable
exercise training protocols.
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Figure 1. Exercise-induced myokines are involved in the regulation of immune cell function|Exer-
cise induces contraction of skeletal muscle, which promotes the secretion of myokines, including 
irisin, IL-6, LIF, IL-10, IL-15, BDNF, FGF2, FGF21, and IGF-1. They can act on the immune system, 
affecting the processes of innate and adaptive immunity and regulating the function of immune 
cells. ↑: up-regulation (Created with BioRender.com). 
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Exercise can have a profound effect on the immune system, and can indirectly affect 

chronic diseases such as cancer, nonalcoholic fatty liver disease, and cardiovascular dis-
eases through immune response [10,11]. Exercise regulates the function of immune cells, 
thereby improving the body’s immunity, which is an important way for exercise to affect 
the body’s function. 

Exercise training can affect the body’s innate and adaptive immune processes. Innate 
immunity is the body’s first line of defense against invading pathogens. Cells involved in 
innate immunity include monocytes/macrophages, neutrophils, natural killer cells, and 
dendritic cells [12]. Macrophages are an important component of innate immunity and 
play an integral role in development, homeostasis, and host defense [13,14]. Macrophage 
polarization is the process by which macrophages functionally respond to microenviron-
mental stimuli and signals encountered in each specific tissue [15]. After being stimulated 
by different tissue sources or environmental stimuli, macrophages can be activated into 
classically activated macrophages (M1 type) and alternatively activated macrophages (M2 
type) [16]. M1-type macrophages are usually induced by recognition by Th1 cytokines 
such as IFN-γ and TNF-α or by bacterial lipopolysaccharide (LPS). These macrophages 
produced and secreted high levels of the proinflammatory cytokines TNF-α, IL-1α, IL-1β, 
IL-6, IL-12, IL-23, and cyclooxygenase-2 (COX-2) and low levels of IL-10. Functionally, M1 
macrophages participate in pathogen clearance during infection by activating the reduced 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system and the subse-
quent generation of reactive oxygen species (ROS) [17–19]. M2 macrophages are anti-in-
flammatory and are polarized by Th2 cytokines IL-4 and IL-13 through the activation of 
STAT6 by the IL-4 receptor α (IL-4Rα). In addition to IL-4 and IL-13, other cytokines such 
as IL-10 can regulate M2 polarization by activating STAT3 via the IL-10 receptor (IL-10R) 
[20–22]. M2 macrophages have a strong phagocytic capacity, remove debris and apoptotic 
cells, promote tissue repair and wound healing, and have proangiogenic and profibrotic 
properties [15,22,23]. The balanced polarization of M1/M2-type macrophages plays a key 

Figure 1. Exercise-induced myokines are involved in the regulation of immune cell function|Exercise
induces contraction of skeletal muscle, which promotes the secretion of myokines, including irisin,
IL-6, LIF, IL-10, IL-15, BDNF, FGF2, FGF21, and IGF-1. They can act on the immune system, affect-
ing the processes of innate and adaptive immunity and regulating the function of immune cells.
↑: up-regulation (Created with BioRender.com).

2. Potential Immune Cells Impacted by Exercise

Exercise can have a profound effect on the immune system, and can indirectly affect
chronic diseases such as cancer, nonalcoholic fatty liver disease, and cardiovascular diseases
through immune response [10,11]. Exercise regulates the function of immune cells, thereby
improving the body’s immunity, which is an important way for exercise to affect the
body’s function.

Exercise training can affect the body’s innate and adaptive immune processes. Innate
immunity is the body’s first line of defense against invading pathogens. Cells involved in
innate immunity include monocytes/macrophages, neutrophils, natural killer cells, and
dendritic cells [12]. Macrophages are an important component of innate immunity and
play an integral role in development, homeostasis, and host defense [13,14]. Macrophage
polarization is the process by which macrophages functionally respond to microenviron-
mental stimuli and signals encountered in each specific tissue [15]. After being stimulated
by different tissue sources or environmental stimuli, macrophages can be activated into
classically activated macrophages (M1 type) and alternatively activated macrophages (M2
type) [16]. M1-type macrophages are usually induced by recognition by Th1 cytokines
such as IFN-γ and TNF-α or by bacterial lipopolysaccharide (LPS). These macrophages
produced and secreted high levels of the proinflammatory cytokines TNF-α, IL-1α, IL-1β,
IL-6, IL-12, IL-23, and cyclooxygenase-2 (COX-2) and low levels of IL-10. Functionally,
M1 macrophages participate in pathogen clearance during infection by activating the re-
duced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system and the
subsequent generation of reactive oxygen species (ROS) [17–19]. M2 macrophages are
anti-inflammatory and are polarized by Th2 cytokines IL-4 and IL-13 through the activation
of STAT6 by the IL-4 receptor α (IL-4Rα). In addition to IL-4 and IL-13, other cytokines
such as IL-10 can regulate M2 polarization by activating STAT3 via the IL-10 receptor
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(IL-10R) [20–22]. M2 macrophages have a strong phagocytic capacity, remove debris and
apoptotic cells, promote tissue repair and wound healing, and have proangiogenic and
profibrotic properties [15,22,23]. The balanced polarization of M1/M2-type macrophages
plays a key role in organismal inflammation and injury. Regular exercise training has been
reported to reduce macrophage infiltration into other sites of chronic inflammation [24].
In contrast, acute exercise has a strong stimulator effect on the phagocytosis, antitumor
activity, and reactive oxygen species of M1 and M2 macrophages [25–27]. Neutrophils are
another major branch of the innate immune system [28] that are the first cells to reach the
site of inflammation and regulate T and B cells. After stimulation with different conditions,
neutrophils will exhibit different subpopulations. The N2 subgroup plays the role of anti-
inflammatory [29] and plays an important role in a variety of diseases such as myocardial
infarction. Prolonged endurance exercise (0.5–3 h) may increase the number of neutrophils
by up to 5-fold [30], improving the body’s anti-inflammatory ability. Innate immunity also
includes natural killer cells (NK cells). NK cells are a group of immune cells derived from
the proliferation and differentiation of lymphoid stem cells and are widely distributed
in various lymphoid and non-lymphoid tissues, such as the spleen, lymph nodes, liver,
and lungs [31,32]. NK cells mediate cytotoxicity to exert immune effects and regulate
other leukocyte subsets of the innate and adaptive immune system through the release of
antitumor factors and chemokines [33]. After high-dose resistance exercise, the number of
NK cells increases [34,35], improving the body’s anti-inflammatory ability. As an important
regulator of innate and adaptive immune response, dendritic cells (DC) are derived from
red marrow stem cells of bone marrow and the spleen and are widely distributed in the
spleen, lymph nodes, and connective tissues after development. The ability to confine
foreign antigens to major histocompatibility complex (MHC) and present antigens to T
lymphocytes [36]. Periodized endurance training is able to modulate DC development and
shift them towards a more mature state [37]. Mature DC can induce an immune response
from T cells [38].

Adaptive immunity includes both humoral and cellular immunity. B cells play a
pivotal role in humoral immunity. In humans, B cells originate from hematopoietic stem
cells in the bone marrow [39] and differentiate into plasma cells and memory B cells
when stimulated by antigens. The former can synthesize and secrete immunoglobulins
(antibodies) and survive for a short time in the body, while the latter can persist in the
body for a long period of time and respond rapidly when the body is re-infected with the
same antigen. Both high-dose endurance exercise and low-dose resistance exercise can
elevate the number of circulating B cells [40–43]. T-lymphocytes are the main effector cells
in cellular immunity. T cells can be divided into several subpopulations according to their
functions in the immune response. This article mainly deals with two subpopulations. One
is the helper T cells (Th cells), also known as CD4+ cells, which can secrete cytokines and
regulate or assist the immune response. The other subpopulation is cytotoxic T cells (Tc
cells), also known as CD8+T cells, which can bind directly to antigens and play an immune
role [44]. The proliferation of CD8+T cells and CD4+T cells can be detected immediately
after high-dose endurance exercise [34,35,41].

In short, the regulation of immune cell function, as an important component, plays a
crucial role in the occurrence of immune responses in the body. If the immune cells function
abnormally, the body becomes susceptible to various diseases. A series of studies have
observed that selecting a more effective exercise program according to different diseases
or exercise needs (that is, tailored exercise) can regulate the function of immune cells
and induce the differentiation, proliferation, and activation of immune cells, which are
essential for immune activity and thus contribute to health improvement [3]. However,
the specific mechanisms by which exercise regulates immune cell function are unknown.
Understanding exercise-induced myokines and their relationship to the immune response,
particularly their role in regulating immune cell function, provides insight into the many
benefits of exercise.
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3. Exercise and Myokines

Myokines are involved in the regulation of exercise on health. Studies have found that
exercise-induced myokines can produce a series of metabolic changes, which contribute
to the prevention and treatment of a variety of chronic diseases [45]. Therefore, myokines
may be the physiological basis for regulating and protecting body functions through
exercise training (Table 1 and Figure 2). The regulation of myokine secretion by exercise
can be affected by the mode, intensity, and duration of exercise [8]. It is very important to
understand the regulatory effects of exercise on myokines.

Table 1. Changes in myokines after exercise.

Myokines Model Stimulation Myokine Alteration Physical Signs Ref.

Irisin

Mice Swimming training (30 min/day,
for 3 days/week for 8 weeks) Irisin ↑ in muscle

Reduced the oxidative stress
index (OSI), degeneration in the

heart muscle, inflammation
and cardiopathy

[46]

Mice
Treadmill exercise with

moderate intensity
(5 days/week for 8 weeks)

Irisin ↑ in muscle Increased bone mineral density
of trabecular bone in mice [47]

Rat Swimming training (60 min/day,
for 7 days/week for 8 weeks) Irisin ↑ in serum

Effectively improved bone
health caused

by obesity
[48]

Mice

Aerobic exercise, Resistance
exercise, Vibration exercise, The

Electrical stimulation
(60 min/day, for 5 days/week

for 4 weeks)

Irisin/FNDC5 ↑
in muscle

Promoted mitochondrial
autophagy, improving heart

function and resisting exercise.
[49]

Human Cycling on stationary bikes
(20–35 min/week for 10 weeks) Irisin ↑ in plasma Improved glucose homeostasis

and caused a small weight loss [50]

Human
Progressive resistance

training (1 h/day,
for 2 days/week for 12 weeks)

Irisin ↑ in serum Increased grip strengthand
leg strength [51]

Human
Strength and endurance training

intervention (60 min/day, for
2 days/week for 12 weeks)

Irisin ↑ in serum Not described [52]

Human
Moderate-intensity
treadmill walking

(180 min, 21.9 ◦C and 41.1 ◦C)
Irisin ↑ in serum Reduced oxidative stress

and inflammation [53]

Human Winter swimming Irisin ↓ in serum Not described [54]

IL-6

Human Marathon IL-6 ↑ in plasma Not described [55]

Rat

Treadmill running and
ladder climbing

(75 min/day, for 3 days/week
for 12 weeks)

IL-6 ↑ in muscle Helped reduce inflammation [56]

LIF

Rat
Interval exercise training

(60 min/day,
for 5 days/week for 8 weeks)

LIF ↑ in muscle
Reduced apoptosis and

promoted proliferation in
gastrocnemius muscle

[57]

Human Heavy resistance exercise of
6–8 repetitions LIF ↑ in muscle Not described [58]
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Table 1. Cont.

Myokines Model Stimulation Myokine Alteration Physical Signs Ref.

IL-10

Rat HIIT (Running with 8 m/min,
10 min/day for 5 days) IL-10 ↑ in serum

The expression of
pro-inflammatory factors

was inhibited
[59]

Human
Physical activity of
moderate intensity

(12 weeks)
IL-10 ↑ in serum Improvement of metabolic

risk factors [60]

Human

Running 5 km intermittently;
running 5 km continuously at 70%

of MAS (determined in the
incremental test) on the treadmill

IL-10 ↑ in serum
It effectively inhibits the

progression of
inflammatory response

[61]

IL-15

Human A bilateral leg resistance exercise IL-15 ↑ in
muscle serum

Improved myofibrillar
fractional synthetic rate [62]

Human
High-intensity circuit

training (HICT)
(3 days/week for 5 weeks)

IL-15 ↑ in serum Improved an insulin sensitivity [63]

Human
Moderate intensity exercise

(60 min/day,
for 3 days/week for 12 weeks)

IL-15 ↑ in serum Decreased body fat [64]

BDNF

Mice Swimming training (30 min/day,
for 7 days/week for 12 weeks)

BDNF ↑ in
cerebral cortex

Provided
neuroprotective effects [65]

Mice Voluntary wheel-running exercise
(30 days) BDNF ↑ in striatum Enhanced striatal dopamine

(DA) release [66]

Mice Rat cages equipped with running
Wheels (3 h/day for 2 weeks)

BDNF ↑ in
hippocampal tissues

Improved cognition
in Alzheimer’s disease (AD) [67]

Human Aerobic exercise (35 min) BDNF ↑ in serum Improved cognition
in Alzheimer’s disease (AD) [68]

Human Walk on a treadmill at light to
moderate intensity (30 min) mBDNF ↑ in serum

Enhancement of neuroplasticity
and facilitate the improvement

of motor performance
[69]

FGF2
Rat

Continuous exercise training
(15 min at 65% maximal speed for
1 week, 20 min for 2 weeks, 25 min

for three weeks at 70% maximal
speed, and 30 min for 4, 5, and
6 weeks at 70% maximal speed)

FGF2↑ in heart tissue Delayed age-related
myocardial fibrosis [70]

Human Aerobic exercise (300 min/week
for 12 months) FGF2 ↑ in serum Reduced postmenopausal

breast cancer risk [71]

FGF21

Mice
Resistance training
(10 repetitions/day,

3 days/week for 8 weeks
FGF21 ↑ in muscle Improved muscle strength [72]

Mice
Performed treadmill

exercises at 30 m/min
for 60 min

FGF21 ↑ in plasma
and muscle Not described [73]

Human
A treadmill exercise test (following

the Bruce’s protocol)
(5 days/week for 2 weeks)

FGF21 ↑ in serum Increased glucose intake [74]
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Table 1. Cont.

Myokines Model Stimulation Myokine Alteration Physical Signs Ref.

IGF-1

Mice

Ladder climbing (85-degree incline,
1.5 cm spacing), utilizing

progressive overload (twice a day,
every third day for 16–18 weeks)

IGF-1 ↑ in muscle Compensatory growth
of muscle [75]

Human

Resistance training (RT), aerobic
training (AT), combination
training (CT) (60 min/day,

for 3 days/week for 8 weeks)

IGF-1 ↑ in serum
Increased muscle mass and
reduced total fat mass and

visceral fat area (VFA)
[76]

↑: up-regulation; ↓: down-regulation.
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3.1. Irisin

Irisin, a “star” myokine discovered in 2012, is a cleaved and secreted fragment of
fibronectin type III domain containing 5 (FNDC5) regulated by receptor gamma coactivator
1α (PGC1-α) in muscle [77]. The amino acid sequence of irisin is highly conserved in
most mammalian species (including humans) [78] and has been shown to be expressed in
almost all tissues and organs of eukaryotes, with particularly high expression in skeletal
muscle. One study reported that the expression of FNDC5 was nearly 200-fold higher
in muscle tissue than in adipocytes [79]. In a recent study, Leger et al. observed that
FNDC5/irisin may be expressed only in fast muscle fibres (gastrocnemius) and not in
slow muscle fibres (flounder muscle) [80], but the specific mechanism needs to be further
analysed in the future. It has been shown that irisin is associated with the browning of
white adipose tissue (WAT) and lipolysis capacity [81,82]. Irisin has important regulatory
roles in promoting organismal health, including inhibiting the development of chronic
diseases and modulating the function of immune cells [47].

Irisin is one of the most important myokines that is clearly induced by exercise.
Moderate-intensity treadmill exercise increased irisin levels in mice gastrocnemius and
soleus muscles by approximately 50% [46]. After eight weeks of swimming exercise, irisin
levels were significantly increased in the skeletal muscle of mice [48]. Kang et al. in their
study found that a high-fat diet resulted in a significant reduction in serum irisin levels in
SD rats. Irisin expression was inhibited by obesity and may be associated with its induced
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adverse effects. Eight weeks of low-intensity swimming exercise increased serum irisin
levels by approximately 39.6% compared to the high-fat diet-fed group [49], indicating
that irisin has a positive significance in exercise regulation of obesity. Effects of exercise
on irisin secretion are also related to different types of exercise. Aerobic, resistance, and
vibration exercise, as well as electrical stimulation of skeletal muscle all up-regulated the
expression of irisin in mice myocardium, with the up-regulation by resistance exercise being
more significant [50]. Exercise-induced irisin secretion has also been reported in a number
of clinical trials. Boström et al. noticed that the level of irisin in basal plasma increased
after 10 weeks of regular exercise [51]. Another study noted that 12 weeks of appropriate
resistance exercise significantly increased resting serum irisin levels in older women com-
pared to no exercise and that periodic, sustained exercise-induced irisin improved muscle
function in older women [83]. Irisin levels are not only regulated by prolonged exercise, but
studies have shown that muscle and circulating irisin increase immediately after acute ex-
ercise [52]. Serum irisin levels increased 1.2-fold after acute exercise in both non-exercising
healthy individuals and exercise-trained prediabetic individuals compared with pre-acute
exercise [53]. The ambient temperature during exercise also has an effect on irisin secretion.
McCormick et al. observed a more pronounced increase in serum irisin levels after 3 h of
moderate-intensity exercise in a high-temperature environment of 32 ◦C compared to 16 ◦C
ambient temperature [54]. Interestingly, when the ambient temperature is very low, such as
during winter swimming, serum irisin levels in swimmers are significantly reduced after
exercise [84]. Although it has been shown that irisin expression is up-regulated within
the bloodstream in response to cold stimulation alone [85,86], higher temperatures may
be more favourable for irisin expression under exercise-induced conditions. This may be
related to differences in the tissue specificity of the irisin source and the mechanism of
induction. In conclusion, the potential positive effects of irisin can be better played by
selecting appropriate exercise types and environmental ambient according to different
genders and diseases.

3.2. Interleukins

Members of the interleukin family are low molecular-weight proteins or glycopro-
teins [87]. Among these cytokines, IL-6 and leukemia inhibitory factor (LIF), which belong
to the IL-6 family [88], as well as two other interleukins, IL-10 and IL-15, have been found
to be released by the muscle and to exert anti-inflammatory effects, which have a beneficial
effect on the organism. Studies have shown that their secretion is regulated by different
kinds of exercise. IL-6 can be released from skeletal muscle and adipose tissue into the
blood to exert endocrine effects. It is also known as lipomyokine [55] and has metabolic and
anti-inflammatory effects. Northoff et al. noted [89] that IL-6 may be the major systemic cy-
tokine after strenuous exercise and is associated with the acute phase response of hepatocyte
metabolism after exercise. Their testing of serum from 17 marathon runners before and after
exercise showed that IL-6 levels were significantly elevated after exercise. Northoff judged
at the time that IL-6 was more pro-recovery overall than the classic pro-inflammatory effect.
Further research shows that the increase of IL-6 after exercise is mainly attributed to the
secretion of skeletal muscle [90–92]. IL-6 is thought to trigger an anti-inflammatory cascade,
inducing the production of anti-inflammatory cytokines, such as IL-10 and IL-1ra (IL-1
receptor antagonists), and inhibiting the production of pro-inflammatory cytokines Il-β
and tumor necrosis factor α (TNF-α) [93]. In addition, IL-6 plays a positive role in the
regulation of muscle growth and development [94]. Acute muscle contraction induces
IL-6 release from skeletal muscle and its release into the circulatory system. The increase
in IL-6 levels was correlated with the type, duration, intensity, and amount of muscle
involved in exercise [56]. Similar to irisin, IL-6 produced by skeletal muscle is involved
in the modulation of chronic diseases such as obesity. Ahn et al. observed that obesity
induced by a high-fat diet inhibits IL-6 expression in skeletal muscle. The expression of
IL-6 was significantly increased in skeletal muscle of HFD-fed rats that underwent stair
climbing resistance exercise and treadmill aerobic exercise for 12 weeks [57]. In addition,
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LIF, as a member of the IL-6 family, has been demonstrated to be released by resistance
and endurance training [7]. Jia et al. observed that eight weeks of interval exercise training
(IET) significantly increased the protein level of LIF in mice gastrocnemius muscle [58] and
reversed gastrocnemius muscle atrophy. Broholm et al. found that subjects had a significant
increase in LIF levels in their muscles after a round of high-resistance quadriceps training.
However, exercise-induced LIF expression is increased only in skeletal muscle, but not in
plasma [59]. This suggests that LIF is autocrine and paracrine released by myofibroblasts.
Exercise-induced LIF is released from skeletal muscle and promotes the proliferation of
myoblasts through autocrine paracrine secretion, which plays a beneficial role in improving
muscle mass.

Similar to IL-6 and LIF, the expression of IL-10 and IL-15 of the interleukin family is
induced by exercise and plays an important role as myokines in vivo. IL-10 has several
anti-inflammatory effects. Shadan et al. observed in animal experiments that the serum
level of IL-10 in diabetic rats increased after HIIT exercise, which inhibited the expression
of pro-inflammatory factors such as TNF-α and TGF in kidney tissue and improved the
pathological damage of kidney tissue in diseased rats [60]. It has also been observed
in clinical trials that exercise increases the level of IL-10. After 12 weeks of moderate-
intensity exercise, weight loss and increased levels of serum IL-10 were observed in obese
populations, and the elevated levels were significantly correlated with the expression of
lipocalin as well as a decrease in the inflammatory factor TNF-α [95]. Lira et al. found that
increased levels of IL-10 occurred immediately after high-intensity interval training (HIIT)
and steady-state training (SST), and reached a maximum at 60 min [61]. Increased IL-10
levels inhibited the expression of proinflammatory factors such as IL-1 and TNF-α induced
by the NF-κB pathway, which effectively inhibited the progression of the inflammatory
response [62]. IL-15 was also found to be up-regulated after exercise. Clinical data showed
that levels of IL-15 in the blood were elevated after resistance exercise [96]. Immediately
after bilateral leg resistance training exercise, serum IL-15 levels increased approximately
5.3-fold. Four hours after exercise, the expression of IL-15Rα mRNA and protein in skeletal
muscle increased by about 2 times and 1.3 times respectively compared with that at rest [63].
It was found that serum IL-15 concentration in non-active women decreased to below
baseline level after the first high-intensity circuit training (HICT) session. After 15 HICT
sessions, the serum IL-15 concentration increased and insulin resistance was improved.
The sudden excessive intensity caused a decrease in IL-15 levels [64]. However, the level
of IL-15 increased after adaptation and showed beneficial effects on the body. IL-15 levels
may increase with fitness and be related to exercise intensity. The level of IL-15 may
also be related to the level of female hormones. Compared with postmenopausal obese
women, 12 weeks of regular resistance exercise increased IL-15 levels and reduced body
fat in premenopausal obese women [97]. In summary, there are differences in the effects
of different exercise types on the secretion of interleukin family myokines, and the proper
form of exercise is important for the regulation of IL-6, IL-10, IL-15, and LIF expression
levels in vivo. So far, the induced effect of HIIT is supported by a relatively large number
of studies.

3.3. Brain-Derived Neurotrophic Factor (BDNF)

Brain-derived neurotrophic factor (BDNF) is a protein encoded by the BDNF gene.
BDNF is mainly composed of β-fold and random coiled-coil secondary structure, containing
three disulfide bonds, and is a basic protein. BDNF is synthesized as a pro-brain-derived
neurotrophic factor (pro-BDNF) [98].

Pro-BDNF is cleaved intra- and extracellularly to mature BDNF (mBDNF or tradition-
ally BDNF) [99]. mBDNF selectively activates the Tropomyosin receptor kinase B (TrkB)
receptor [100], leading to enhanced phosphorylation of TrkB, which is predominantly found
in the brain, but also exists to a lesser extent in skeletal muscle [101], where phosphorylation
activates the Ras-MAPK pathway and finally CREB at the serine site of the cAMP response
element binding protein (CREB) [102]. CREB promotes neuronal cell survival and enhances
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synaptic plasticity and neurogenesis by increasing the expression of the BDNF gene and the
anti-apoptotic protein gene BCL-2 [103]. BDNF can participate in the regulation of brain
and skeletal muscle functions. BDNF is widely distributed in the central nervous system,
peripheral nervous system, endocrine system, bone, and cartilage tissues. It is expressed in
non-neurogenic tissues, including skeletal muscle [104], and can be transported from the
periphery to the brain across the blood-brain barrier [105,106]. At the same time, BDNF
secreted from the brain can also enter the peripheral blood through the blood-brain barrier,
and it is positively correlated with the change in serum BDNF level [107].

BDNF has been shown to be induced by exercise, which actually contributes to the
understanding of exercise’s facilitation of neurodevelopment. The latest study by Sebas-
tian et al., 2024 showed that the levels of pro-BDNF and mBDNF in plasma significantly
increased after aerobic exercise [108]. The expression of pro-BDNF was higher in muscle,
especially in type I fibers, but the expression of mBDNF was not detected in muscle. It is
speculated that the exercise-mediated increase in circulating mBDNF may be derived in
part from pro-BDNF cleavage produced by skeletal muscle release and in part from nerves
and other tissues. The potential release of BDNF from skeletal muscle during exercise
may occur in the form of pro-BDNF rather than mBDNF [108]. Studies have found a link
between cognition and skeletal muscle function. There is a correlation between the decline
of cognitive function and the decrease of skeletal muscle mass in hemodialysis patients,
and muscle-derived BDNF plays an important role in this process [65]. Exercise increases
BDNF levels in the skeletal muscle, plasma, and brain and significantly improves brain
function. In preclinical trials, exercise training increased BDNF levels in the cerebral cortex,
striatum, and hippocampus of mice, inhibited neuroapoptotic pathways in the cerebral
cortex, promoted the release of dopamine, and improved cognitive function in mice [66–68].
In a clinical trial, Håkansson et al. observed a significant increase in serum BDNF levels
and improved cognitive function in healthy older adults after 35 min of physical activ-
ity [109]. Increased levels of BDNF not only have beneficial effects in healthy older adults
but also play an important role in Parkinson’s patients. It has been reported that the level
of BDNF is decreased in patients with Parkinson’s disease (PD), and the progression of
symptoms is correlated with the level of BDNF [69]. The level of mBDNF increased by
12% in Parkinson’s patients after acute aerobic exercise, which enhanced neural plasticity
and improved exercise capacity [110]. Interestingly, recent studies have found that the
myokines irisin can modulate BDNF levels. Circulating irisin and hippocampal BDNF
levels change with exercise intensity, peaking at moderate exercise intensity and thus
positively affecting brain function. The results showed that irisin secreted from skeletal
muscle into the circulation but not brain-derived irisin-induced hippocampal BDNF ex-
pression [80]. Unfortunately, this study was not able to examine changes in BDNF levels in
muscle and serum. These studies have demonstrated that aerobic exercise of appropriate
intensity induces up-regulation of BDNF levels, improves cognitive function, and plays a
protective role in brain nerves. However, excessive exercise may also have the opposite
effect on BDNF expression. A significant reduction in serum BDNF levels and a reduction
in the volume of the right hippocampal subregion of the brain were also observed during
a six-week incremental maximal exercise test (IMET) [111]. The effect of BDNF on brain
nerves may be related to the mode and intensity of exercise.

3.4. Fibroblast Growth Factors (FGFs)

Fibroblast growth factors (FGFs) are a structurally related family of 22 molecules.
FGFs bind to four high-affinity, ligand-dependent FGF receptor tyrosine kinase molecules
(FGFR1-4) [112]. The activation of FGFR promotes cell differentiation, migration, and
survival [113]. FGF2 and FGF21, members of the FGFs family, are expressed in skeletal
muscle and can be secreted to act on other tissues, thereby acting as myokines.

FGF2 is abundant in homogenates of muscle tissue and can be secreted by myotubes
cultured in vitro [114]. Muscle tissue has been reported to release FGF2 after injury and
strenuous exercise [70]. Sustained endurance exercise promotes FGF2 expression more
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than other exercises. In a preclinical trial, six weeks of continuous endurance training
(CET) resulted in significantly higher gene expression of FGF2 and attenuated myocardial
fibrosis in old rats compared with high-intensity interval training [71]. In contrast, in a one-
year randomised interference trial, postmenopausal women who were usually physically
inactive but healthy until the age of 50–74 years were asked to perform 150 min or 300 min of
aerobic exercise per week, respectively. The results showed that 300 min of intense aerobic
exercise per week resulted in a more pronounced increase in serum FGF2 expression [115].
FGF2 expression is clearly regulated by the timing and type of exercise. Unlike FGF2, it has
been shown that FGF21 is expressed at very low levels in skeletal muscle under normal
conditions [116]. Exercise stimulates muscle to produce FGF21, which is released into
the circulation, increasing serum FGF21 levels [72]. The release of FGF21 is regulated by
multiple exercise modes. Resistance exercise affects FGF21 levels. After eight weeks of
incremental resistance training, FGF21 levels in the flounder muscle of obese mice were
significantly increased, improving muscle strength [73]. FGF21 levels were significantly
increased in human serum as well as in mice plasma and muscle after a single acute exercise
session [117,118]. A 2020 meta-analysis showed that circulating levels of FGF21 peaked 1 h
after acute exercise in subjects performing resistance, endurance, combined exercise, and
intermittent exercise [74]. Cuevas-Ramos et al. observed that after two weeks of routine
exercise, the serum FGF21 concentration of the subjects increased significantly [119]. In
these studies, FGF21 levels increased after exercise. The opposite result was found in
a study of fatty liver disease. Serum FGF21 levels were decreased in elderly men with
fatty liver after five weeks of endurance training and were positively correlated with liver
fat content [120]. This may indicate that the action of FGF21 is related to the regulation
of inflammation. In summary, FGF2 and FGF21 are regulated by aerobic and anaerobic
exercise. A variety of exercise modes elicit muscle secretion of FGF2 and FGF21.

3.5. Insulin-like Growth Factor-1 (IGF-1)

Insulin-like growth factors (IGFs), including IGF-I and IGF-II, are evolutionarily con-
served peptides related to the insulin structure. Mature IGF-I and IGF-II consist of A,
B, C, and D domains. Homology of the A and B domains of insulin-like growth factor
to insulin [75]. It is highly expressed in muscle and is a key growth factor for muscle
growth and skeletal development, and is secreted by skeletal muscle through autocrine
and paracrine secretion [7]. The role of IGF-1 includes promoting cell proliferation, differ-
entiation, and survival.

Studies have reported that both resistance training and aerobic exercise can enhance
the secretion of IGF-1 [75,120]. Matheny et al. observed that 16 weeks of resistance training
increased IGF-1 levels in the quadriceps, calf, and foot muscles of liver IGF-1-deficient
(LID) mice. The up-regulation of local IGF-1 may be involved in the compensatory muscle
growth after resistance exercise [76]. Both resistance and aerobic training for eight weeks
can increase the expression of IGF-1 in the serum of patients with sarcopenic obesity, and
the effect of combined exercise on promoting IGF-1 secretion is more obvious than that of
resistance and aerobic exercise alone [121]. At present, there are few related studies on the
regulation of IGF-1 by exercise, and more exercise programs related to IGF-1 need to be
further studied.

4. Myokines and Immune Cells

In recent years, more and more literature has reported that myokines are involved in
the regulation of the body’s immune function. These myokines are capable of modulating
various immune cells. They can improve the proliferation and differentiation abilities of
immune cells, so as to enhance the body’s immunity and promote health. It is essential to
comprehend how different myokines regulate distinct immune cells to fully understand
their role in immunological processes.
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4.1. Irisin

The regulatory effect of irisin in vivo is related to the activation of immune mecha-
nisms. As mentioned above, irisin induced by exercise plays a regulatory role in obesity.
Indeed, a decrease in irisin levels was observed in all diseases including obesity [49], can-
cer [122], atherosclerosis [123], and diabetes [124]. The progression of these diseases is
closely linked to inflammatory and immune responses. At present, it is believed that irisin
induced by exercise plays an active role in regulating the function of macrophages and
influencing the inflammatory response and immune response.

Irisin affects macrophage function through the regulation of cell activity, phagocytosis,
antioxidant capacity, polarization, and apoptosis. Most of the experiments were observed
through in vitro studies. The mechanism by which irisin acts on macrophages is shown in
Figure 3. Excessive accumulation of reactive oxygen species (ROS) causes oxidative damage
to cellular macromolecules, leading to cell necrosis [125]. It was found that irisin regulates
macrophage activity by reducing the level of ROS and promotes macrophage proliferation
in a dose-dependent manner, increasing their phagocytic capacity [126]. Macrophages
stimulated with LPS were treated with irisin. Irisin inhibited the LPS-induced elevation of
mitochondrial ROS, effectively reduced the production of free radicals in macrophages, and
significantly reduced the production of harmful H2O2. ROS can inhibit the nuclear translo-
cation of nuclear factorerythroid 2 p45-related factor 2 (Nrf2), destroy the redox homeostasis
in macrophages, and lead to the proinflammatory response of M1 macrophages [127–129].
Irisin induction resulted in increased expression of the intracellular antioxidant and anti-
inflammatory factors Nrf2 and heme oxygenase (HO)-1. Meanwhile, the expression and
release of mobility group box 1(HMGB1) were significantly decreased. HMGB1 is a nuclear
DNA-binding protein that is responsible for the regulation of gene transcription, which con-
tributes to macrophage reprogramming to an inflammatory M1-like phenotype [130]. Irisin
regulated the expression of key factors in the antioxidant signaling pathway Nrf2/HO-
1/HMGB1, inhibited macrophage differentiation to a pro-inflammatory M1-like phenotype,
and enhanced the antioxidant mechanism of activated macrophages [131]. The study by
Dong et al. also confirmed that irisin modulates the expression of phenotypic markers in
macrophages and induces macrophage differentiation. Irisin decreased the levels of the
M1-like macrophage marker CD86 in lipopolysaccharide-induced macrophages while in-
creasing the levels of the M2-like macrophage markers CD163 and CD206, which stimulated
macrophage polarization from M1 to M2 and produced anti-inflammatory effects [124].
Other studies have found that irisin differentiates M0 and M1 macrophages toward the
M2 phenotype through the AMP-activated protein kinase (AMPK) pathway [132]. Ye et al.
used small interfering RNA for AMPK-α to block AMPK activation. AMPK-α siRNA
significantly inhibited irisin-induced macrophage phenotypic shift to M2. Thus, confirming
that irisin-induced M2 polarization is associated with activation of AMPK [132].

In addition, irisin was able to inhibit macrophage apoptosis. Zheng et al. found that
irisin inhibited oX-LDL-induced nuclear translocation of transcription factor 6 (ATF6) and
reversed clathrin-induced up-regulation of C/EBP homologous protein (CHOP), protein
kinase RNA-like ER kinase phosphorylation (p-PERK), and eukaryotic translation initiation
factor 2α phosphorylation (p-elF2α). It also up-regulated the expression of apoptosis
inhibitor BCL-2, which attenuated macrophage apoptosis in vitro [133]. Not only that,
irisin also improved macrophage infiltration. In a mice model of atherosclerosis induced
with nicotine, nicotine increased macrophage infiltration and aggravated atherosclerosis.
In contrast, after treatment with irisin, irisin inhibited macrophage infiltration by activating
PTEN via integrin αVβ5 receptor, thereby inhibiting PI3K and promoting the up-regulation
of the cell cycle protein-dependent protein kinase inhibitor P27. Thus, irisin significantly
ameliorated nicotine-induced macrophage infiltration and inhibited the progression of
atherosclerosis via the integrin αVβ5/PI3K/P27 pathway [134]. In summary, irisin can
enhance the function of immune cells, especially macrophages, which is beneficial for the
recovery of many chronic diseases.
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4.2. Interleukins

Interleukins play an essential role in transmitting messages, activating and regulating
immune cells, and mediating the activation, proliferation, and differentiation of T, B,
macrophage and NK cells, as well as inflammatory responses [87]. The relevant details are
described in detail below (e.g., Figure 4).
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T-cell differentiation and reduces T-cell motility through the JAK/STAT3 pathway; IL-15 promotes T
cell differentiation and reduces T cell exhaustion via the mTOR pathway, JAK/STAT pathway, and
PI3K/AKT pathway.↑: up-regulation;↓: down-regulation (Created with BioRender.com).

4.2.1. IL-6 Family

In the IL-6 family, IL-6 and LIF, as myokines, are induced by exercise and regulate the
function of immune cells. IL-6 is highly expressed in exercising skeletal muscle cells [135].
Several synergistic interactions between it and immune cells in muscle tissue have been sug-
gested as determinants in the regulation of muscle injury and inflammation [136,137], and
it is responsible for inducing regeneration-promoting pathways and anti-inflammatory pro-
cesses in skeletal muscle [94,138,139]. IL-6 can regulate the proliferation and differentiation
of immune cells [140], thus having beneficial effects on the body.

Studies have found that the IL-6 signaling pathway plays an important role in the
regulation of macrophage differentiation [141]. The presence of IL-6 increased the expres-
sion of the M2-like macrophage marker CD206, that is, IL-6 promoted the polarization
of macrophages to the M2 phenotype [142,143]. Ding et al. confirmed that IL-6 can pro-
mote the polarization of M2 macrophages through the STAT3 pathway, and activated
M2 macrophages have a feedback-promoting effect on the invasion and migration of tro-
phoblast cells, which has a beneficial effect on the maternal and fetal microenvironment of
pregnancy [144]. Other studies have shown that IL-6 can prevent the death of macrophages
induced by Streptococcus pneumoniae and reduce inflammatory damage in the lung
by inhibiting pyroptosis [145]. In conclusion, IL-6 exerted anti-inflammatory effects by
promoting M2-like polarization of macrophages and inhibiting macrophage death.

IL-6 not only regulates macrophage function but is also involved in lymphocyte ac-
tivation [146]. Valença et al. observed that the presence of IL-6 caused the translocation
of STAT3 from CD4+T cells to mitochondria. This helps maintain mitochondrial calcium
ions, and thus enhances CD4+T cell motility, better mediating the immune response [146].
Lipopolysaccharide (LPS) was administered intravenously to mice harboring immature
CD4+T cells. Treatment with LPS induced an increase in IL-6 levels and increased the
number of CD4+T cells [147]. In addition, IL-6 was found to promote T-cell differentia-
tion [148,149]. IL-6 promoted the differentiation of CD8+T cells in a mice model of Brucella
infection and played a key role in Brucella clearance [148]. In a mouse model of breast
cancer, Liu et al. found that cryo-thermal therapy significantly increased IL-6 levels in
tumor tissues, and IL-6 induced dendritic cell phenotypic maturation, which promoted T
cell differentiation, inhibited tumor cell proliferation, and exerted anti-tumor effects [149].
The effect of IL-6 on macrophages, T-lymphocytes and other immune cells helps to regulate
and promote the immune response, which enhances one’s own immunity and resistance
and also improves a variety of inflammatory lesions caused by low immunity.

As a member of the IL-6 family, LIF has been found to promote macrophage differenti-
ation. However, few studies have been conducted. Yu et al. treated bone marrow-derived
macrophages (BMDM) and THP-1 cell-induced differentiated human macrophages with
recombinant human LIF (RLIF). Significant up-regulation of marker genes of the M2 pheno-
type was observed in both types of macrophages. Moreover, treatment with STAT3 inhibitor
STAT3i significantly reduced the mRNA levels of M2 marker genes in BMDM [150]. This
suggests that similar to IL-6, LIF can play an anti-inflammatory role by stimulating the
conversion of macrophages to M2 type through the STAT3 signaling pathway.

4.2.2. IL-10

Similar to the two members of the IL-6 family, IL-10 exerts main anti-inflammatory
effects as a myokine. In in vivo experiments, infused in myocardial infarction mice, IL-10
stimulated M2 macrophage polarization and acted as an inhibitor of inflammation [151].
IL-10 also plays a central role in regulating the switch of muscle macrophages from the M1
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to M2 phenotype in damaged muscle in vivo. In response to IL-10, the expression of CD163
and Arg1, markers of M2 macrophages, increased and stimulated myoblast proliferation.
The recovery of the damaged muscle plays an important regulatory role [152]. In in vitro
experiments, IL-10 induced anti-inflammatory effects by activating the STAT3 signaling
pathway to increase the mRNA and protein expression of macrophage apoptosis inhibitor
(AIM) in bone marrow-derived macrophages in mice [153]. Piao et al. found that the
addition of IL-10 up-regulated the expression of P50 and P65, subunits of NF-κB, in the
nucleus of macrophages and promoted P65 phosphorylation. The subsequent addition of
sarsasapogenin, an inhibitor of the NF-κB pathway, which inhibited the degradation of the
NF-κB inhibitory protein IκB and P65 phosphorylation, effectively inhibited the activation
of the NF-κB pathway [154]. Inhibitors of the NF-κB pathway attenuated the expression of
the M2 marker CD163. These results suggest that the effect of IL-10 on the M2 polarization
of macrophages is partly dependent on the NF-κB pathway [155]. Taken together, the anti-
inflammatory effect of IL-10 is also achieved mainly by promoting macrophage polarization
toward the M2 type.

IL-10 is a major B-cell stimulating factor that affects B-cell proliferation and differ-
entiation [156]. In an in vitro study, in the presence of IL-10, B cells [157] in germinal
centers (GCs) formed by B cells could differentiate successively into CD20+CD38-memory
B cells, and then into CD20-CD38+ plasma cells, which secrete antibodies and perform
adaptive immune functions [158]. In another study, human B cells cultured in vitro were
found to proliferate in an IL-10-dependent manner and subsequently differentiate toward
antibody-secreting cells [156]. The research of Karmtej et al. has provided further evidence.
Immunoglobulin (IgA) is a key immunoglobulin in the respiratory tract and gastrointesti-
nal tract. Abnormalities in B cell function can lead to IgA deficiency [159]. IL-10, when
added to peripheral blood monocytes, induces IgA production by B cells from IgA deficient
patients. This proves that IL-10 can induce B cell proliferation, Ig class switching, and
antibody secretion [160,161]. Thus, IL-10 is able to participate in the activation of adaptive
immune responses in the body by promoting the proliferation and differentiation of B cells.

The effects of IL-10 on T cells have also been reported in the literature. IL-10 can in-
crease T-cell survival and enhance cellular immunity. In clinical trials, Wang et al. observed
that patients with high serum IL-10 levels had significantly higher T cell activity compared
to patients with low serum IL-10 levels [162]. In preclinical experiments, Nir Yoyev et al., in
their study of experimental encephalomyelitis (EAE) disease, showed that IL-10 signaling
in CD4+T cells can promote CD4+T cell survival, which enhances autoimmunity in the
central nervous system (CNS) [163]. Thus, IL-10 exerts an immune effect by enhancing the
survival of T cells. In summary, IL-10 mainly affects the functions of macrophages, B cells,
and T cells, thus enhancing the immune function of the body and promoting health.

4.2.3. IL-15

IL-15 is a pleiotropic myokine that plays a crucial role in the function of immune cells,
including NK cells and T cells. IL-15 promotes the proliferation of natural killer cells. Judge
et al. observed a significant up-regulation of the level of CD69, an activation marker for NK
cells, in tumor-infiltrating lymphocytes treated with IL-15, effectively treating soft tissue
sarcoma (STS) [164]. The same conclusion was reached by Zhao et al. They observed that
after intraperitoneal injection of IL-15 in a septic rat model, IL-15 increased the number of
NK cells in the peripheral blood of septic rats in a dose-dependent manner and prolonged
the survival time of septic rats [165]. Molecular biology studies showed that IL-15 treatment
increased the phosphorylation intensity of STAT5a/b in the JAK/STAT pathway and TOR,
AMPKα1, and AKT(T308) in the PI3K/AKT pathway. TERT (telomerase) was activated,
inducing the proliferation of NK cells. When JAK/STAT and PI3K/AKT pathway inhibitors
were added, the expression of TERT in NK cells was significantly reduced [166]. This
suggests that IL-15 could enhance the activity of NK cell TERT through both JAK/STAT
and PI3K/AKT signaling pathways, thus significantly increasing the number of NK cells. In
clinical experiments, synthetic IL-15 (rhIL-15) was administered intravenously to patients
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with advanced metastatic solid tumors by infusion or flow pump. The results showed
that the injection of rhIL-15 had a greater effect on NK cell expansion. The injection of
IL-15 enhanced the cytotoxic activity of NK cells, made them proliferate vigorously, and
enhanced the anti-tumor effect [167].

On the other hand, IL-15 can regulate the proliferation and activation of T lymphocytes,
especially CD8+T cells. Levels of the proliferation marker Ki67 were significantly up-
regulated in CD8+T cells after IL-15 treatment [164]. Choi et al. observed an increase in
the phosphorylation levels of mTOR and ribosomal protein S6 (a downstream molecule
of mTOR) and promoted the proliferation of memory CD8+T cells after stimulating the
memory CD8+T cell population with IL-15 [168]. In addition, IL-15 can be involved
in the activation of CD8+T cells through the JAK/STAT signaling pathway. Chen et al.
observed that H2O2 promoted the expression of IL-15 in keratinocytes and promoted the
phosphorylation of STAT3 and STAT5 in memory CD8+T cells (CD8 T+EMS). The addition
of JAK/STAT signaling pathway inhibitors significantly reduced keratinocyte-derived
IL-15-induced phosphorylation of STAT3 and STAT5 in CD8 T+EMS. Thus, oxidative stress-
induced IL-15 contributes to the activation of CD8 T+EMS through the JAK-STAT signaling
pathway and exerts an immune effect [169]. In clinical experiments, researchers found that
in the presence of IL-15, the proliferation of recipient bone marrow CD8+ T cells increased,
and the number of total CD8+T cells in peripheral blood tended to increase and promote
the activation of CD8+T cells [170]. IL-15 not only regulates the proliferation and activation
of CD8+ T cells but also participates in the regulation of other T cell functions. Programmed
cell surface death (PD-1) has been reported to inhibit the PI3K/AKT pathway, leading to T
cell dysfunction [171]. Saito et al. treated aged septic mice with IL-15, which suppressed
the expression of T cells and regulatory T cells (Treg) PD-1 and increased the proportion of
naïve T cells and CD8+T cells, thereby ameliorating sepsis-induced T cell failure in aged
septic mice [172]. In summary, IL-15 plays a crucial role in the proliferative function of NK
cells and T cells.

4.3. BDNF

It has been reported that BDNF is involved in the regulation of immune responses,
mainly by promoting macrophage polarization [173–176]. Sasaki et al. observed that
after the treatment of mice macrophage cell line RAW264.7 cells with recombinant BDNF,
BDNF promoted the expression of phosphorylated Rac1. Rac1 affects the depolymerization
of cortical actin and increases cell migration, which enhances phagocytosis and reduces
inflammatory stimuli in macrophages [173]. BDNF exerts anti-inflammatory effects by
enhancing the phagocytic activity of macrophages through the Rac1 signaling pathway. In
addition, BDNF can promote the transition of macrophage M1 to M2 phenotype. In one
study, chronic BDNF vectors were injected into adult C57 mice undergoing T10 spinal cord
injury (SCI). These animals exhibited a higher proportion of M2 phenotype macrophages
compared to controls. This improves the inflammatory microenvironment, enhances
the neuroprotective effect, and helps in the recovery of motor function after SCI [174].
Bi et al. observed increased serum BDNF levels and decreased STAT3 protein levels
and phosphorylation in mice with diabetes mellitus-accelerated atherosclerosis (DMAS),
whereas the overexpression of BDNF reduced the expression of markers of M1 macrophages
and increased the expression of markers of M2 macrophages [175,176]. BDNF induces the
differentiation of mouse macrophages to M2 type by inhibiting the STAT3 pathway, thus
attenuating DMAS. It can be concluded from the above results that BDNF can achieve
immunomodulation by enhancing the phagocytosis activity of macrophages and promoting
differentiation to the M2 type.

4.4. FGF Family

The fibroblast growth factor (FGF) family is a group of pleiotropic growth factors
that play important roles in cell proliferation, differentiation, angiogenesis, tissue repair,
and regeneration [177]. FGF activates various downstream signaling pathways such as
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AMPK, NF-κB, etc. [178]. Among them, FGF2 and FGF21 are secreted by skeletal muscle
and play the role of myokines. They mainly mediate macrophage polarization and play an
immunomodulatory role in various diseases such as tumors and chronic pancreatitis.

4.4.1. FGF2

FGF2 is an important regulator of macrophage differentiation [179]. Im et al. ob-
served that tumor-associated macrophages in tumors of FGF2 gene-deficient (Fgf2LMW-/-)
mice were biased toward an inflammatory (M1) phenotype. After treatment with exoge-
nous FGF2, FGF2 altered the phenotype of tumor-associated macrophages [179], that is,
transformed tumor-associated macrophages into an M2-like phenotype in the tumor mi-
croenvironment. Similarly, in studies of gastric cancer, FGF2 was found to be positively
correlated with macrophage infiltration. After co-culturing HGC-27, a GC cell line with a
relatively high expression of FGF2, with THP-1 cells, FGF2 secreted by HGC-27 inhibited
the polarization of M1 macrophages and promoted macrophage polarization toward the
M2 type [180] that is involved in the immunomodulation of the organism.

4.4.2. FGF21

FGF21 is an important regulator of muscle growth, inflammation, systemic metabolism
and premature aging [79]. It has been found that FGF21 ameliorates the inflammatory
state of macrophages [181]. In one study, recombinant human fibroblast growth factor 21
(rhFGF21) was used to treat middle cerebral artery occlusion (MCAO) mice. Compared with
the control group, the number of CD68+ and CD86+ macrophages in the rhFGF21 treatment
group was significantly reduced, and rhFGF21 inhibited the transformation of macrophages
to M1 phenotype and played an anti-inflammatory role. It can promote the functional
recovery of stroke rats [182]. FGF21 can regulate macrophage polarization through the
m-TOR signaling pathway. Wang et al. observed a significant reduction in the expression
of both the M1 marker iNOS and the M2 marker CD206 in macrophages from mice with
chronic pancreatitis (CP) treated with FGF21. This process can be blocked by m-TOR
inhibitors. Thus, FGF21 ameliorates pancreatic fibrosis in chronic pancreatitis by reducing
M1- and M2-type macrophages in CP mice via the m-TOR signaling pathway [183]. FGF21
also promotes macrophage polarization through the AMPK and NF-κB pathways. Kang
et al. found that FGF21 activates hepatic AMPKα and reduces the phosphorylation level
of NF-κB in the liver tissue of senescent mice. Further studies using in vitro experiments
showed that FGF21 induced endotoxin-triggered phosphorylation of AMPKα and inhib-
ited p-NF-κB/NF-κB levels in macrophages and promoted M1 to M2 polarization [184].
Therefore, it can be concluded that FGF21 can promote macrophage polarization through
AMPK and NF-κB pathways, increase the expression of M2 macrophages, decrease the
expression of M1 macrophages, and produce an anti-inflammatory effect, thus attenuating
hepatic senescence injury. FGF21 can promote macrophage M2-type polarization through
different signaling pathways and play an important regulatory role in chronic diseases
such as inflammation.

4.5. IGF-1

The growth-promoting endocrine hormone IGF-1, which acts as a myokine, has less
reported mechanisms for regulating immune cells. It has been reported in the literature
that IGF-1 regulates neutrophil differentiation. Nederlof et al. observed that in vitro and in
acute myocardial infarction (AMI) patients, IGF-1 mediated neutrophil polarization to an
N2 phenotype and observed phosphorylation of STAT6. Subsequent addition of a JAK2
inhibitor markedly inhibited the up-regulation of N2 markers and the phosphorylation
of STAT6 disappeared. It can be concluded that IGF-1 is able to improve the prognosis
after myocardial infarction by enabling bone marrow-derived neutrophils to develop an
anti-inflammatory N2 phenotype through the atypical signaling pathway, the JAK2-STAT6
pathway [185]. IGF-1 can differentiate neutrophils to produce anti-inflammatory effects.
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Currently, there are fewer studies on IGF-1, and more experiments are needed for more
in-depth studies in the future.

5. Discussion and Conclusions

Exercise-induced myokines have been shown to be involved in the regulation of
immune cell function, influencing the body’s innate and adaptive immune processes.
This article reviews and discusses the effects of myokines on immune cell function and
the important role that exercise plays in it. Exercise-induced myokines can affect the
proliferation, differentiation, and survival of a wide range of immune cells, and a variety
of exercise types, intensities, and durations can have an effect on myokine secretion. At
present, there is no clear criterion for classifying exercise intensity. We referred to the criteria
proposed by the American College of Sports Medicine (ACSM) [186] (Supplementary Table
S1). Available evidence suggests that aerobic exercises, such as low to moderate-intensity
swimming and running, endurance exercise, etc., and anaerobic exercise, such as resistance
and strength, can promote the secretion of myokines by skeletal muscles. These myokines
can enhance the function of immune cells, thereby improving the body’s immunity and
promoting good health.

However, there is some uncertainty in current research on the link between exercise,
myokines, and immune cells. As we mentioned at the beginning of the article, excessive
exercise may also lead to the weakening of immune function [4]. In the future, the sports
activity plan based on the standard prescription principle (such as the FITT principle [187])
will help to standardize the appropriate frequency, intensity, time, and type of exercise,
and perhaps better play the role of exercise in promoting health. It should be noted that
exercise-induced myokines are not always positive for the immune system. For example,
follistatin-like protein 1 (FSTL1) and decorin (DCN), which are induced during exercise
and secreted by muscles, can promote M1-like polarization of macrophages, which is
considered a sign of promoting the progress of related diseases [188–190]. Among the
myokines reviewed in this paper, interleukins can not only play an immunomodulatory
role as myokines but also be widely recognized as inflammatory cytokines. Their role
in immune regulation is still controversial. The different effects of these myokines may
provide new perspectives on the molecular basis of exercise intervention in immunity. Our
understanding of motor regulation of the myokines is not deep enough to fully explain
the specific mechanism of the action of myokines on immune cells. In addition, beyond
the effects of exercise, the secretion of myokines may also be related to factors such as diet
and aging [191,192]. A large number of experiments are needed to study related issues in
the future.

Nevertheless, our article reviews the regulation of immune cells by exercise-induced
myokines, providing evidence for the critical role of exercise-induced myokines in enhanc-
ing the body’s immunity. Investigating the effects of induced myokines on immune cell
function under different exercise modes, dosages, and intensities will provide a theoretical
basis for further optimizing exercise health programs and improving exercise prescrip-
tions for patients with chronic diseases. It is expected that the study of exercise-induced
myokines will help us to further understand and explain the beneficial effects of exercise in
the maintenance of health.

Supplementary Materials: The following supporting information can be downloaded at: https:
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