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Abstract: Relatives share more DNA with one another than unrelated individuals. There-
fore, there is an increased risk of close relatives (e.g., siblings or parents and children of
true donors) adventitiously ‘matching’ DNA mixtures to which they are not a true contrib-
utor. One such method of addressing relatives is to utilize alternative propositions within
probabilistic genotyping software (e.g., STRmixTM). As the number of related individu-
als within a mixture increases, so does the potential for adventitious matches of related
non-donors to the mixture due to increased allele sharing. The extent to which siblings
and parents/children of true donors result in adventitious matches to mixtures in which
they are non-donors is presented as well as the impact of overestimating the number of
contributors (NOC) when related donors are in question.
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1. Introduction
Related individuals can be problematic for DNA-mixture interpretation due to an

increased degree of allele sharing when compared to unrelated individuals [1]. This leads
to an increased risk of non-donor adventitious matching when a close relative (e.g., sibling,
parent, or child) is present within a mixture [2]. It has been shown these adventitious
matches are most prevalent in low-template samples with a lot of drop-out [3].

Various approaches have been developed to account for relatives, such as the use
of unified LRs, which considers the presence of relatives within the population when
calculating the LR. However, since the majority of the population are assumed to be
unrelated (i.e., >99.99%), often, little to no impact is seen on the LRs obtained when <~105

(i.e., below the ‘very strong support’ level) [4,5].
As the number of donors or relatives present within a mixture increases, so does the

risk of adventitious matching. This further creates difficulty in number of contributor (NOC)
determinations due to allele sharing, often resulting in underestimated NOCs, which may
result in false exclusions of true donors [6]. Therefore, in this study, mixtures were analyzed
according to both the experimental NOC (eNOC, i.e., the number of individuals’ DNA
present in the initial mixture) and an analyst-determined NOC (aNOC, i.e., analyst manual
assessment), potentially providing both best- and worst-case scenarios. The low-template
nature of some mixtures (e.g., 8–16 pg) or a low donor proportion ultimately leads to an
overestimated NOC using eNOC, while aNOC has the potential to be underestimated due to
allele overlap. The extent to which adventitious matching of siblings and parents/children
of true donors to complex 1–5-person samples occurs is presented, as well as the impact of
overestimating the NOC when related donors are in question.
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2. Materials and Methods
2.1. DNA Mixtures

Buccal swabs were collected from unrelated donors with informed consent and ex-
tracted using the EZ1 Advanced XL (Qiagen Sciences, Inc., Germantown, MD, USA)
with the EZ1 DNA Investigator Kit (Qiagen Sciences, Inc.). Half the donor extracts were
degraded via UV irradiation (180 s) by placing the extracts with open tubes in the SPEC-
TROLINKER XL-1000 UV Crosslinker (Spectronics Corporation, Westbury, NY, USA).
Extracts were quantified using the QuantifilerTM Trio Kit (ThermoFisher Scientific, Carls-
bad, CA, USA) and the ABI 7500 Real Time PCR System according to the manufacturer’s
recommended protocols. Two- through five-person mixtures with various donor ratios
were created (Table S1). Each initial mixture (e.g., Mx1, Mx11, Mx21, etc.) was diluted and
amplified at 10 concentrations ranging from 8 pg to 4 ng (note: 4 ng samples were not run
for five-person mixtures). Samples were amplified with the GlobalFilerTM amplification
kit (ThermoFisher Scientific, Carlsbad, CA, USA) at 28 cycles according to manufacturer-
recommended protocols. Samples were then injected on the Applied Biosystems 3500 Ge-
netic Analyzer using Module J6 (24 sec injections, 1.2 kV, 60 ◦C, NT4400). GeneMapperTM

v1.6 (ThermoFisher Scientific, Carlsbad, CA, USA) and FaSTRTM DNA v1.1.1 (Institute of
Environmental Science and Research, Auckland, NZ and Forensic Science SA, Adelaide, SA,
Australia) were used for analysis. Dye-specific analytical thresholds were used with each
software (Table S2). Manual NOC assessments (aNOC) were determined by considering
the number of alleles, peak height balances, and apparent peaks below the AT.

2.2. STRmixTM

Each GeneMapperTM v1.6-examined mixture was analyzed with STRmixTM v2.7
(Institute of Environmental Science and Research, Auckland, New Zealand) according
to the experimentally designed NOC (eNOC) as well as the manually determined NOC
(aNOC). Two databases were created. The first database contained known donors and
202 unrelated non-donors, while a second database comprised 50 simulated siblings and
50 simulated children from each donor per mixture. Database searches were conducted
(Table 1) using a Fst = 0.01 and the sub-source LRs reported. A subset of eNOC = aNOC
mixtures were additionally analyzed Section 2.1 using NOC + 1 in STRmixTM to evaluate
the impact of overestimating the NOC.

Table 1. Hd true tests (i.e., non-donors) conducted per mixture and relation type.

NOC 1 2 3 4 5

Samples 78 230 236 232 190
Simulated children 50 50 50 50 50
Simulated siblings 50 50 50 50 50

Hd true tests per relative type 3900 23,000 35,400 46,400 47,500

2.3. FaSTRTM

Each sample was analyzed in FaSTRTM DNA v1.1.1. All OMR and OL alleles were
removed and neural network allele calls applied. Each sample was then manually reviewed
to ensure artifact peaks were removed. A database matching search was conducted on both
previously mentioned databases. The percentage of alleles per donor from the databases
present (i.e., %matching) in each mixture was reported.
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3. Results and Discussion

Theorem 1. Likelihood ratio when considering unrelated donors.

LR =
POI + (NOC − 1)unrelated

NOCunrelated
, (1)

Consistently with previous studies [7–11], there was an increased risk of true donor
relatives adventitiously matching to mixtures to which they did not contribute their DNA.
However, the overall rate at which this occurred was low (Figure 1). Using a traditional
LR (Theorem 1), a majority of simulated relatives (e.g., siblings or parents/children) were
accurately excluded as donors to the mixtures. However, there were instances in each
NOC category where the simulated sibling and simulated parents/children resulted in
adventitious matches with “Very Strong Support” (i.e., LR ≥ 1,000,000) (Figure 1). In this
study, sub-source LRs were reported; however, if the lower HPD (highest posterior density)
LRs had been reported instead, it is expected that the LRs would have been approximately
one order of magnitude lower, slightly decreasing the number of adventitious matches.
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Figure 1. Non-donor sub-source LRs ranked according to SWGDAM verbal qualifiers. (a) Simulated
siblings; (b) simulated parents/children; (c) unrelated. Note: excluded (LR < 1); limited support
(LR 2–99); moderate support (LR 100–9999); strong support (LR 10,000–999,999); very strong support
(LR ≥ 1,000,000).
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Applying the eNOC (ground truth NOC based on the constructed mixture) has the
effect of overestimating the NOC relative to the aNOC, allowing for higher rates of adventi-
tious inclusions. This is particularly true for lower-template but higher-eNOC mixtures
(Figure 1), where one or more ground-truth donors has dropped out enough so that the
aNOC would usually be considered lower than the eNOC. Previous studies have demon-
strated that overestimating the NOC by one generally results in limited impact to true
donor LRs, while unrelated non-donor LRs tend to trend toward 1 [12–15]. However,
underestimation of the NOC can result in excluding true donors. To assess the effect of
overestimating the NOC when the POI is a relative of the true donor, a comparison of the
eNOC and aNOC-generated LRs was made (Figures S1 and S2). Additionally, a subset of
mixtures (n = 106) where the experimental NOC and apparent NOC appeared to be equal
(i.e., eNOC = aNOC) were then evaluated according to the NOC (aNOC = eNOC) and NOC

(aNOC = eNOC) + 1 to further evaluate this impact, while ensuring the initial NOC was not
already elevated due to donor drop-out. Some non-donor relatives resulted in adventitious
matches with ‘strong and very strong support’ (i.e., LR ≥ 10,000 and LR ≥ 1,000,000) when
they were previously exclusionary (Figure 2a,b). This indicates that overestimating the
NOC allows for persons with similar profiles (i.e., relatives) to be included, with the missing
alleles of these non-donors probably being accounted for by drop-out (Table S3). These
high adventitious matches primarily occurred with lower NOC mixtures (e.g., two-person
mixtures run as three-person mixtures: Figure 2—black triangles). In accordance with
previously published data, if the POI was an unrelated individual, the LRs trended toward
1 (Figure 2c). It should be noted that the NOC is more likely to be underestimated due to
allele sharing [14,16,17] leading to an aNOC < eNOC. However, as shown here, overesti-
mation, when it does occur, can be especially problematic when considering related POIs.
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Figure 2. Comparison of mixture adventitious matching logs (LRs) analyzed at NOC (aNOC = eNOC)

and NOC (aNOC = eNOC) + 1. Gray background log 0–2: ‘limited support’ for NOC + 1 samples;
blue background log 2–4: ‘moderate support’ for NOC + 1 samples; pink background log 4–6:
‘strong support’ for NOC + 1 samples; purple background log ≥ 6: ‘very strong support’ for
NOC + 1 samples per SWGDAM verbal qualifiers. Black triangle: two-person mixtures; blue as-
terisk: three-person mixture; green circle: four-person mixture. (a) Simulated sibling non-donors
(n = 106 mixtures). (b) Simulated parent/child non-donors (n = 106 mixtures). (c) Unrelated non-
donors (n = 582 mixtures).

FaSTR was used to determine the percentage of alleles present in each mixture for both
true contributors and simulated non-donor relatives. As expected, true donors typically
had a higher percentage of allele matching in each mixture than their simulated relatives
(Figures 3 and 4). There were instances in which non-donors had a slightly higher per-
centage of matching to the mixture. However, these instances mostly resulted in (eNOC)
adventitious inclusions with limited to moderate support (i.e., LRs between 2 and 9999),
while many were exclusionary when analyzed with aNOC. Similarly, adventitious matches
resulting from related non-donors had lower or equivalent LRs in most instances compared
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to their true donor relatives (Figure 4 and Table S4). The maximum LR achieved for a
non-donor relative (sibling aNOC = 2 p) was 2.95 × 1011, indicating that the extremely high
LRs (e.g., LRs > ~1015) were always indicative of a true donor.
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Figure 3. Percentage of the POI’s (i.e., known donor’s or simulated relative’s) genotype profile
matching the mixture using a FaSTRTM database search (2–5-person mixtures that resulted in eNOC
adventitious matches for the non-donor relative). Left: simulated siblings; right: simulated par-
ents/children. Dashed line: y = x; black circles: ‘limited support’; blue circles: ‘moderate support’;
pink circles: ‘strong support’; purple circles: ‘very strong support’ per SWGDAM verbal qualifiers.
Note: limited support (LR 2–99); moderate support (LR 100–9999); strong support (LR 10,000–999,999);
very strong support (LR ≥ 1,000,000).
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Figure 4. aNOC mixtures that resulted in adventitious matching for non-donor relatives with
‘very strong support’ (i.e., log (LR) > 6). Comparison of sub-source LRs (STRmixTM v2.7 with
GeneMapperTM data) for known donors and non-donor simulated siblings; percentage of POI
(i.e., known donor or simulated sibling) profile matching the mixture using a FaSTRTM database
search. (a) Two-person; (b) three-person; (c) four-person; (d) five-person.

The eNOC adventitious matches were more likely in low-template samples experi-
encing drop-out (Figure 5 and Table S5), with STRmixTM often placing the non-donor
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as a low-template level contributor—typically either in the same donor position as the
true contributor relative or in a lower position. This overestimation essentially allowed
STRmixTM to divide the detected donor’s alleles to enable inclusion of the non-donor
via allele masking and drop-out. These adventitious matches occurred even in instances
when the relative was the major donor to the mixture (more prevalent in lower NOCs
(e.g., NOC = 2)), indicating that the adventitious match was explained by the non-donor
being considered a minor donor with masked peaks. The aNOC-interpreted mixtures
(Figure 6 and Table S6) resulted in a steady increase in adventitious matches as concen-
tration decreased, with high aNOCs (e.g., four or five-person) not being seen at lower
concentrations, as expected (Figure 5). If it is considered that diploid cells contain ~6.6 pg
of DNA, this is expected. For example, aNOCs of 4 were not detected in <31 pg mixtures,
as this would equate to ~1 cell per donor in an equimolar mixture. This further supports
the notion that some of the eNOC adventitious matches are due to an overestimated NOC.
Adventitious matches for mixtures were maximized at a concentration of ~31 and 62 pg for
eNOC runs. Instead of steadily increasing with decreased concentration as seen with aNOC
runs, the degree of adventitious matching started to level out or slightly decrease due to the
drop-out of true-donor-shared alleles (i.e., the drop-out of the alleles the true donors shared
with their non-donor relatives). This leveling out (most likely due to an overestimated
NOC) corresponded to concentrations that were not observed with an aNOC.
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For single-source samples, only samples with a concentration of 125 pg and below
were assessed, as drop-out was not expected at higher concentrations. For these samples,
adventitious matches did not occur with relatives until concentrations of <31 pg, regardless
of whether the eNOC or aNOC was assessed (Figures 5 and 6 and Table S5 and Table S6).
However, adventitious matches of unrelated non-donors did not occur until concentrations
of <16 pg (Figures 5 and 6 and Table S5 and Table S6).

In many instances, adventitious matches occurred for multiple relatives in the same
mixture (e.g., Mx27 Figure 4a). As most individuals do not have 50 siblings or children,
the rate of adventitious matching that could occur in casework is therefore probably lower.
There are some methods commonly known that may further limit these adventitious
matches, such as conditioning the profile on a known donor such as a victim to reduce
the mixture complexity [18] (e.g., Theorem 2). The impact of conditioning on a donor
to the mixtures shown in Figure 4b–d resulted in a decrease in support for ~97% of the
conditioned samples.

Theorem 2. Likelihood ratio when conditioning on a known donor.

LR =
POI + Known donor + (NOC − 2)unrelated

Known donor + (NOC − 1)unrelated
(2)

Familial database searches were also conducted on the true donors to see what LR
ranges could be expected for true donors in instances in which it was unknown if they
were a true donor or the relative of a donor. In most cases, true donors resulted in familial
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LRs higher than those of their simulated relatives, potentially providing further support
for them being true donors (Figure S3).

4. Conclusions
Adventitious matching of non-donor relatives occurred for both siblings and par-

ents/children of true donors in all NOC classes tested (i.e., 1–5 persons). While overes-
timating the NOC when considering unrelated individuals typically has limited impact,
overestimating the NOC when the POI is a potential relative can be detrimental, as non-
donor relatives may result in adventitious matches with ‘strong and very strong support’
(i.e., LR > 10,000 and LR > 1,000,000) when they have previously been exclusionary. The
eNOC is never known in casework samples, and the risk of an adventitious inclusion by
overestimating the NOC is minimal, as the NOC is more likely to be underestimated rather
than overestimated due to allele masking or the drop-out of trace donor alleles. However,
rare occurrences in which the NOC is overestimated may be observed due to drop-in.

Future work assessing the degree of adventitious matching of non-donor relatives
to mixtures in which two or more of their first-degree relatives are present is planned
(e.g., mixtures containing multiple siblings, or parents and children) as well as further
studies addressing NOC estimations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom15030398/s1, Table S1. Donor ratios per NOC. (gray = degraded
donor); Table S2. Analytical thresholds; Table S3. Exclusionary and inclusionary LRs with NOC+1;
Table S4. Percentage of adventitious matches in which the true donors resulted in larger LRs than
the non-donor relative; Table S5. eNOC sub-source LRS organized by SWGDAM verbal qualifiers;
Table S6. aNOC sub-source LRS organized by SWGDAM verbal qualifiers; Figure S1. Comparison of
adventitious log (LRs) with aNOC vs. eNOC. (a) aNOC = 1. (b) aNOC = 2. (c) aNOC = 3. (d) aNOC = 4.
(e) aNOC = 5; Figure S2. Zoomed-in comparison of adventitious log (LRs) with aNOC vs. eNOC.
(a) aNOC=1. (b) aNOC = 2. (c) aNOC = 3. (d) aNOC = 4. (e) aNOC = 5. Light blue: eNOC=1; orange:
eNOC = 2; gray: eNOC = 3; yellow: eNOC = 4; dark blue: eNOC = 5; Figure S3. Familial search log
(LRs) > 0 (eNOC = 3 STRmixTM v2.7 with GeneMapperTM data) blue triangle: known donor; orange
asterisk: simulated non-donor parents/children; black x: unrelated non-donors.
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