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Abstract: RNA–protein complexes play a crucial role in cellular functions, providing insights into
cellular mechanisms and potential therapeutic targets. However, experimental determination of
these complex structures is often time-consuming and resource-intensive, and it rarely yields high-
resolution data. Many computational approaches have been developed to predict RNA–protein
complex structures in recent years. Despite these advances, achieving accurate and high-resolution
predictions remains a formidable challenge, primarily due to the limitations inherent in current
RNA–protein scoring functions. These scoring functions are critical tools for evaluating and inter-
preting RNA–protein interactions. This review comprehensively explores the latest advancements
in scoring functions for RNA–protein docking, delving into the fundamental principles underlying
various approaches, including coarse-grained knowledge-based, all-atom knowledge-based, and
machine-learning-based methods. We critically evaluate the strengths and limitations of existing
scoring functions, providing a detailed performance assessment. Considering the significant progress
demonstrated by machine learning techniques, we discuss emerging trends and propose future re-
search directions to enhance the accuracy and efficiency of scoring functions in RNA–protein complex
prediction. We aim to inspire the development of more sophisticated and reliable computational tools
in this rapidly evolving field.

Keywords: RNA-protein complex; scoring function; machine learning; structure prediction;
molecular docking

1. Introduction

RNA–protein complexes are vital for cellular functions, such as DNA repair, RNA
splicing, and protein synthesis [1–3]. They play a crucial role in gene regulation and
the maintenance of chromosome ends [4,5]. Disruptions in RNA–protein interactions are
linked to various human diseases, including cancer [6], AIDS [7], and neurodegenerative
disorders [8,9]. For example, HIV, a global retrovirus that attacks the human immune
system, had caused approximately 39 million infections and 630,000 AIDS-related deaths
by the end of 2022. The core mechanism of HIV infection involves an RNA–protein complex,
in which the viral protein Tat takes over the host’s positive transcription elongation factor b
(P-TEFb) along with the cis-acting transactivation response element (TAR) RNA to regulate
transcription elongation. It is crucial to understand the structure of these RNA–protein
complexes [7,10]. However, the lack of crystal structures is a major obstacle to developing
effective therapies. Therefore, understanding these complexes is crucial for cell biology
and for developing targeted therapies [11–13].

Understanding RNA–protein interactions requires 3D structural information. How-
ever, experimental methods like X-ray crystallography, NMR, and cryo-electron microscopy
are costly and time-consuming [14,15]. The high flexibility and complex interaction pat-
terns of RNA make it challenging to determine their structures through experimental
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methods [16,17]. For instance, it is difficult to achieve high-resolution crystal structures via
X-ray crystallography [18], maintain RNA stability during cryo-electron microscopy [19],
and obtain precise NMR spectroscopy data for larger RNA molecules [20]. As of 17 August
2024, the Protein Data Bank (PDB) contained 223,790 structures, but only 4888 were RNA–
protein complexes [21]. When redundancies were removed, fewer than 400 high-resolution,
unique, non-redundant RNA–protein complexes were available for analysis [22,23]. This
number is significantly lower than the expected number of RNA–protein complex structures
formed within cells.

Therefore, computational structure prediction has gained attention as a viable alterna-
tive. A platform for assessing advancements in computational structure prediction is the
biennial Critical Assessment of protein Structure Prediction (CASP) competition [24], com-
plemented by CAPRI for protein complexes [25] and RNA-Puzzles for RNA structures [26].
In recent years, CASP challenges have expanded beyond protein structure prediction to
include RNA and RNA–protein complex prediction. CASP15 featured two RNA–protein
complex targets, and CASP16 introduced additional targets, emphasizing the growing
focus on accurately modeling these complex biological interactions. Reliable computational
methods can bridge the gap between the scarcity of known RNA–protein structures and
the biological processes they control. The demand for accurate theoretical methods to
predict the structure of RNA–protein complexes is becoming increasingly urgent. From a
computational perspective, RNA–protein complex structure prediction primarily relies on
docking, which involves two main steps: conformational sampling and evaluation [27–30].
The flexibility of RNA and proteins leads to conformational changes, making it difficult to
sample near-native structures adequately [31,32]. Sometimes, the sampling process may
generate tens of thousands of possible structures, yet none closely resembling the native
state [27,33]. Another main challenge lies in conformational evaluation, where a scoring
function is used to rank and identify near-native structures among tens of thousands of
possible structures [22]. This process is particularly challenging because it requires accu-
rately distinguishing models between near-native structures and others. Existing scoring
functions for RNA–protein complexes are based on various assumptions and constructed
using different methodologies, each with strengths and limitations.

Several scoring functions have been developed for evaluating the structure of RNA–
protein complexes, building on earlier advances in protein and RNA structure pre-
diction [12,22,31]. The cornerstone of this field is knowledge-based scoring functions,
which evaluate RNA–protein interactions as a weighted sum of pairwise statistical
potentials [34,35]. These statistical potentials utilize formulas derived from the inverse Boltz-
mann principle. Knowledge-based methods can be categorized into coarse-grained and
all-atom approaches. Coarse-grained potentials, such as DARS- RNP, QUASI-RNP [36], and
3dRPC-Score [37], rely on a statistical analysis of interface propensities between nucleotide–
residue pairs, capturing pairwise interactions effectively. The coarse-grained representation
allows for quicker computational speeds, making them suitable for high-throughput analy-
sis, especially effective when complex formation induces minor structural alterations. In
contrast, all-atom potentials, such as dRNA [12], ITScore-PR [22], and DITScore-PR [31],
provide higher accuracy when dealing with near-native models among decoys due to
their higher spatial resolution. These methods are particularly effective in bound–bound
cases where fine structural details are crucial. However, they are less effective in handling
unbound–unbound predictions as significant conformational changes occur upon binding.

Deep neural networks have shown potential in recent years across diverse fields,
including biophysics in structure prediction [38–40]. Well-established methods are available
for modeling the 3D structures of proteins [41–46], RNAs [47–54], and protein–protein
complexes [55–57]. Recent studies have shown that machine learning is now excelling
in evaluating RNA–protein complex structures. DRPScore, a 4D-CNN-based scoring
function, has achieved success comparable to knowledge-based methods in bound–bound
cases and has surpassed them in more challenging unbound–unbound cases [23]. These



Biomolecules 2024, 14, 1245 3 of 28

advancements highlight the potential of deep neural networks in revolutionizing the
evaluation of RNA–protein complex structures.

This review provides a comprehensive overview of scoring functions for RNA–protein
structure prediction, presenting the latest advances in the field. We discuss the fundamental
principles of various scoring functions, including knowledge-based approaches (coarse-
grained and all-atom models) and machine-learning-based methods (Figure 1). Moreover,
we assess the strengths and limitations of current scoring techniques, offering a detailed
evaluation of their performance. Given the significant progress demonstrated by machine
learning approaches, we propose future research directions that could further enhance the
accuracy and efficiency of scoring functions. We aim to inspire the development of more
robust and sophisticated scoring techniques to advance RNA–protein complex structure
prediction.
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Figure 1. Timeline of the development of RNA–protein complex structure prediction. The most recent
advancements in RNA–protein structure prediction encompass coarse-grained knowledge-based,
all-atom knowledge-based, and machine-learning-based approaches.

2. Knowledge-Based Scoring Functions

Knowledge-based scoring functions are mathematical functions derived from sta-
tistical observations of interactions at the interfaces of known RNA–protein complexes.
Figure 2 shows that these functions commonly use the inverse Boltzmann relationship to
convert distance-dependent pairwise contact probability distributions into statistical poten-
tial functions. This means that specific nucleotide and residue interactions are observed at
the RNA–protein interface with a higher frequency than would be expected by random
chance [58–60].
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Figure 2. The process and principles of knowledge-based scoring functions in evaluating RNA–
protein complexes. These scoring functions can be categorized into coarse-grained and all-atom
models derived from the inverse Boltzmann equation. Coarse-grained scoring functions utilize a
simplified representation, while all-atom scoring functions account for every atom within nucleotides
and residues. Once the energy function is constructed, these scoring functions can evaluate and rank
RNA–protein complexes, allowing the selection of structures with the lowest energy scores.

For instance, the highly negative charge of RNA attracts positively charged amino
acids, such as arginine (ARG), lysine (LYS), and histidine (HIS), which are prevalent at
the RNA–protein interaction interface [58,61,62]. Electrostatic interactions are crucial for
the stabilization of RNA–protein complexes [58,63,64]. Notably, guanine (G) is found
at the interface more frequently than cytosine (C), adenine (A), or uracil (U), with its
occurrence exceeding 30%. On the other hand, while hydrophobic residues, including
aromatic residues, are the least favored at these interfaces, aromatic residues still play an
important role in interacting with unpaired RNA bases [65].

Consequently, RNA–protein interactions are primarily mediated by electrostatic forces
rather than the hydrophobic forces and desolvation effects that dominate protein–protein
binding. It has been observed that the ‘LYS-ARG’ fragment in proteins is a highly favorable
binding motif. In RNA, ‘CG’ and ‘GG’ are the preferred binding fragments among the
nucleotides [62]. This preference is primarily due to guanine’s unique double-ring structure,
which facilitates extensive hydrogen bonding and stacking interactions. These enhance
stability and versatility in interactions with amino acids. Knowledge-based scoring func-
tions measure the tendency of these distance-dependent pairwise contacts to occur at the
interface [34,35].

The Boltzmann distribution in statistical physics provides a foundation for understand-
ing interaction probabilities in thermal equilibrium. The interaction energy ∆Ek correlates
with the probability distribution Pk as follows:

Pk ∝ e−
∆Ek
RT (1)

where Pk is the probability of the system being in a state k where the interaction or distance
occurs; the state can either be a specific nucleotide/residue or a specific nucleotide–residue
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pair. ∆Ek is the interaction energy between states k, R is the gas constant, and T is the
absolute temperature. In previous work, the value of RT was set at 0.59 kcal/mol.

Therefore, the inverse Boltzmann distribution can allow us to derive the interaction
potential energy. By statistically analyzing the interaction frequencies from existing struc-
tural databases, corresponding potential energy functions can be inferred. For example,
consider the distribution probability Pk of state k at the interface. According to the inverse
Boltzmann principle, this observed probability distribution can be directly related to the
interaction potential energy ∆Ek:

∆Ek = −RTln(Pk) (2)

Therefore, negative statistical potential values indicate favorable binding energies.
Thus, the total score ∆E for a given RNA–protein complex is obtained by summing the
interaction energies for all specific states at the interface:

∆E = ∑k ∆Ek (3)

The next and most crucial step is to analyze the geometric information of interaction
pairs at the interaction interfaces of RNA–protein complexes in known structural databases
(such as RCSB PDB [21] and NDB [66,67]) to obtain the probability distribution Pk. In gen-
eral, for each selected state k, the observed frequency Nk in all RNA–protein complexes is
counted and then normalized to obtain the probability distribution Pk:

Pk =
Nk

∑k Nk
(4)

where ∑k Nk is the total frequency observed across all states.
The definition of state k can differ among research groups. This state may be defined by

a general distance range, such as 1 to 5 Å, or by specific criteria tailored to the type of inter-
action and the involved atomic groups. Several classical formulations exist for constructing
the propensity distribution Pk. As illustrated in Equation (5), the propensity for a nucleotide
or a residue of type k is classically defined as the ratio of the observed frequencies:

Pk =
N I

k /∑K N I
k

NA
k /∑K NA

k
(5)

where N I
k is the number of nucleotides/residues of type k involved in the interface, and

∑K N I
k is the total number of interface nucleotides/residues. NA

k is the total number of
nucleotides/residues of type k, and ∑K NA

k is the total number of nucleotides/residues.
The Fernández-Recio group adopted a different propensity definition, emphasizing

the surface nucleotides and residues [68]. They defined propensity as

Pk =
N I

k /∑K N I
k

NS
k /∑K NS

k
(6)

where N I
k and ∑K N I

k have the same definitions given in equation (5), N I
k is the number of

nucleotides/residues of type k involved in the interface, and ∑K N I
k is the total number of

interface nucleotides/residues. NS
k is the total number of nucleotides/residues of type k on

the surface, and ∑K NS
k is the total number of nucleotides/residues on the surface.

Additionally, the propensity of nucleotide–residue pairs on the interfaces of RNA–
protein complexes is used to develop propensity-based statistical potentials. The nucleotide–
residue pairs are defined based on a cutoff distance between the nearest atoms [63]. Several
statistical potentials based on propensity have been developed for evaluating RNA–protein
complexes. These models consider factors such as secondary structure details, relative
distances, and orientations between nucleotide–residue pairs. In the upcoming sections,
we will provide a detailed analysis emphasizing the selection of state k at either the residue
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level (coarse-grained) or the atomic level (all-atom). By taking this approach, we aim to
assess the impact of these different resolutions on the accuracy and applicability of the
statistical potentials used in modeling RNA–protein interactions.

2.1. Coarse-Grained Knowledge-Based Scoring Functions

Over the last decade, significant progress has been made in developing coarse-grained
potentials for evaluating the structure of RNA–protein complexes (see Table 1). Start-
ing with Fernández’s work, which established the basis for distance-dependent pairwise
nucleotide–residue scoring [63], subsequent models like DARS-RNP and QUASI-RNP
improved on this approach by including more advanced reference states and better rep-
resentations [36]. The Xiao group further developed this concept with Deck-RP [69],
RPRANK [70], and 3dRPC-Score [37], incorporating secondary structure information and
utilizing new statistical methods beyond simple distance dependence. These enhancements
have broadened the usefulness of coarse-grained potentials, making them more effective in
a broader range of structural evaluation situations. The following sections will provide a
detailed overview of these methods.

Table 1. List of coarse-grained knowledge-based scoring methods for RNA–protein complex structure
evaluation. This table includes the development time, the representation of RNA–protein molecules,
the type and features of these methods, and their availability.

Name Time Feature Availability as a Standalone Method Reference

Fernández’s potential 2010
Pairwise

nucleotide–residue
propensity

N/A [63]

DARS-RNP 2011 Decoys as the reference
state potential

https://genesilico.pl/software/stand-
alone/statistical-potentials (accessed on

29 September 2024)
[36]

QUASI-RNP 2011 Quasi-chemical potential
https://genesilico.pl/software/stand-

alone/statistical-potentials (accessed on
29 September 2024)

[36]

Zacharias’s potential 2011 Distance-dependent
potential N/A [71]

Wang’s potential 2012

Pairwise
nucleotide–residue

propensity with secondary
information

N/A [72]

Deck-RP 2013
Distance- and

environment-dependent
potential

http:
//biophy.hust.edu.cn/new/3dRPC

(accessed on 29 September 2024)
[69]

RPRANK 2016
Pairwise

nucleotide–residue
propensity; RMSD

http:
//biophy.hust.edu.cn/new/3dRPC

(accessed on 29 September 2024)
[70]

3dRPC-Score 2017 Conformations of
nucleotide–residue pairs

http:
//biophy.hust.edu.cn/new/3dRPC

(accessed on 29 September 2024)
[37]

Fernández’s potential: In 2010, the Fernández group developed a distance-dependent
pairwise nucleotide–residue propensity to score the RNA–protein complexes [63]. In this
approach, we can determine the propensities by comparing the observed frequencies of

https://genesilico.pl/software/stand-alone/statistical-potentials
https://genesilico.pl/software/stand-alone/statistical-potentials
https://genesilico.pl/software/stand-alone/statistical-potentials
https://genesilico.pl/software/stand-alone/statistical-potentials
http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/3dRPC
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specific nucleotide–residue pairs (where i = 1 to 4 for nucleotides and j = 1 to 20 for residues)
at the RNA–protein interface with their expected frequencies.

Pij =
N I

ij/∑ij N I
ij

NS
i /∑i NS

i × NS
j /∑j NS

j
(7)

where N I
ij is the number of pairs between nucleotide type i and residue type j at the

interface, ∑ij N I
ij is the total number of nucleotide–residue pairs at the interface, and NS

i

and NS
j are the number of nucleotides of type i and the number of residues of type j on

the interface, respectively, while ∑i NS
i and ∑j NS

j are the total number of nucleotides and
residues on the surface, respectively. These expected frequencies are based on the overall
composition of RNA and protein surfaces. The nucleotide–residue pairs were defined by
having at least one atom within a cutoff distance of 4 Å from each other, which serves as the
distance threshold for defining a contact. Additionally, the surface nucleotide or residue
was defined as that with an ASA (accessible surface area) > 0.1 Å2. This distance-dependent
potential uses a cutoff distance to evaluate contacts between nucleotide–residue pairs.
While this approach is less sensitive to subtle differences in model structures, particularly
those that share identical contact pairs, it offers the advantage of being more resilient to
minor conformational changes. This tolerance makes it useful in scenarios where slight
structural variations are expected. Still, this approach cannot fully capture the highly
detailed interactions within the complex model. Unfortunately, this potential was designed
to improve the discriminative power of the FTDock potential and is not available as a
standalone program.

DARS-RNP and QUASI-RNP: In 2011, Tuszynska and Bujnicki introduced two medium-
resolution, coarse-grained potentials—namely, the quasi-chemical potential (QUASI-RNP)
and the Decoys As the Reference State potential (DARS-RNP)—to evaluate RNA–protein
complex structures [36]. This coarse-grained methodology simplifies the all-atom represen-
tation of macromolecular structures into a reduced form based on nucleotide or residue
type [73]. The backbone is represented by two united atoms for nucleotides: one for the
phosphate group (P) and one for the ribose (RIB). Pyrimidines are modeled with a single
atom, while purines are represented with two atoms. Conversely, residues are depicted
using one to three united atoms, depending on their molecular size.

These two potentials, QUASI-RNP and DARS-RNP, use the same mathematical base
but differ in their reference state:

E = Ed + Ea + Es + Ep (8)

where E is the total energy term, and Ed, Ea, Es, and Ep are the distance-dependent, angular-
dependent, site-dependent, and penalty terms for steric clashes, respectively. All four
terms of the energy function are equally weighted for they exhibit comparable values.
Among these energy terms, the interaction energies Ed, Ea, and Es between the united atom
type from the RNA i and the united atom type from the protein j are calculated by the
same formula:

E(i, j, d) = −RTln
Nobs(i, j, d)
Nexp(i, j, d)

(9)

where E represents Ed, Ea, or Es, Nobs(i, j, d) denotes the number of observed contacts
between atom types i and j within a specific distance or angular bin d in the training set, and
Nexp(i, j, d) refers to the expected number of contacts within the same distance/angular bin
in the reference state. The bin size is not standardized and is determined through empirical
testing. There are two bin types: a distance bin of 1 Å used for the distance-dependent term
Ed, and an angular bin of 20◦ used for the angular-dependent term Ea. The energy for each
RNA–protein united atom pair is calculated when they are within 9 Å of each other. For the
site-dependent term Es, the parameter d represents one of three interaction types between
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residues and nucleotide edges: Watson–Crick, Sugar, or Hoogsteen edges [74]. The penalty
term Ep for steric clashes restricts united atom pairs, preventing them from approaching
within a predefined cutoff distance.

It is essential to address the reference state problem when creating a distance-dependent
statistical potential energy between pairs of particles. While calculating Nobs(i, j, d), from
a given training dataset, the observed number of contacts between atom types i and j
with bin d is straightforward. Still, estimating the expected contact number, Nexp(i, j, d), is
more challenging. The expected distribution of paired nucleotide residues over distances
can be adjusted using valid reference state definitions, including mean reference states,
quasi-chemical approximate reference states, and finite ideal-gas reference states. QUASI-
RNP and DARS-RNP employ distinct methods to determine the reference state in their
calculations. For QUASI-RNP, molar fractions of residues are used to calculate Nexp(i, j, d):

Nexp(i, j, d) = Xi ∗ Xj ∗ Nobs(d) (10)

where Xi and Xj are the molar fractions of atom types i and j in the given training set,
respectively, and Nobs(d) is the total number of contacts in bin d irrespective of atom
type. For DARS-RNP, Nexp(i, j, d) is a normalized number of contacts between atom
types i and j in bin d, calculated from 1000 decoys generated by the docking program
GRAMM [75] for each RNA–protein complex in the training set. In both bound and
unbound docking tests, DARS-RNP demonstrated a slightly stronger performance than
QUASI-RNP to identify near-native structures. DARS-RNP is constructed from a much
more extensive training set, providing a more realistic representation of “random” protein–
RNA interactions. These two scoring functions are designed to be less affected by structural
changes. As a result, they are expected to be more effective in distinguishing between
different structures when complex formation causes only small changes. Furthermore,
these functions provide a better spatial resolution and a more accurate representation of
the reference state, leading to an improved accuracy in distinguishing between near-native
structures and decoys compared to Fernandez’s potential. In cases where molecules are
already bound together, these functions were able to effectively differentiate between
similar RNA–protein complex structures with small differences (RMSD < 10 Å). These
functions showed a competitive discriminative ability in more challenging cases where
the molecules were not initially bound together. The package of the model is freely
available at https://genesilico.pl/software/stand-alone/statistical-potentials (accessed on
29 September 2024).

Zacharias’s potential: In 2011, The Zacharias group developed a distance-dependent,
coarse-grained force field for RNA–protein docking [71]. This potential enables fully
systematic docking through energy minimization in the binding partners’ rotational and
translational degrees of freedom. In this coarse-grained approach, each residue is repre-
sented by up to four pseudo atoms (beads): two for the main chain nitrogen (N) and oxygen
(O), and one or two for the short and long side chains, respectively. For nucleotides, three
pseudo atoms represent the phosphate/ribose part, and three or four represent purine and
pyrimidine bases. There are 31 pseudo-atom types for proteins and 17 pseudo-atom types
for RNA.

This potential assumed pairwise additive interactions between protein and RNA beads,
which are described by a distance-dependent potential with two forms, corresponding to
attractive and repulsive interactions. The attractive potential is of the Lennard-Jones type:

Uattr
ij = ϵij

(
σij

r8 −
σij

r6

)
(11)

The repulsive potential is

Urep
ij (r) =

{
Uattr

ij (r) + 2Um
ij , r ≤ rm

ij
−Uattr

ij (r), r > rm
ij

(12)

https://genesilico.pl/software/stand-alone/statistical-potentials
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Two pairwise-specific parameters σij and ϵij describe the interaction of each pair ij
of RNA and protein beads, governing the interaction range and strength, respectively.
rm

ij and Um
ij correspond to the position and minimum value of Uattr

ij . Thus, there are, in
total, 1054 parameters (31 × 17 × 2) that need to be derived in a knowledge-based manner.
Similar to DARS-RNP and QUASI-RNP [36], the distance-dependent statistical potentials
E(i, j, d) were constructed for each bead pair by a set of RNA–protein complexes determined
through Equation (9). Then, the initial values of σ and ϵ parameters were obtained by
fitting the attractive potential in Equation (11) and repulsive potential in Equation (12) to
E(i, j, d). The parameter values were subsequently adjusted to optimize docking results,
aiming to find the correct (close to native) binding mode and achieve appropriate scoring.
These potentials can accommodate moderate conformational changes but cannot be used
without the ATTRACT docking protocol.

Wang’s potential: In 2012, the Wang group developed four pairwise nucleotide–residue
propensity potentials from a given training set, depending on whether the secondary
structure element (SSE) information of RNA and proteins was considered [72]. Based
on the propensity values of protein SSEs, eight types of SSEs calculated by the DSSP
program were categorized into three classes: X (π-helix “I”, 310-helix “G”, and bend “S”,
whose p > 1), Y (β-sheet “E”, β-bridge “B”, turn “T”, and unclassified, whose p ≈ 1),
and Z (α-helix “H”, whose p < 1). Similarly, three types of nucleotides calculated by the
X3DNA program were categorized into two classes: NP (unpaired and non-WC paired
nucleotides, whose p > 1) and P (WC paired nucleotides, whose p < 1). Therefore, similar to
Equation (9), the propensity can be calculated from the observed probability of the specific
residue–nucleotide pair of type ai − bj (where a = 1. . .20 for residues, i = X, Y, Z for protein
secondary structure classes, b = 1. . .4 for nucleotides, j = P, NP for RNA secondary structure
classes) at interfaces, divided by the expected probability. The authors concluded that
the RNA secondary structure information plays a more significant role than the protein
secondary structure in accurately discriminating the RNA–protein complex structures.
Unfortunately, this potential is not available as a standalone program.

Deck-RP: In 2013, the Xiao group developed Deck-RP, a distance- and environment-
dependent potential specifically designed for RNA–protein complexes generated by RP-
DOCK [69]. Deck-RP merges the strengths of both Wang’s potential and DARS-RNP by
incorporating an enhanced reference state that accounts for propensities, secondary struc-
ture states, and interface preferences of nucleotides and residues. The reference state in
Deck-RP is a hybrid, composed of a decoy-based component and a molar-fraction-corrected
component. The decoy-based component takes account of all decoys in the training set as
the reference state, while the molar-fraction-corrected component takes account of the inter-
face concentration or specific preferences of nucleotides and residues. As a result, similar to
Equation (9), the propensity of residue–nucleotide pairs can be derived from their observed
probabilities. The model considers 168 unique nucleotide–residue pairs, encompassing four
nucleotide types across two secondary structure states and seven residue types across three
secondary structure states. The 3dRPC protocol includes the docking program RPDOCK
and the scoring program Deck-RP, which has been developed into a user-friendly web-
server version at http://biophy.hust.edu.cn/new/3dRPC (accessed on 29 September 2024),
while the package is freely available at http://biophy.hust.edu.cn/new/resources/3dRPC
(accessed on 29 September 2024).

RPRANK: In 2016, the Xiao group developed a new knowledge-based potential,
RPRANK, using root mean square deviation (RMSD) as a measure [70]. Unlike the previ-
ous statistical potential, RPRANK does not use distance to classify the residue-base pairs
directly. The conformational differences between nucleotide–residue pairs from decoys and
standard pairs from native structures were used to calculate the statistical potential. The
nucleotide–residue pairs are clustered based on the RMSD between each other. Then, the
energies of the nucleotide–residue pair clusters are decided by a statistical method based on
the number of pairs in each cluster. The 3dRPC protocol includes the docking program RP-
DOCK and the scoring program RPRANK, which has been developed into a user-friendly

http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/resources/3dRPC
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webserver version at http://biophy.hust.edu.cn/new/3dRPC (accessed on 29 September
2024). The package is freely available at http://biophy.hust.edu.cn/new/resources/3dRPC
(accessed on 29 September 2024).

3dRPC-Score: In 2017, the Xiao group introduced a new statistical potential called
3dRPC-Score [37]. Unlike the commonly used distance-dependent statistical potential, this
method considers the conformations of nucleotide–residue pairs as statistical variables. The
group proposed that accurately defining the energy of a nucleotide–residue pair requires
considering not only the relative distance between the partners but also their relative
distance and orientation. They classified the nucleotide–residue pairs into 10 classes based
on the relative root mean square deviation (RMSD) between their conformations. This
classification allows pairs with similar conformations to be considered to have the same
energy. Therefore, the statistical potential Eij(C) could be calculated:

Eij(C) = −ln

(
Pij(C)

PiPj ∗ Pv

)
(13)

where Pij(C) is the occurrence probability of the pair of i-type nucleotide and j-type residue
in class C, Pi and Pj are the probabilities of nucleotide i and residue j at the interface,
respectively, and Pv is the probability of class C in the whole conformational space of
nucleotide–residue pairs in an ideal state. In an ideal state, each class of nucleotide–residue
pairs has the same probability in conformational space. Thus,

Eij(C) = −ln

(
Pij(C)
PiPj

)
+ constant (14)

where the constant = lnPv. The scoring function performs best when the constant is set as
−4. The 3dRPC webserver is available at http://biophy.hust.edu.cn/new/3dRPC (accessed
on 29 September 2024). The package can be downloaded at http://biophy.hust.edu.cn/
new/resources/3dRPC (accessed on 29 September 2024).

Coarse-grained representations are less sensitive to conformational changes, which
makes them suitable for high-throughput scenarios and situations involving minor to
moderate conformational changes. These representations are expected to have greater
discriminatory power when complex formation induces only minor structural alterations
in its components. However, they may struggle to capture fine structural details and
complex molecular interactions, especially when dealing with significant conformational
changes. In such cases, these methods may need to be supplemented with higher-resolution
techniques for tasks requiring detailed structural analysis or when addressing more
complex challenges.

2.2. All-Atom Knowledge-Based Scoring Functions

The development of all-atom knowledge-based scoring functions for evaluating RNA–
protein complexes has progressed from basic models to more advanced techniques (Table 2).
The Varani group initially created a hydrogen-bonding potential to lay the foundation for
specific recognition between proteins and RNA based on the sequence [11]. Later, realizing
that hydrogen bonds only represent a fraction of the interactions at RNA–protein interfaces,
they introduced an all-atom, distance-dependent potential to improve the accuracy of
structural predictions [76]. Building on this work, the Zhou group developed dRNA, using
a carefully constructed reference state to enhance the accuracy of pairwise potentials [12].
Subsequently, the Zou and Huang groups advanced the field with ITScore-PR [22] and
DITScore-PR [31], both employing iterative processes to improve potentials and effectively
eliminate the need for a predefined reference state, thus enhancing accuracy and applicabil-
ity, especially in the consideration of fine structural details in RNA–protein interactions.
In the following sections, we will provide a detailed overview of each of these methods.

http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/resources/3dRPC
http://biophy.hust.edu.cn/new/3dRPC
http://biophy.hust.edu.cn/new/resources/3dRPC
http://biophy.hust.edu.cn/new/resources/3dRPC
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Table 2. List of all-atom knowledge-based scoring methods for RNA–protein complex structure
evaluation. This table includes the development time, the representation of RNA–protein molecules,
the type and features of these methods, and their availability.

Name Time Feature Availability as a Standalone Method Reference

Varani’s H-bonding
potential 2004 Hydrogen-bonding potential N/A [11]

Varani’s all-atom
potential 2007 Distance-dependent

potential N/A [76]

dRNA 2011

Volume-fraction corrected
distance-scaled, finite, ideal

gas reference (DFIRE) energy
function

N/A [12]

ITScore-PR 2014 Pairwise distance-dependent
potential; iterative

https://zoulab.dalton.missouri.edu/
resources_itscorepr.html (accessed on

29 September 2024)
[22]

DITScore-PR 2019 Pairwise distance-dependent
potential; double-iterative

http://huanglab.phys.hust.edu.cn/
mprdock/ (accessed on 29 September

2024)
[31]

Varani’s H-bonding potential: In 2004, the Varani group developed an atomic-level,
distance- and orientation-dependent hydrogen-bonding (H-bond) potential [11]. This
hydrogen-bonding potential consists of a distance-dependent energy term [E(δHA)] and
three angular-dependent energy components: E(Θ) (the angle at the hydrogen atom), E(Ψ)
(the angle at the acceptor atom), and E(X) (the dihedral angle of the hydrogen bond).
The total hydrogen-bond energy ( EHB) is then derived as a linear combination of these
four distance- and orientational-dependent terms under the assumption that they are
independent of each other:

EHB = E(δHA) + E(Θ) + E(Ψ) + E(X) (15)

However, hydrogen bonds represent only approximately 25% of the contacts at RNA–
protein complex interfaces. A more comprehensive approach is needed to effectively
describe the full types of interactions occurring at these interfaces. Unfortunately, this
potential is not available as a standalone program.

Varani’s all-atom potential: In 2007, the Varani group developed a distance-dependent
statistical potential for predicting sequence-specific recognition between proteins and RNA,
building upon the previous H-bonding potential, which represents only one aspect of
the complex interactions at play [76]. This all-atom potential treats every atom, in every
nucleotide and residue, as a unique type (e.g., Ala Cβ and Arg Cβ are considered unique
atom types under this scheme), resulting in a total of 158 protein and 81 RNA atom types.
Chemically similar atoms were grouped together based on the CHARMM atom definitions,
allowing interactions between these atoms to be treated consistently. This potential is
useful for distinguishing between RNA–protein complex models similar to the native
structure, particularly those with a root mean square deviation (RMSD) of less than 5 Å.
However, in practical unbound–unbound cases, obtaining a significant number of decoys
with RMSD < 5 Å is challenging. This potential is not available as a standalone program.

dRNA: In 2011, Zhou group developed dRNA, a volume-fraction-corrected, distance-
scaled, finite, ideal gas reference (DFIRE) statistical energy function and a measure of
relative structural similarity by Z-score for RNA–protein complex interactions [12]. The
definition of the reference state is critical for developing distance-dependent potentials
accurately. The reference state serves as the basis for comparing observed interactions, and
its precise formulation is essential for the reliability of the statistical potential. However,

https://zoulab.dalton.missouri.edu/resources_itscorepr.html
https://zoulab.dalton.missouri.edu/resources_itscorepr.html
http://huanglab.phys.hust.edu.cn/mprdock/
http://huanglab.phys.hust.edu.cn/mprdock/
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accurately determining the functional form of the reference state remains a significant
challenge. Errors in the reference state can result in inaccuracies in the calculated potentials,
especially when pairwise interactions are inaccurately represented or abrupt truncations
are applied [77,78]. The final statistical energy Eij(r) could be calculated as follows:

Eij(r) =


−ηln Nobs(i,j,r)(

f v
i (r) f v

j (r)

f v
i (rcut) f v

j (rcut)

)β

rα∆r
rα
cut∆rcut

Nlc
obs(i,j,rcut)

, r < rcut

0 , r ≥ rcut

(16)

where the volume-fraction factor f v
i (r) is

f v
i (r) =

∑j NRNA−protein
obs (i, j, r)

∑j NAll
obs (i, j, r)

(17)

where Nobs(i, j, r) is the number of pairs of atom i and atom j within the spherical shell at
distance r observed in a given RNA–protein complex structure database, and the interaction
cutoff distance rcut is 15 Å. ∆rcut, the bin width at rcut, is 0.5 Å. The value of α is set to
1.61, determined by the best fit of rα to the actual distance-dependent number of ideal-gas
points in finite protein-sized spheres. The value of β for volume correction is set to 0.5. The
factor η is 0.01 to control the magnitude of the energy score. Similar to Varani’s all-atom
potential, this all-atom potential also treats every atom, in every nucleotide and residue, as
a unique type, resulting in a total of 167 protein and 86 RNA atom types. dRNA offers an
improved accuracy in distinguishing low-RMSD, near-native models from thousands of
decoys compared to coarse-grained scoring functions, primarily due to its higher spatial
resolution inherent in the energy function. Unfortunately, this potential is not available as a
standalone program.

ITScore-PR: In 2014, the Zou group developed a pairwise distance-dependent atomic
interaction potential, ITScore-PR, using a statistical mechanics-based iterative method [22].
ITScore-PR addresses the reference state problem by iteratively improving the interatomic
pair potentials. This is achieved by comparing RNA–protein complexes’ predicted pair
distribution functions with the experimentally observed pair distribution functions of
native crystal structures in a specific training set. The potential Eij(r) over all atom pairs ij
in the RNA and protein is determined through an iterative formula:

E(n+1)
ij (r) = E(n)

ij (r) + ∆En
ij(r) (18)

∆En
ij(r) =

1
2

kBT
[

g(n)ij (r)− gobs
ij (r)

]
(19)

where n denotes the iterative step, and E(n+1)
ij (r) are the improved potentials from E(n)

ij (r)
after correction, used in the next iterative step. The separations r between atom i and atom
j are divided into bins of 0.2 Å with a maximum cutoff value of 10 Å. g(n)ij (r) and gobs

ij (r)

stand for the pair distribution functions for atom pair ij, calculated according to E(n)
ij (r)

and calculated from the native crystal structures in the training set, respectively. gobs
ij (r) is

calculated by the following:

gobs
ij (r) =

1
k ∑K

k=1 gk∗
ij (r) (20)

where K is the total number of the RNA–protein complexes in the training set, and gk∗
ij (r)

is the pair distribution function of the k-th native complex structure. g(n)ij (r) is the pair
distribution function calculated from the ensemble of the binding modes according to the
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binding score-dependent Boltzmann probabilities Pl
k obtained from the potential E(n)

ij (r) at
the n-th step.

g(n)ij (r) =
1
k ∑K

k=1 ∑L
l=0 Pl

kgkl
ij (r) (21)

where gkl
ij (r) is the pair distribution function for atom pair ij observed in the l-th binding

state of the k-th complex. Thus, for a given set of initial potentials E(0)
ij (r),

E(0)
ij (r) =

 wij(r) , for hydrogen bond pairs
vij(r)e

−vij(r)+wij(r)e
−wij(r)

e−vij(r)+e−wij(r)
, otherwise

(22)

where vij(r) is the van der Waals (VDW) potential by ZDOCK 2.1, and wij(r) = −kBTlngobs
ij (r)

is the potential of mean force. The iteration continues through Equations (18)–(21) until
all native structures in the training set can be discriminated from decoys by the current
potentials. 12 RNA atom types and 20 protein atom types are used in this statistical
potential. ITScore-PR clearly outperforms other scoring functions using detailed all-atom
representation and an iterative processing approach, especially in bound–bound cases.
The package is available at https://zoulab.dalton.missouri.edu/resources_itscorepr.html
(accessed on 29 September 2024).

DITScore-PR: In 2019, building on ITScore-PR [22], the Huang group developed a set
of effective pair potentials, DITScore-PR, for protein–RNA interactions using a double-
iterative method [31]. This algorithm circumvents the reference state problem by updating
the potentials until they can effectively distinguish native structures from binding decoys.
It overcomes the decoy-dependent limitation by iteratively constructing the binding decoys.
Similar to ITScore-PR but with a distinct approach, DITScore-PR consists of an inner loop
and an outer loop for the two iteration processes:

E(n,k+1)
ij (r) = E(n,k)

ij (r) +
1
2

kBT
[

g(n,k)
ij (r)− gobs

ij (r)
]

(23)

where n and k stand for the iterative indices of the outer and inner loops, i and j represent
the types of protein and RNA atoms, g(n,k)

ij (r) is the predicted pair distribution function

by the current potentials E(n,k)
ij (r) at the k-th inner iteration cycle for a fixed n-th iterative

cycle, and gobs
ij (r) is the experimentally observed pair distribution function in the native

complex structures of a training set. The outer loop conducts one iteration cycle when the
inner loop is completed once. The outer loop repeats until the iterative steps reach a set
number or the inner loop is converged. The definition for RNA and protein atom types is
the same as in ITScore-PR, which gave 12 RNA atom types and 20 protein atom types. The
separations r between atom i and atom j are divided into bins of 0.2 Å with a maximum
cutoff value of 9 Å. DITScore-PR demonstrates a higher accuracy than coarse-grained
potentials in bound–bound cases, achieving a success rate of approximately 80%. However,
while outperforming other approaches in the more challenging unbound–unbound cases,
the success rate still requires improvement. In true flexible docking processes, where
binding partners can adapt to each other, the performance of DITScore-PR remains limited
in handling significant conformational changes. The package of the model is freely available
at http://huanglab.phys.hust.edu.cn/mprdock/ (accessed on 29 September 2024).

Overall, all-atom potentials provide a superior accuracy and resolution in capturing
the detailed atomic interactions of RNA–protein complexes compared to coarse-grained
potentials. These methods are highly effective in bound–bound cases, outperforming
coarse-grained potentials by offering more precise discrimination of near-native structures.
However, the enhanced resolution of all-atom methods comes with increased computational
complexity and a reduced performance in facing complex conformational changes. This
limitation is particularly pronounced in true flexible docking scenarios, where binding

https://zoulab.dalton.missouri.edu/resources_itscorepr.html
http://huanglab.phys.hust.edu.cn/mprdock/
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partners must adapt to substantial conformational changes [79]. Therefore, while all-atom
potentials offer significant advantages in high-precision applications, their limitations in
flexibility suggest that they may need to be supplemented with other techniques, especially
in situations involving substantial conformational changes.

3. Machine-Learning-Based Scoring Functions

In recent years, rapid advancements in artificial intelligence have had a profound
impact on science and technology [80–86]. One breakthrough example is AlphaFold [41–43],
a machine-learning-based approach that has revolutionized protein structure prediction
with remarkable accuracy. While methods for predicting and modeling the 3D structures
of proteins [41–43,87], RNAs [47,48,50], and protein–protein complexes [55,88] have made
significant progress, emerging research highlights the growing efficacy of machine learning
in evaluating RNA–protein complex structures, as summarized in Figure 3 and Table 3.
The following sections will provide a detailed overview of these cutting-edge methods,
showcasing how machine learning is reshaping our understanding and evaluation of
RNA–protein interactions.
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Figure 3. The process and principles of machine-learning-based scoring functions for evaluating RNA–
protein complexes. The top approach in the figure employs chemical context profiles to represent
RNA–protein complexes, followed by Sequential Forward Selection (SFS) to build a machine-learning
model that reduces the initial 300-dimensional pair representation to a lower-dimensional space. The
bottom approach first involves molecular docking, gridding on each nucleotide and residue, and
using voxels containing atomic occupancy, mass, and charge to expand the input features. A 4D
convolutional neural network is then employed to construct a machine learning model that integrates
sequential and geometric dimensions. After model training, both models can score and rank RNA–
protein complexes, facilitating the selection of structures with the highest probability scores.

Parisien’s potential: In 2013, the Parisien group developed a machine-learning-based
scoring function by utilizing the interface’s CCP (chemical context profile) from known
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RNA–protein complex structures [89] (Table 3). Specifically, the CCP is defined as a 300-
dimensional vector:

−−→
CCP =

ala

∑
Cβ

A

∑
M

f (r),
ala

∑
Cβ

A

∑
m

f (r),
ala

∑
Cβ

A

∑
P

f (r), . . . ,
val

∑
Cβ

T

∑
P

f (r)

 (24)

Each double sum of CCP is the summation of the interaction strengths over a given
pair. For example, the first interaction term involves the Cβ of alanine (Ala) and the major
groove of adenosine (A), with the interaction strength set to be inversely proportional to
the distance between these pairs. This scoring function employs a simplified representation
of both RNA and protein structures. Specifically, the 300 dimensions are derived from
20 amino acid types and 15 nucleic acid types. For nucleic acids, a heavy atom in the
major groove (M), one in the minor groove (m), and a phosphate group (P) are selected,
respectively, as the interaction centers for the five nucleotides [A, C, G, U, and T], covering
both RNA and DNA. In the context of RNA, entries associated with thymines (T) have a
CCP value of zero. For proteins, the Cβ carbon atom servers as the interaction center for
each residue, simplifying the complex interactions into a manageable framework while
retaining essential biochemical information. f (r) is the distance-dependent energy function
assigned to each interaction pair:

f (r) =
1

max
(

3.5Å, r − ê
) (25)

where r is the distance between the interaction centers, and ê is the average distance
between Cβ and its partner interaction center. Any RNA–protein complex is represented
with the CCP vector. The similarity of the decoy and the native complexes can be obtained
by computing the angle between their CCP vectors. This angle, or CCD (chemical context
discrepancy), is defined as a relation in terms of two arbitrary vectors −−−→CCP1 and −−−→

CCP2 :

cos(CCD) =

(−−−→
CCP1 ·−−−→CCP2

)
(∣∣∣−−−→CCP1

∣∣∣× ∣∣∣−−−→CCP2

∣∣∣) (26)

Table 3. List of machine-learning-based scoring methods for RNA–protein complex structure evalua-
tion. This table includes the development time, the representation of RNA–protein molecules, the
type and features of these methods, and their availability.

Name Time Representation Feature Availability as a Standalone Method Reference

Parisien’s potential 2013 Coarse-grained Chemical context
profiles N/A [89]

DRPScore 2023 All-atom Convolutional
neural network

https://github.com/Zhaolab-
GitHub/DRPScore_v1.0 (accessed on

29 September 2024)
[23]

The more different the CCPs, which represent the chemical properties of the RNA–
protein complex interface, the greater the angle. Then, the CCP-based scoring function S
is designed by weighting the entries of a CCP to identify near-native structures with low
CCD values to the native structure:

S = Coulomb +
−→

ωccp·
−→
ccp (27)

where Coulomb is the generic electrostatic energy term, and
−→

ωccp is a vector enabling the
weighted sum of CCP components. The forward version of the sequential feature selection

https://github.com/Zhaolab-GitHub/DRPScore_v1.0
https://github.com/Zhaolab-GitHub/DRPScore_v1.0
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(SFS) approach, a machine-learning-based method, is used to identify the most important
interacting pairs among all possible ones, reducing the nonzero entries in

−→
ωccp to 12 from

the original 300 dimensions [90]. After training, these dimensions are further reduced to 12
for scoring tRNA–protein complexes and 6 for scoring other RNA–protein complexes. This
potential is not available as a standalone program.

DRPScore: In 2023, the Zhao group developed a deep-learning-based scoring function,
DRPScore, to better account for the structural flexibility of RNA–protein complexes [23].
Specifically, DRPScore utilizes a 4D convolutional neural network to train models that can
effectively identify near-native RNA–protein structures. To overcome the limitations of
scarce data, DRPScore utilizes physics-based simulations targeting RNA–protein interfaces,
generating 500 decoy structures for each RNA–protein complex in the initial process. This
approach enabled the creation of a training dataset with over 100,000 structures, a significant
improvement over the typical dataset size of fewer than 300 structures in traditional
knowledge-based methods. The input for DRPScore includes nucleotides and residues at
the RNA–protein interaction interface within a 6 Å distance. The model accurately describes
molecular systems at the atomic level, classifying 85 atom types for RNA nucleotides and
225 atom types for protein residues. It assigns accurate mass and charge values to each
atom through detailed feature processing. The 4D convolutional approach includes an
additional operation along the sequential dimension, preserving critical information about
nucleotide and residue interactions.

During preprocessing, each RNA–protein complex is represented as a tensor with the
dimensions 1 × 3 × L × (H × W × D). Here, the value 3 corresponds to the three captured
features: the accumulations of the occupation number, mass, and charge of the atoms
within each grid box. The parameter L = 128 represents the maximum allowable length
for RNA–protein complex sequences, while H, W, and D define the height, width, and
depth of a 3D cube that represents each nucleotide and residue within the RNA–protein
complex, with each dimension set to 32 units. This grid structure effectively captures the
spatial arrangement and intricate interactions at the atomic level, providing a detailed
representation of the molecular architecture and facilitating accurate modeling of RNA–
protein interactions.

DRPScore comprises six layers, with the final layer being a fully connected layer
for classification. Each of the first five layers includes a Conv4d module, an optional
BatchNorm module, and a MaxPooling module. In these Conv4d modules, the channel
numbers progressively change: 64, 128, 256, 512, and 512. The strides applied in each
module are set to 2, 2, 2, 1, and 1, respectively. This design effectively halves the feature
length of the RNA–protein complex in the first three blocks while maintaining it in the
last two blocks. All MaxPooling layers have a kernel size and stride of 2, halving each
pooling module’s height, width, and depth dimensions. The final representation of the
RNA–protein complex is obtained through global average pooling, resulting in an 8192-
dimensional feature vector that encapsulates the complex’s characteristics. Finally, after
applying a 4D convolution in the last layer, an adaptive spatial pooling for the final RNA–
protein complex representation Ooverall is utilized:

Ooverall =
1
H

1
W

1
D ∑i∈H ∑i∈W ∑i∈D OLN [i, j, k] (28)

After adding a linear classification layer to the model, probability scores can be gener-
ated to evaluate and select near-native RNA–protein complex structures. The representa-
tions learned by DRPScore effectively capture intra- (local) and inter-nucleotide/residue
(global) information. This is accomplished by integrating convolutional layers along the
sequence dimension, while also expanding on the spatial dimension. Each layer progres-
sively models a wider range of interactions between nucleotides and residues. It has
been extensively evaluated for its ability to identify near-native RNA–protein structures
across diverse cases. Although DRPScore achieves comparable success in bound–bound
cases and outperforms knowledge-based methods in more challenging unbound–unbound
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cases, its success rate in these unbound–unbound cases still requires substantial improve-
ment. Recently, this method has also been successfully extended to evaluate the struc-
ture of DNA–protein complexes [91]. The package of the model is freely available at
https://github.com/Zhaolab-GitHub/DRPScore_v1.0 (accessed on 29 September 2024).

4. Benchmarks and Datasets for Assessing Scoring Functions

Evaluating scoring functions for RNA–protein complexes requires rigorous testing on
a 3D RNA–protein complex structural benchmark. Consequently, various benchmarks and
datasets have been established to assess performance. This section discusses the multiple
benchmarks curated by different groups (Table 4). Due to the inherent flexibility of both
RNA and proteins, significant conformational changes can be induced during the docking
process. The RNA–protein complexes in these datasets can be broadly categorized into
three types: (1) bound–bound cases, (2) bound–unbound cases, and (3) unbound–unbound
cases [92–94].

Table 4. List of RNA–protein complex docking benchmarks. The time and number of total, bound–
unbound, unbound–unbound, easy, medium, and difficult cases are listed in this table.

Benchmark Development Time
Total

Number of
Cases

Number of Cases

Availability
Bound–

Unbound
Unbound–
Unbound Easy Medium Difficult Reference

Benchmark I Zou group 2013 72 20 52 49 16 7 [95]

https://zoulab.dalton.
missouri.edu/

RNAbenchmark/
index.htm (accessed on

29 September 2024)

Benchmark II Fernández-
Recio group 2012 106 * 62 9 64 24 18 [93]

https://life.bsc.es/
pid/protein-rna-

benchmark/ (accessed
on 29 September 2024)

Benchmark
III

Bahadur
group 2012/2016 126 105 21 72 25 19 [92,94] N/A

* Contains 35 homology-modeled cases.

In bound–bound cases, no conformational changes occur in the RNA or the protein
during the docking process. This means that both monomers involved in the docking come
from the same complex. Bound–unbound cases unequivocally involve conformational
changes in the RNA or the protein, where one may exist in an unbound state or come from
a different complex. Unbound–unbound cases explicitly refer to scenarios where both the
RNA and protein are in unbound conformations or originate from two distinct complexes.
These scenarios undeniably make the docking process particularly challenging due to the
complex conformational shifts involved.

For a robust performance evaluation, benchmark datasets must possess three key char-
acteristics: (1) Diversity of targets. The benchmarks must include a wide range of targets to
effectively test the robustness of different molecular docking algorithms. (2) Experimentally
resolved structures: It is crucial to use datasets derived from experimentally resolved
structures to avoid introducing computational biases or errors. (3) Bound and unbound
conformations: The benchmarks must contain both bound and unbound conformations of
the individual monomers, allowing for the assessment of conformational changes upon
complex formation [96,97].

https://github.com/Zhaolab-GitHub/DRPScore_v1.0
https://zoulab.dalton.missouri.edu/RNAbenchmark/index.htm
https://zoulab.dalton.missouri.edu/RNAbenchmark/index.htm
https://zoulab.dalton.missouri.edu/RNAbenchmark/index.htm
https://zoulab.dalton.missouri.edu/RNAbenchmark/index.htm
https://life.bsc.es/pid/protein-rna-benchmark/
https://life.bsc.es/pid/protein-rna-benchmark/
https://life.bsc.es/pid/protein-rna-benchmark/


Biomolecules 2024, 14, 1245 18 of 28

Benchmark I constructed by Zou et al. comprises 72 RNA–protein complexes, among
which 52 are unbound–unbound cases and 20 are bound–unbound cases [95]. Based on
the degree of conformational change observed in unbound structures upon binding, these
72 RNA–protein complexes can be further categorized into 49 easy (Irmsd ≤ 1.5 Å or
fnat ≥ 0.8), 16 medium (1.5 Å < Irmsd ≤ 4.0 Å and 0.4 < fnat ≤ 0.8), and 7 difficult targets
(Irmsd > 4.0 Å or fnat < 0.4). The interface root mean square deviation (Irmsd) is defined as
the RMSD of the interaction interface region after optimal superimposition of the bound and
unbound conformations. The fraction of native contacts ( fnat) is defined as the proportion
of native nucleotide–residue pairs in the unbound conformation. Specifically, it is the ratio
of the number of native nucleotide–residue pairs in the optimally superimposed unbound
conformation to the total number of nucleotide–residue pairs in the bound conformation.
The RNA–protein complex benchmark can be accessed at https://zoulab.dalton.missouri.
edu/RNAbenchmark/index.htm (accessed on 29 September 2024).

Benchmark II constructed by Fernandez-Recio et al. comprises 106 RNA–protein
complexes [93]. Among these cases, 71 cases were taken from crystallography or NMR
experiments, while 35 cases were built using homology modeling. Of the 71 experimental
RNA–protein complexes, 9 unbound–unbound cases and 62 bound–unbound cases exist.
The 35 homology-modeled cases consist of 13 unbound–model, 19 bound–model, and
3 model–model RNA–protein complexes. In unbound–model cases, the RNA or protein
exists in an unbound state or comes from a different complex, while the other is a homology-
based prediction structure. In bound–model cases, one molecule is in a bound state, and
the other is a homology-based prediction structure. In model–model cases, both the RNA
and protein are homology-based prediction structures, with no native complex involved.
Based on the degree of conformational change observed in unbound structures upon
binding, these 106 RNA–protein complexes can also be further categorized into 64 easy
(0 ≤ Irmsd < 2.5 Å), 24 medium (2.5 ≤ Irmsd ≤ 5.0 Å), and 18 difficult (Irmsd > 5.0 Å)
targets. The RNA–protein complexes benchmark can be accessed at https://life.bsc.es/
pid/protein-rna-benchmark/ (accessed on 29 September 2024).

Benchmark III constructed by Bahadur et al. comprises 45 RNA–protein complexes,
among which 9 are unbound–unbound cases and 36 are bound–unbound cases [92].
Based on the degree of conformational change observed in unbound structures upon
binding, these 45 RNA–protein complexes can also be further categorized into 34 easy
(0 ≤ Irmsd < 1.5 Å), 8 medium (1.5 ≤ Irmsd < 3.0 Å), and 3 difficult (Irmsd ≥ 3.0 Å). Later,
Bahadur et al. developed an extended version of benchmark III [94]. The non-redundant
RNA–protein complex benchmark contains 126 RNA–protein complexes, a three-fold in-
crease in the number of structures compared to the previously proposed RNA–protein
complex benchmark III. Among these cases, 21 are unbound–unbound cases and 105 are
bound–unbound cases. Also, based on the degree of conformational change observed in
unbound structures upon binding, these 126 RNA–protein complexes can also be further
categorized into 72 easy (0 ≤ Irmsd < 1.5 Å), 25 medium (1.5 ≤ Irmsd < 3.0 Å), and
19 difficult (Irmsd ≥ 3.0 Å).

5. Criteria and Assessment of the Prediction Quality

The quality of RNA–protein complex predictions is evaluated using the CAPRI crite-
ria [98,99], focusing on two primary metrics: interface root mean square deviation (Irmsd)
and ligand root mean square deviation (Lrmsd). Irmsd measures the deviation at the interface
between native and predicted structures after protein superposition. Lrmsd quantifies the
displacement of the RNA under the same conditions. Specifically, interface residues and
nucleotides are extracted from both the native RNA–protein complexes and the decoys,
and superposition is performed to calculate Irmsd. Similarly, all nucleotides from native
and decoy structures are extracted and superposed to calculate Lrmsd. This ensures an
accurate assessment of deviations at the interaction interface and the overall RNA confor-
mation [100]. Typically, a decoy is classified as a near-native structure if its Irmsd relative to
the native complex is ≤4.0 Å, or if its Lrmsd is ≤10.0 Å. A scoring function is successful if it

https://zoulab.dalton.missouri.edu/RNAbenchmark/index.htm
https://zoulab.dalton.missouri.edu/RNAbenchmark/index.htm
https://life.bsc.es/pid/protein-rna-benchmark/
https://life.bsc.es/pid/protein-rna-benchmark/


Biomolecules 2024, 14, 1245 19 of 28

ranks near-native structures among the top N decoys [22]. The root mean square deviation
(including Irmsd and Lrmsd) is defined as

RMSD =

√√√√ 1
N ∑i

(∣∣∣∣ −→XAi −
−→
XBi

∣∣∣∣2 + ∣∣∣∣−→YAi −
−→
YBi

∣∣∣∣2 + ∣∣∣∣−→ZAi −
−→
ZBi

∣∣∣∣2
)

(29)

where
→
X,

→
Y , and

→
Z represent the coordinates of the native and predicted structures. N is

the total number of atoms.
The evaluation of RNA–protein structures is an area of research that has not been

extensively explored. Previous studies have mainly focused on rigid-body docking, over-
looking the structural flexibility inherent in RNA–protein interactions. Although scoring
functions in rigid-body docking have achieved success rates of about 80%, they still need
significant improvement for flexible docking scenarios, especially in fully flexible unbound–
unbound docking. One major challenge in this field is accurately sampling the dynamic
conformations that RNAs and proteins adopt during their interactions. In fully flexible
unbound–unbound docking, the interaction interface can change dramatically, which
presents a significant challenge to scoring functions that have not previously encountered
such diverse structures.

As shown in Figure 4A, we evaluated the performance of various scoring functions on
the most challenging unbound cases from RNA–protein complex benchmark I. The bench-
mark comprises 57 unbound cases, selected using a 0.95 sequence similarity cutoff, using
CD-HIT to avoid redundancy [101–103]. The assessment focused on three types of scoring
functions: coarse-grained knowledge-based methods (e.g., DAR-RNP and 3dRPC-Score),
all-atom knowledge-based methods (e.g., ITScore-PR), and recent machine-learning-based
methods (e.g., DRPScore). Among these, the machine-learning-based DRPScore consis-
tently outperformed the traditional scoring functions. Specifically, DRPScore achieved the
highest success rates across all prediction categories, reaching a peak of 57.89% for the
top 10, 20, 30, 40, and 50 predictions. This result underscores the superiority of machine
learning approaches in evaluating RNA–protein complex structures more accurately than
conventional methods. However, despite the advancements represented by these scoring
functions, the overall success rates across all methods remain below 60%, averaging 52.19%
for the top 50 predictions. This limitation highlights the need for significant refinements in
current approaches to achieve a higher accuracy in predicting RNA–protein interactions.
These findings also indicate a need for developing more sophisticated models or integrating
additional biological data to improve the accuracy of these tools, especially in complex
conformational change docking scenarios. The detailed performance and corresponding
PDB IDs are provided in Supplementary Tables S1 and S2.

Moreover, we further evaluated the performance of various scoring functions on the
unbound cases with different interface interactions from RNA–protein complex benchmark
I. We initially calculated the interaction interface of the RNA–protein complex using a 6 Å
distance cutoff. The number of nucleotides and amino acids at the interaction interface
ranged from a minimum of 23 to a maximum of 199, with an average of 75. Therefore,
we categorized interactions based on the number of amino acids and nucleotides at the
interface, using 70 as the threshold to distinguish between relatively small and large inter-
face interactions. Figure 4B shows that the machine-learning-based DRPScore consistently
outperformed traditional scoring functions for cases involving relatively small interface
interactions. Moreover, Figure 4C shows that the success rates were slightly improved com-
pared to those in small interface interactions for cases involving relatively large interface
interactions. Even in the top 10 predictions, the average success rate for these methods
reached 58.33%. However, the overall success rates across all methods remained relatively
low, with the highest average success rate in the top 50 being just 63.54%. The detailed
performance and corresponding PDB IDs are provided in Supplementary Tables S3–S6.
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Figure 4. The performance of various scoring functions on the unbound cases from RNA–protein
complex benchmark I. The success rate of DRPScore (orange bar), ITScore-PR (blue bar), DARS-
RNP (green bar), 3dRPC-Score (gray bar), and the average (black line) on the (A) unbound cases,
(B) unbound cases with small interface interactions, and (C) unbound cases with extensive interface
interactions from RNA–protein complex benchmark I.

The results highlight the importance of interaction interface size in the performance of
scoring functions for predicting RNA–protein complexes. While machine-learning-based
approaches like DRPScore outperform traditional scoring methods in smaller interaction
interfaces, there is still room for improvement in overall success rates. The superior
performance of machine-learning-based methods is due to their ability to capture complex
multi-body interactions at the interface, which traditional methods often miss. However, the
limited information within smaller interfaces restricts the model’s ability to learn and score
interactions accurately. Additionally, smaller interfaces often have more structural flexibility
and involve complex non-specific interactions, making precise modeling and prediction
more challenging. Success rates improve with more extensive interaction interfaces. This is
due to the increased contact points and features within these interfaces, allowing models to
capture key interaction patterns more effectively and enhance prediction accuracy.

We further evaluated the performance of various scoring functions on unbound cases
involving either single-stranded or double-stranded RNA partners from RNA–protein
complex benchmark I. As shown in Figure 5A, the machine-learning-based DRPScore
consistently outperformed traditional scoring functions in cases with single-stranded RNA
partners. Figure 5B demonstrates a slight improvement in success rates compared to cases
with double-stranded RNA partners. Overall, the performance of all scoring functions was
lower in cases involving double-stranded RNA partners. In the top 10 predictions, the
average success rate of each scoring function for single-stranded RNA cases was 43.89%,
compared to 37.50% for double-stranded RNA cases. This discrepancy may be attributed
to the increased complexity of multi-body interactions at the RNA–protein interface. In
the case of double-stranded RNA, interactions involve both the protein and the inter-
chain interactions between the two RNA strands. These additional layers of complexity
make it more challenging for scoring functions to model the binding interface accurately.
The detailed performance and corresponding PDB IDs are provided in Supplementary
Tables S7–S10.



Biomolecules 2024, 14, 1245 21 of 28

Biomolecules 2024, 14, x FOR PEER REVIEW 20 of 28 
 

multi-body interactions at the interface, which traditional methods often miss. However, 
the limited information within smaller interfaces restricts the model’s ability to learn and 
score interactions accurately. Additionally, smaller interfaces often have more structural 
flexibility and involve complex non-specific interactions, making precise modeling and 
prediction more challenging. Success rates improve with more extensive interaction inter-
faces. This is due to the increased contact points and features within these interfaces, al-
lowing models to capture key interaction paĴerns more effectively and enhance predic-
tion accuracy. 

We further evaluated the performance of various scoring functions on unbound cases 
involving either single-stranded or double-stranded RNA partners from RNA–protein 
complex benchmark I. As shown in Figure 5A, the machine-learning-based DRPScore con-
sistently outperformed traditional scoring functions in cases with single-stranded RNA 
partners. Figure 5B demonstrates a slight improvement in success rates compared to cases 
with double-stranded RNA partners. Overall, the performance of all scoring functions 
was lower in cases involving double-stranded RNA partners. In the top 10 predictions, 
the average success rate of each scoring function for single-stranded RNA cases was 
43.89%, compared to 37.50% for double-stranded RNA cases. This discrepancy may be 
aĴributed to the increased complexity of multi-body interactions at the RNA–protein in-
terface. In the case of double-stranded RNA, interactions involve both the protein and the 
inter-chain interactions between the two RNA strands. These additional layers of com-
plexity make it more challenging for scoring functions to model the binding interface ac-
curately. The detailed performance and corresponding PDB IDs are provided in Supple-
mentary Tables S7–S10. 

 
Figure 5. The performance of various scoring functions on the unbound cases from RNA–protein 
complex benchmark I. The success rate of DRPScore (orange bar), ITScore-PR (blue bar), DARS-
RNP (green bar), 3dRPC-Score (gray bar), and average (black line) on the (A) single-stranded RNA 
partners, and (B) double-stranded RNA partners from RNA–protein complex benchmark I. 

6. Discussion and Future Directions 
Predicting the structure of RNA–protein complexes is essential for understanding 

biological processes and developing new treatments. Several factors influence local inter-
actions in these complexes. Figure 6 shows the differences in structural selections made 
by each scoring function across three examples, highlighting their respective abilities to 
capture local interaction features. The analysis focuses on nucleotide–residue pairs within 
a cutoff distance of 6 Å compared to the native structures. The red and black dots represent 
nucleotide–residue pairs that are added or reduced relative to the native RNA–protein 
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complex benchmark I. The success rate of DRPScore (orange bar), ITScore-PR (blue bar), DARS-RNP
(green bar), 3dRPC-Score (gray bar), and average (black line) on the (A) single-stranded RNA partners,
and (B) double-stranded RNA partners from RNA–protein complex benchmark I.

6. Discussion and Future Directions

Predicting the structure of RNA–protein complexes is essential for understanding
biological processes and developing new treatments. Several factors influence local inter-
actions in these complexes. Figure 6 shows the differences in structural selections made
by each scoring function across three examples, highlighting their respective abilities to
capture local interaction features. The analysis focuses on nucleotide–residue pairs within
a cutoff distance of 6 Å compared to the native structures. The red and black dots represent
nucleotide–residue pairs that are added or reduced relative to the native RNA–protein
complex structure. Overall, each scoring function captures native interactions to different
extents, with changes primarily occurring in localized regions. DDPScore captures inter-
actions closely aligned with the native contacts, indicating minimal disruption. Similarly,
ITScore-PR also captures interactions near the native positions, albeit to a slightly lesser
degree. In contrast, DARS-RNP and 3dRPC-Score identify interactions that deviate further
from the native contacts. This discrepancy may be due to the reliance of DARS-RNP and
3dRPC-Score on a coarse-grained representation, which simplifies molecular details and
omits crucial side-chain interaction information. Since side-chain interactions play a crucial
role in determining the specificity and strength of RNA–protein binding, these models may
struggle to capture the nuanced geometric and energetic properties necessary for precise
structural predictions. On the other hand, ITScore-PR, which counts atom–atom pairs,
can capture more precise atom-level interactions. The machine-learning-based scoring
function DRPScore efficiently recognizes local features of RNA–protein complex structures.
This capability enables it to accurately capture binding patterns and effectively distinguish
structures resembling the native state.

Specifically, we utilized methionyl-tRNAfMet formyltransferase complexed with
formyl-methionyl-tRNAfMet (PDB ID: 2FMT) to analyze the electrostatic interactions
between RNA and protein using PyMOL (version 1.8.0.3). Figure 7 shows the lowest inter-
face RMSD model among the top 10 models selected by each scoring function. The lowest
Irmsd for the DRPScore-selected model is 3.73 Å, compared to 8.52 Å for ITScore-PR, 11.27 Å
for DARS-RNP, and 16.13 Å for 3dRPC-Score. Overall, the RNA in the selected structures
tends to bind to similar regions on the protein, likely due to intrinsic properties of the
protein surface, such as electrostatic potential and hydrophobicity, which naturally favor
specific binding sites. However, the varying RMSD values suggest geometric matching and
positioning accuracy differences. DRPScore effectively captures the interface interaction
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patterns and achieves a lower Irmsd. In contrast, scoring functions like DARS-RNP and
3dRPC-Score show higher deviations, possibly due to their reliance on coarse-grained
representations, which may lack the precision to accurately model spatial alignment and
side-chain interactions essential for RNA–protein binding. ITScore-PR, with its moderate
performance, balances these aspects but still falls short in capturing the intricate details of
the RNA–protein interface. Since RNA carries a strong negative charge, it is expected to
bind preferentially to the positively charged regions of proteins. The DRPScore-selected
model shows RNA bound to a positively charged protein region. The model selected by
ITScore-PR primarily binds to a positively charged region, with only minor deviations
from favorable electrostatic interactions. In contrast, structures selected by DARS-RNP and
3dRPC-Score often bind to negatively charged regions, indicating less accurate electrostatic
complementarity. This discrepancy may be attributed to DRPScore explicitly incorporating
atomic charge information as input features during training, enabling it to capture electro-
static interactions precisely. Since the net charge of a protein is primarily distributed on its
side chains, all-atom knowledge-based scoring functions can capture more detailed interac-
tion features compared to coarse-grained scoring functions. Considering these findings,
future advancements in scoring functions should focus on developing methods tailored to
the specific characteristics of various interaction interfaces. A particular emphasis should
be placed on accurately modeling complex multi-body interactions, to enhance prediction
robustness and precision.
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Figure 6. Contact distributions for three unbound docking examples. The contact maps (from top to
bottom) show interactions between nucleotides and residues within a 6 Å range in the lowest RMSD
model among the top 10 models selected by DRPScore, ITScore-PR, DARS-RNP, and 3dRPC-Score
for (A) PDB ID: 2FMT, (B) PDB ID: 3HHZ, and (C) PDB ID: 3MOJ. Red and black dots indicate
nucleotide–residue pairs that are added or reduced in the models selected by each scoring function
compared to the native RNA–protein complex structure.
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Figure 7. The lowest interface RMSD model and electrostatic interaction distribution. The lowest
interface RMSD model and the corresponding electrostatic interaction distribution among the top
10 models (RNA in red) selected by (A) DRPScore, (B) ITScore-PR, (C) DARS-RNP, and (D) 3dRPC-
Score, compared to the native RNA–protein complex (RNA in gray). Positively charged regions are
shown in blue, while negatively charged regions are shown in red.

Recently, there has been a growing focus on predicting the structures of RNA–protein
complexes in biomolecular research. This interest has been fueled by advancements
in machine learning techniques, which have significantly improved structure
prediction [39,43,104]. The increased interest in this area has led to significant progress
in predicting the structures of individual structures and complex predictions like protein–
protein and RNA–protein complexes.

This review has compared two main scoring functions for predicting RNA–protein
complexes: knowledge-based (coarse-grained and all-atom) and machine-learning-based
approaches. While each scoring function has its advantages, both types of scoring func-
tions share a common limitation: they lack a strong theoretical foundation in physics. For
example, knowledge-based scoring functions often assess RNA–protein interactions using
a weighted sum of statistical potentials. However, the exact relationship between these
scores and the system’s free energy needs to be defined. Applying machine-learning-based
scoring functions in evaluating RNA–protein complexes has shown promise. These func-
tions outperform traditional methods by capturing complex, multibody interactions in
RNA–protein binding. They can learn from vast amounts of data and represent intricate
interaction patterns that are difficult for traditional methods. However, they have a rela-
tively low success rate in challenging unbound–unbound cases, typically below 60%. These
models struggle with structural diversity within training datasets, leading to potential
overfitting. Integrating knowledge-based models could help mitigate these issues and
enhance prediction accuracy.

One of the major challenges in predicting RNA–protein interactions is the conforma-
tional flexibility of both RNA and protein components upon binding. For example, in
the NF-κB dimer system, the RMSD of RNA before and after binding can be as high as
5.4 Å [68]. Although extensive docking simulations can generate large datasets to address
data scarcity, accurately modeling the loose atomic packing and unique interactions re-
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mains a challenge. A combination of various docking and scoring methodologies can be
used to develop consensus models, clustering predictions based on their scoring outcomes
to enhance reliability. In cases where a consensus is not achieved, the top-scoring models
from different methods could be proposed as alternative solutions. Knowledge-based sta-
tistical potentials are effective for rigid structures and large interaction interfaces. However,
for cases with small interaction interfaces or complex flexible structures, deep learning
approaches may be required to accurately capture the intricate multi-body interactions.

Current machine-learning-based scoring functions are hindered by the lack of three-
dimensional structural data and the highly variable nature of RNA–protein interfaces.
A promising method to enhance RNA–protein complex prediction involves integrating
multi-scale modeling techniques, which combine coarse-grained and all-atom models to ad-
dress the diverse nature of RNA–protein interfaces at different resolutions. This multi-stage
approach allows for the rapid identification of potential conformations using coarse-grained
models, then refined and precisely scored with all-atom models. The approach achieves
detailed structural information and accommodates conformational changes. Moreover,
developing dynamic scoring functions that adjust weights based on the local environ-
ment of RNA and proteins could provide greater flexibility in handling conformational
changes, especially in regions with loosely packed atoms at the interface. Such approaches
leverage the strengths of different scales, capturing relationships and features that single-
modal methods might miss. Additionally, integrating high-resolution structural data from
crystallography or NMR, low-resolution information from cryo-electron microscopy, or
other experimental techniques could enhance the robustness of RNA–protein complex
predictions [88,105–107].

RNA–protein complex prediction remains a challenge in the fields of soft matter
physics and biophysics. With advancing computational techniques, structure prediction
becomes a potent complement to experimental methods, offering fresh insights into the
RNA–protein mechanism and downstream applications. Despite persistent challenges,
particularly in flexible docking and complex assembly, the ongoing advancements in
experimental and computational approaches are poised to drive transformative break-
throughs imminently.
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