
����������
�������

Citation: Bydder, M.; Chavez, T.;

Lam, J.; Henderson, W.; Pinto, N.;

Chavarria, R.; Pham, A.D.; Loomba,

R.; Schwimmer, J.; Sirlin, C.; et al.

Triglyceride Saturation in Patients at

Risk of NASH and NAFLD:

A Cross-Sectional Study. Biophysica

2022, 2, 8–15. https://doi.org/

10.3390/biophysica2010002

Academic Editor: Victor Muñoz

Received: 24 September 2021

Accepted: 14 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biophysica

Technical Note

Triglyceride Saturation in Patients at Risk of NASH and
NAFLD: A Cross-Sectional Study

Mark Bydder 1 , Tanya Chavez 2, Jessica Lam 2, Walter Henderson 2, Nick Pinto 2, Roxana Chavarria 1,
Alex D. Pham 1, Rohit Loomba 2, Jeff Schwimmer 2, Claude Sirlin 2 and Gavin Hamilton 2,*

1 Department of Radiological Sciences, David Geffen School of Medicine, University of California,
Los Angeles, CA 90069, USA; mbydder@mednet.ucla.edu (M.B.); rchavarria@ucla.edu (R.C.);
apham@mednet.ucla.edu (A.D.P.)

2 Department of Radiology, University of California San Diego, San Diego, CA 92093, USA;
tchavez@ucsd.edu (T.C.); jlam@ucsd.edu (J.L.); whenderson@ucsd.edu (W.H.); npinto@ucsd.edu (N.P.);
rloomba@ucsd.edu (R.L.); jscwimmer@ucsd.edu (J.S.); csirlin@ucsd.edu (C.S.)

* Correspondence: ghamilton@ucsd.edu

Abstract: Chemical shift magnetic resonance imaging (MRI) is commonly used to estimate the amount
of fat in tissues, namely the proton density fat fraction (PDFF). In addition to PDFF, the type of fat can
be inferred and characterized in terms of the number of double bonds (NDB), number of methylene-
interrupted double bonds (NMIDB) and the chain length (CL) of the fatty acid chains. The saturation
index is potentially a marker for metabolic disorders. This study assesses the feasibility of estimating
these parameters independently or in a constrained manner. Correlations with spectroscopy were
measured in 109 subjects’ subcutaneous and visceral fat depots (p = 2 × 10−28), and with the NAFLD
Activity Score (NAS) from histological evaluation of biopsies. The findings indicate that imaging
estimates are comparable to spectroscopy (p = 0.0002), but there is no significant association of NDB
with NAS (p = 0.1).
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1. Introduction

Chemical shift encoded magnetic resonance imaging (CSE-MRI) techniques for sep-
arating water and fat exploit differences in the precession frequencies of water and fat
protons [1,2]. An important clinical application is estimating the liver proton density fat
fraction (PDFF) for assessing non-alcoholic fatty liver disease (NAFLD) and non-alcoholic
steatohepatitis (NASH) [3–6]. Accurate estimation of PDFF requires the estimation of R2* de-
cay, the minimization of T1 effects and modeling of the complete triglyceride spectrum [7].

The triglyceride composition (TC), and hence the triglyceride spectrum, changes
depending on the relative fraction of saturated, monounsaturated and polyunsaturated
fat [8,9]. Standard CSE-MRI techniques estimating PDFF are not able to assess TC because
they assume a predetermined triglyceride spectrum [1,2]. Several magnetic resonance
spectroscopy (MRS) studies have used the dependance of the fat spectrum on triglyceride
type to estimate TC in terms of one of two interchangeable characterizations; either satu-
rated, monounsaturated and diunsaturated fat fractions [8,10], or the number of -CH =CH-
double bonds per molecule (NDB), the number of double bonds separated by a single -CH2-
(NMIDB; number of methylene-interrupted double bonds), and fatty-acid chain length
(CL) [9,11,12]. If the fat spectrum used for PDFF estimation is not fixed but is allowed to
vary in a fashion dependent on the type of fat, CSE-MRI can also estimate TC [13,14].

It has been hypothesized that adipose tissue has an active role as part of the im-
mune system [15], as well as reflecting the diet [16,17]. Regional differences in TC reflect
depot-specific requirements of adipocyte function [18,19] based on the physical properties
(particularly melting point) of saturated versus unsaturated fatty acid chains [20]. TC is
also associated with clinical disorders, including cancer [21,22], type 2 diabetes [23,24]
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and NASH [25,26]. CSE-MRI allows the estimation of TC across large volumes, allowing
regional variation both across different organs and within organs to be assessed. MRS
estimates TC only in a single voxel, though the large size of typically 1–2 cm compared to
imaging voxels (typically 2–5 mm) allows more accurate estimation of TC. To estimate TC,
CSE-MRI only estimates NDB, also known as the saturation level, assuming relationships
between NDB, CL and NMIDB.

The purpose of this study is to compare spectroscopy and imaging techniques to
estimate the saturation level of triglyceride in adipose depots in human subjects [13].
The correlation between the measured NDB and the NAFLD Activity Score (NAS) from
histology was investigated.

2. Methods
2.1. Patient Group

This was a prospective, cross-sectional study approved by our Institutional Review
Board (IRB) and compliant with the Health Insurance Portability and Accountability Act,
under IRB Name UCSD Human Research Protections Program (approved 6 April 2006
and 18 March 2010 with code/number 060370 and 100377). Adult and pediatric human
subjects were recruited from clinical NAFLD studies conducted at our institution. Adults
aged 18 years and older provided written informed consent. For pediatric subjects aged
8–17 years, written consent was obtained from a parent and written assent from the
child. One hundred and seventy-six clinical patients at risk of NASH or NAFLD were
recruited consecutively between 7/2011 and 3/2013. Of those, 109 completed the protocol
successfully (imaging and spectroscopy) and 60 had a recent liver biopsy.

2.2. MR Methodology

Single-voxel spectroscopy was performed in subcutaneous (SCAT) and visceral adi-
pose tissue (VAT) depots using the STEAM sequence with TR 3500 and TE 10 ms [12]. A
15 mm × 15 mm × 15 mm voxel on the right-hand side of the body was selected in SCAT
and retro-peritoneal VAT. All spectra were shimmed during free breathing. In SCAT, spec-
tra were acquired with 16 signal averages and two pre-acquisition excitations, while VAT
spectra were acquired in a 25 s breath-hold acquisition with six signal averages and a single
pre-acquisition excitation. All suppression pulses (fat, water, spatial) were disabled to
ensure a uniform spectral response. Spectroscopy raw data were taken offline for analysis;
spectra from the individual channels were combined using a singular value decomposition-
based approach [27] and analyzed using the AMARES algorithm [28] included in the MRUI
software package [29], as described in Ref. [12]. T2 correction of fat signals was completed
using literature values, and the NDB and NMIDB were calculated for a fixed CL (17.5)
using the fat spectral model given by Ref. [9].

Imaging was performed in two breath-hold scans (coronal and oblique) to give cov-
erage of the liver and visceral and subcutaneous adipose tissue depots, as indicated in
Figure 1. A 3D spoiled gradient echo sequence was used with 16 echos (echo-train length 8,
interleaves 2), flip angle 2, matrix 64 × 64, slice thickness 8 mm. For the coronal plane: TR
10.5 ms, TE = 0.74, 1.29, . . . , 9.0 ms. For the oblique plane: TR 11.4 ms, TE = 0.92, 1.52, . . . ,
9.8 ms. Scan times were approximately 26 s (a single breath-hold). The complex images
were taken offline and nonlinear fitting was performed on every voxel independently, as
described in Ref. [13], with prior knowledge used to fix the chain length (CL) and number
of methylene interrupted double bonds (NMIDB). The free parameters were B0, R2*, PDFF
and NDB, and typical results are shown in Figure 2.
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Figure 1. Coronal and oblique opposed-phase images (TE 1.3 and 1.5 ms, respectively) of a female
subject with areas indicated where ROIs were drawn in the liver and two adipose tissue depots.

Figure 2. Typical fitted results for the coronal slice in Figure 1: (A) B0 in kHz, (B) R2* in s−1, (C) fat
fraction, (D) NDB and (E) initial phase in radians.

A second method of estimating NDB as a “global” parameter was employed, in which
a single NDB value was used over the whole dataset. This approach was similar to the
self-calibration procedure described in Ref. [2], but using the fat spectrum model of Ref. [9]
and optimization over NDB. The resulting value of NDB is the average from all depots.
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An alternative to constraining CL and NMIDB is to estimate their values; efficient
numerical algorithms for this optimization have been described [14,30]. Only a small
fraction of the signal is represented by these triglyceride properties, and it is of interest
to assess their sensitivity to measurement noise. Numerical simulations were performed
to compare the noise sensitivity of each parameter both independently and using an a
priori constraint to fix CL and NMIDB in relation to NDB [13]. This reduces the number
of parameters and may be expected to sacrifice accuracy for a reduction in noise-related
scatter (i.e., a bias-variance trade off).

2.3. Statistical Tests

(1) The following data were recorded:

(a) Spectroscopy NDB: in subcutaneous tissue and visceral tissue.
(b) Imaging NDB (pixel by pixel): regions of interest were drawn in subcutaneous

tissue and visceral tissue; mean values were recorded.
(c) Imaging (global): NDB.
(d) Histology: NAS (NAFLD Activity Score) based on Ref [31].

(2) The following correlations were performed:

(a) Spectroscopy: NDB in subcutaneous versus visceral tissue.
(b) Imaging: global NDB versus subcutaneous.
(c) Spectroscopy NDB versus imaging NDB (subcutaneous).
(d) Spectroscopy NDB versus NAS.

3. Results

Numerical simulations were performed to investigate the feasibility of estimating the
fat properties from 16 gradient echos. Artificial signals were created using the TEs given in
Methods (TE = 0.74, 1.29, etc.) for a range of PDFF from 1% to 99%, scaled such that water
signal + fat signal = 1. Complex random Gaussian noise with standard deviation 10−6 was
added; this low noise level was chosen to avoid large changes to the least-squares error
surface that can cause water–fat swapping. Additional signal properties were: B0 = 0 Hz,
initial phase 0◦, R2* = 0.05, CL = 17.55, NDB = 3 and NMIDB = 0.837, which are clinically
representative values for these parameters.

Fitting was performed 104 times for each PDFF, and the standard deviation of the
fitted parameters was calculated. Dividing by the added noise standard deviation gave a
noise propagation factor for that parameter. This evaluates the sensitivity of the parameters
to measurement noise and can help decide the feasibility of estimating the parameter. By
way of an example, PDFF estimation (propagation factor ~10) is generally known to be
feasible, whereas NDB estimation (propagation factor ~100) would require substantially
higher signal to noise ratio or more measurements.

Figure 3 shows the noise propagation when fitting all the fat properties independently
(NDB, NMIDB and CL). Figure 4 shows the effect of employing prior knowledge constraints
on NMIDB and CL. It is interesting to note that NMIDB in Figure 3 has a lower noise
propagation factor than NDB. Coupling NDB and NMIDB causes the noise amplification of
NDB to resemble that of NMIDB, which improves (decreases) the NDB amplification factor
by a factor of 2.

Figure 4 shows in vivo results from patients. Spectroscopy in panel A shows the
correlation between visceral and subcutaneous measurements of NDB. There is a strong
correlation of NDB between the depots, although the regression parameters do not support
1:1 agreement, which indicates systematic differences in NDB between the depots. The
imaging results in panel B compare estimates of the subcutaneous NDB versus the globally
estimated NDB over all pixels. The global NDB is an (abundance weighted) average of the
NDB in all depots and, as such, it should be comparable to an average of the subcutaneous
and visceral NDB. A similar correlation to panel A is observed, reflecting systematic
differences in the subcutaneous and global (subcutaneous + visceral) depots.
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Figure 3. Noise propagation (defined as the standard deviation of the fitted parameter divided by
the standard deviation of the noise added to the data points) for key fitted parameters. In panel (A),
all the fat properties were free parameters, whereas, in panel (B), two constraints were used to fix
NMIDB and CL in relation to NDB. The NDB is around two orders of magnitude more sensitive to
noise than PDFF and noise propagation increases dramatically as PDFF decreases to zero. Using
constraints on NMIDB and CL decreases the noise propagation of NDB by a factor of approximately 2.

Figure 4. (A) Spectroscopy: panel A shows the correlation between visceral and subcutaneous
measurements of triglyceride saturation (no. double bonds) by STEAM spectroscopy. (B) Imaging:
panel B compares estimates of the subcutaneous NDB versus the globally estimated NDB over all
pixels. Since the global NDB is an (abundance weighted) average of the NDB in all depots, it should be
comparable to an average of thepectroscopy values. (C) Spectroscopy versus imaging: panel C shows
the correlation between NBB estimated in the subcutaneous depot using spectroscopy and imaging.
While estimates are similar, the regression parameters do not show 1:1 agreement. (D) Spectroscopy
NDB versus NAS: Panel D shows the correlation in NDB versus the NAFLD Activity Score (NAS)
assessed by histology. A significant correlation was not observed.
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Panel C shows the correlation between NBB estimated by spectroscopy and imaging
in the subcutaneous depot. While the estimates are similar, the regression parameters do
not show 1:1 agreement which suggests a bias in the imaging estimate (since spectroscopy
is assumed to be the reference standard). Panel D shows the correlation between NDB
and the NAFLD Activity Score (NAS) assessed by histology. A significant correlation was
not observed.

4. Discussion

The present study is, to date, the largest cross-sectional study of triglyceride saturation
using MR techniques and the first to look for correlation with the NAFLD Activity Score
(NAS). Previous studies have demonstrated proof of concept and developed optimizations
using phantoms and volunteers [32].

The limitations of NDB measurement with 16 echos was investigated by numerical
simulations. These simulations are comparable to those described in Ref. [14], which
defined a “signal to noise ratio” for each parameter as the mean value divided by the
standard deviation over a large number of simulations. The same ratios can be estimated
from the results in Figure 3 to be 1.00:0.09:0.05:0.17 for PDFF, NDB, NMIDB and CL,
respectively, at PDFF = 50%, which are broadly similar to those shown in Figure 2B of
Ref. [14]. It is simple to exhaustively find echo times that minimize the noise propagation;
however, in practice, the demands of scan time and spatial coverage dictate these choices.
Limited testing indicated that modest improvements are possible by increasing the number
of echos and/or the echo spacing, but overcoming one to two orders of magnitude of noise
amplification would appear to be out of reach by such modifications.

Measurements of NDB from spectroscopy indicate that the subcutaneous and visceral
depots appear to be uniform. MRS studies show only minor differences in TC in adipose
tissue [12] and a dependance of TC on PDFF in the liver [33]. The similarity supports
the use of a single “global” NDB value on a per patient basis, as proposed in Ref. [2] for
calibrating the fat spectrum from automatically segmented adipose tissues. The results in
the present study also show that differences between subjects are larger than those between
depots, similar to that seen in MRS [12].

Given the role of adipose tissue in metabolism, it seems plausible that the saturation
of the fatty acids should be reflected in clinical disorders. MRS studies have suggested
that the liver TC becomes more saturated as PDFF increases [33], and NAFLD subjects
preferentially store excess hepatic lipids as saturated fat, at the expense of unsaturated
fat, compared to controls [26]. Development of MRI techniques capable of determining
saturation may be an important goal for predicting the 20% of NAFLD patients that go on
to serious liver disease; however, the methods and evaluation require much improvement.
Modeling approaches to improve the estimation problem are on-going [8,13,14,33–35].

In summary, the present study explored the feasibility of assessing TC by MRI and
tested the approach in a large cohort of subjects. Results are similar to those obtained by
MRS, which show only minor differences between depots.
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