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Abstract: Understanding the connection between local and global dynamics can provide valuable
insights into enzymatic function and may contribute to the development of novel strategies for
enzyme modulation. In this work, we investigated the dynamics at both the global and local (active
site) levels of Shikimate Kinase (SK) through microsecond time-scale molecular dynamics (MD)
simulations of the holoenzyme in the product state. Our focus was on the wild-type (WT) enzyme
and two mutants (R116A and R116K) which are known for their reduced catalytic activity. Through
exploring the dynamics of these variants, we gained insights into the role of residue R116 and its
contribution to overall SK dynamics. We argue that the connection between local and global dynamics
can be attributed to local frustration near the mutated residue which perturbs the global protein
dynamics.
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1. Introduction

Shikimate-3-phosphate (S3P) is a vital compound involved in the metabolism of
pathogenic microorganisms which cause diseases such as tuberculosis and gastric ul-
cers [1–4]. Its production relies on the following chemical reaction, which is driven by the
Shikimate Kinase (SK) enzyme:

ATP + SKM
Mg2+

→ ADP + S3P (1)

Here, the terminal phosphoryl group of ATP is shuttled to shikimic acid (SKM) in
the presence of one Mg2+ ion to produce ADP and S3P. Given the significant role of
SK in the functioning of these microorganisms, it represents a promising target for the
development of new drugs to inactivate them [1]. To achieve this long-term goal, one
needs a comprehensive picture of the entire energy landscape of this enzyme [5,6], more
specifically, studies of the enzyme in the absence of substrates (apoenzyme) and in the
presence of them (holoenzyme) are required.

However, unlike other kinases such as Adenylate Kinase (AdK) (see, for instance,
Refs. [7–16]) a comprehensive understanding of the energy landscape of SK, with both
computational and experimental studies, is currently lacking. Previously, the region of the
landscape corresponding to the catalytic reaction in SK was scrutinised [17,18] as well as
the region corresponding to the apoenzyme together with relevant mutants [19]. We argue
that besides clarifying the performance of SK, a deeper understanding of this enzyme can
help to potentially generalise the extensive knowledge already available for other enzymes
including AdK.

SK has two flexible regions called LID (residues 109–123) and SBD (residues 32–60)
domains which exhibited opening and closing motions in the apoenzyme in a previous
study [19], and they were also observed in the holoenzyme based on experimental struc-
tural data and molecular dynamics (MD) simulations in the ns time-scale [1,20,21]. The
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connectors of these two domains are the three regions of the stiffer CORE domain, namely
the CORE I (residues 1–31), CORE II (residues 61–108), and CORE III (residue 124–162)
regions. These domains together with the substrates, the Mg2+ ion, and the flexible tail of
the enzyme can be seen in Figure 1.
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in facilitating enzymatic reactions and in determining the overall catalytic performance. 
Mutational studies provide a powerful tool to investigate the functional significance of 
specific residues within an enzyme. In this study, we focus on the Arg116 residue in SK 
due to its reported impact on catalytic efficiency upon mutation to either Ala or Lys [23]. 
In addition to this, it has been suggested that this residue is involved in expelling products 
from the active site [1]. Through comparing the dynamical behaviour of the WT enzyme 
with the Arg116 mutants, we aim to shed light on the underlying molecular mechanisms 
that contribute to the observed decrease in catalytic performance.  

Figure 1. The domains of the Shikimate Kinase (SK) enzyme structure: the binding SB (in orange),
the LID (in red), and the tail (in turquoise). The CORE domain is divided in the present work into
three sections: CORE I (in green), CORE II (in purple), and CORE III (in pink). The substrates ADP,
S3P, and Mg2+ ion are also depicted.

In our previous work where we studied the dynamics of SK in the absence of substrates,
we observed that mutations at the level of residue 116 (Arg) perturbed the overall dynamics
of the enzyme [19]. Understanding how these perturbations are produced and their effects
in catalysis is important not only for SK but for any other enzyme as protein dynamics is
intimately linked to function [22]. For instance, as it is mentioned in this reference, it is
known that currently one cannot predict enzyme functions based purely on static data of
experimentally resolved structures.

Enzyme dynamics, both local (at the active site level) and global, play a critical role
in facilitating enzymatic reactions and in determining the overall catalytic performance.
Mutational studies provide a powerful tool to investigate the functional significance of
specific residues within an enzyme. In this study, we focus on the Arg116 residue in SK
due to its reported impact on catalytic efficiency upon mutation to either Ala or Lys [23]. In
addition to this, it has been suggested that this residue is involved in expelling products
from the active site [1]. Through comparing the dynamical behaviour of the WT enzyme
with the Arg116 mutants, we aim to shed light on the underlying molecular mechanisms
that contribute to the observed decrease in catalytic performance.
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Here, we aim to expand the current understanding of Shikimate Kinase (SK) through
conducting microsecond time-scale molecular dynamics (MD) simulations of the holoen-
zyme in the product state. We focus on three variants of the enzyme: the wild-type (WT)
enzyme and two mutants (R116A and R116K) with significantly reduced catalytic activity.

In this work, the connection between local and global dynamics of the SK enzyme,
is facilitated by using the concept of frustration [24]. Frustration arises from the observa-
tion that certain interactions in complex systems are not readily satisfied. It reflects the
inherent challenge of achieving simultaneous optimization of multiple competing factors
or constraints. In the context of enzymes’ functioning, it has been found that catalytic sites
are usually highly frustrated [25]. In addition to this, frustration of the substrate–product
interactions plays a crucial role in modulating the overall behaviour of the system and
influencing functional outcomes such as the facilitation of the rate-determining step [14,16].

2. Materials and Methods
2.1. Simulation Setup

The crystallographic structure of Helicobacter pylori SK was used in our simulations
(PDB ID: 3MUF, at 2.3 Å resolution) [23], which was also used in previous studies [17–19,26].
An initial set of coordinates for the protein chain, substrates (with phosphoryl groups
fully deprotonated at the product state), ions, and water molecules was obtained from
the CHARMM-GUI [27] online server. The Mg2+ ion was added manually. Force field
parameters for atoms were obtained from the CHARMM-36 force field [28–30]. In the
present simulations, the missing tail of the protein was included. All molecular components
were assembled with the CHARMM (v. 45b1) built-in tools [31]. As in our previous study
for the apoenzyme, we considered three variants of the SK, i.e., the wild type (WT) and
the mutants R116A and R116K. The protein chains and substrates were padded with a
20 Å buffer, which included TIP3P waters [32] as well as Na+ and Cl− ions (at 150 mM
concentration), producing a cubic-shaped box.

An initial minimization procedure consisting of 50,000 steps was performed with
the NAMD package (v. 2.14) [33] using harmonic constraints with a force constant of
1 kcal/(mol Å2) applied on the heavy atoms of the protein, the substrates and the Mg2+ ion.
This procedure was followed by an equilibration phase in the NVT ensemble, keeping the
harmonic constraints active, with the Langevin method at 303.15 K and using a time step
of 2 fs. Then, the constraints were removed and a 600 ns simulation in the NPT ensemble
was conducted using the Langevin piston thermostat [34] with a piston period of 50 fs, a
piston decay of 25 fs, and a target pressure of 1 bar.

The final set of coordinates together with the NAMD force field parameters and
topology files were converted to the equivalent GROMACS input files with the assistance
of the ParmEd tool [35]. Similar values for the parameters of the particle mesh Ewald
(PME) method [36,37], the van der Waals and LINCS algorithm [38,39] were used as in
our previous study [19] with the GROMACS simulation package (v. 2021) [40–46]. The
production runs were carried out in the NPT ensemble during ~4 µs for each variant, using
a 2 fs time step. The Parrinello–Rahman method [47] regulated the pressure with a coupling
constant and compressibility of 5 ps and 4.51 × 10−5 bar−1, respectively, at atmospheric
pressure. As for the temperature, it was regulated with the Nosé-Hoover thermostat.

2.2. Analysis

For the root mean square deviation (RMSD), root mean square fluctuation (RMSF), and
the principal component analysis [48] (PCA), C, O, N, and Cα atoms were considered. To
obtain better statistics, three independent MD trajectories were employed for the calculation
of the average RMSD values and standard deviation bars. The RMSD and RMSF values
were computed with the VMD [49] built-in tools. The PCA was performed with the built-in
tools of GROMACS. Trajectory frames were saved at intervals of 5000 steps. The first five
residues of the protein chain, which displayed high fluctuations, were not considered in
the analysis.
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Regarding the Neural Relational Inference analysis [50,51], the model was trained
during 600 epochs, achieving a mean square error (MSE) in the testing set of 0.068, 0.062,
and 0.057 for the WT, R116A, and R116K cases, respectively. A default number of time
steps per sample (50) was used.

The frustration analysis was performed with the standalone version of the Frustratome-
teR package [52,53] where the configurational model was selected with an electrostatic
constant of 4.15. Also, a 5 Å cut-off was used for computations of interactions around the
selected residue number 116. Here, frames saved every 0.002 µs were employed.

3. Results and Discussion

The global dynamics of SK was monitored through the RMSD, RMSF, PC, and
NRI analysis while the local dynamics at the active site was investigated with the as-
sistance of the frustration analysis. Our findings are summarised in the following sections:
Sections 3.1–3.4.

3.1. RMSD and RMSF Analysis

The average RMSD curve of the WT variant shows higher stability than that of the
mutants R116A and R116K during the first 1 µs of the simulation (see Figure 2a). After that,
the protein structures became more open, which can be associated with the product release
step, but even in this case, the WT structure was more stable than those of the mutants, as
revealed by the average RMSD values and standard deviation bars. The distribution of
the RMSD values, displayed in Figure 2b, shows a bimodal behaviour for the WT variant.
This behaviour, together with the standard deviation bars, tell us that the protein can
explore different conformations between both open and closed states while it is bound to
the substrates. In contrast to this, the WT apoenzyme exhibited a unimodal distribution
skewed towards open states [19].
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In the case of R116A, the distribution is also bimodal (see Figure 2c) but it is shifted
towards higher values of the RMSD, suggesting a highly perturbed structure. Regarding
R116K, the explored RMSD range is similar to that of the WT variant, but the distribution
is unimodal; this can be seen in Figure 2d. The behaviour of the distributions in the mutant
variants suggests that the dynamics of the WT holoenzyme is modified upon mutations,
especially in the R116A variant.

We monitored the dynamics of the different regions for the protein structure of the
three variants through the RMSF values in Figure 3. The largest RMSF values for the WT
variant, in the present holo form, were observed in similar regions to a previous study for
the apo structure, i.e., the LID, SBD, and the 310 feature in the CORE II domains [19], which
acts as an energetic counterweight [8].
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Figure 3. RMSFs plots for the WT, R116A, and R116K variants. The structure of R116A is destabilised
as reflected by the high RMSF values. In the case of R116K, the fluctuations were quenched in the SB
domain but increased in the LID domain.

The R116A mutation destabilises the initial holo structure drastically. Regarding
R116K variant, the fluctuations were of the same order of magnitude than those of the WT
case. The main differences were in the fluctuations of the SB domain, which were quenched,
but those in the LID domain increased for this mutant.

3.2. Principal Component Analysis (PCA)

A PCA was performed on the WT enzyme, revealing the presence of two distinct
clusters along the PC1 axis in a relatively compact space region, representing the open
and closed conformations which are separated by the dashed (orange) line in Figure 4a.
In contrast, the mutant R116A displayed a broader range of conformational states, indi-
cating destabilisation compared to the apoenzyme [19] (see Figure 4b). Conversely, the
mutant R116K showed a reversed stabilising effect with respect to the apoenzyme structure
(Figure 4c).
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Figure 4. Results of the principal component analysis: in (a–c), the MD trajectories were projected
onto the first two eigenvectors for the WT, R11A, and R116K variants, respectively. The WT projected
trajectory displayed two main clusters separated by the dotted orange line corresponding to the open
and close conformations; see (a). The structure of R116A mutant is destabilised, as shown in (b).
The R116K structure is stabilised with respect to the apoenzyme structure (c). In (d), the residues’
contributions to the first eigenvector are plotted for the three variants. Here, we see that the regions
with the largest fluctuations are the LID region (in red), the SB region (in orange), and the region
around the 310 helix, which is part of the CORE domain.

Figure 4d illustrates the contribution of each residue to the eigenvector with the
highest variance. Notably, similar regions, including the SB, 310, and LID regions, made
significant contributions in all three variants. However, in the mutants, the LID emerged as
the major contributor, while in the WT, it was the region around the 310 helix. This region
also encompasses the P-loop, which is responsible for maintaining the proper positioning
of the β-phosphoryl group [21].

The projection of the WT case trajectory onto the first eigenvector in Figure 5 reveals
the involvement of the SB and LID domains, which were the major players in the first
principal component in the apoenzyme state, in the opening and closing motion. However,
in the present case, additional key contributors to this principal component included the
P-loop (GFMGSGKSS), the Walker B motif (VISTGG) [20], and the 310 helix (GIVMH). This
suggests that these elements play significant roles in shaping the observed conformational
changes and dynamics of the enzyme.
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Figure 5. Trajectory projected onto the first eigenvector showing the main contributing regions of the
SK wild-type structure. In this holo form, other regions besides the LID and SB domains, already
observed in the apo form, contribute to the first principal component, i.e., the Walker A motif (P-loop),
the Walker B motif, and the 310 helix.

3.3. Neural Relational Inference Analysis (NRI)

Higher-order interaction networks were investigated using the Neural Relational
Inference (NRI) analysis [50,51], which employs a graph neural network trained with an
encoder-decoder architecture that learns the latent space of molecular dynamics (MD)
trajectory data and captures long-range interactions. By using this analysis we obtained the
distribution of learned edges between residues in the main regions which can be visualised
in Figure 6a–c for the WT and the mutants R116A and R116K, respectively. In Figure 6d–f,
the contributions from individual residues are aggregated into per-domain probabilities.

One can notice that in the case of the WT variant, in Figure 6a, the SB and LID domains
exhibit the highest level of activity receiving contributions from all other domains. The
CORE III domain also displays interactions from other domains to a lesser extent. This
observation is further supported by the domain interaction map shown in Figure 6d for
the WT case. A more pictorial representation of these results is achieved through directed
graphs in Figure S1, where the connection patterns among the protein regions are shown.

In the R116A mutant, the interactions with the SB domain are weakened, whereas
the interactions with the LID domain are strengthened, as depicted in Figure 6b,e. The
corresponding directed graph for this mutant can be seen in Figure S1b. Regarding the
R116K mutant, the interdomain interactions of both the SB and LID domains are mostly
weakened, and the CORE III domain emerges as the most interactive domain. Notably, the
interdomain interaction between CORE III and SB domains, observed in the WT case, is
also present in the R116K mutant, as illustrated in Figure 6c,f and also Figure S1c.
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Figure 6. Distribution of learned edges (a–c) for the WT, R11A, and R116K variants, respectively. In
the WT case, the SB and LID domains were the most active regions, while in the R116A case, the
LID domain displayed the highest level of interaction with other regions of the protein. Coordinated
activity was considerably reduced in the R116K mutant (c). Aggregated contributions from residues
into domain probabilities are illustrated in (d–f).

3.4. Frustration Analysis

As we have already seen, both the apo and holoenzymes undergo alterations in their
dynamics compared to the WT enzyme upon mutations. This phenomenon can be at-
tributed to significant changes occurring in the local environment surrounding the mutated
residue. To investigate the local environment of R116, we performed local frustration anal-
ysis. Frustration is a concept that arises when certain interactions in the protein interfere
with one another, leading to conflicts [54]. In this way, a local minimally frustrated structure
indicates a state where most of the local interactions are well-satisfied, while a highly frus-
trated structure indicates a state where most of the local interactions are in conflict. Between
these extremes lies a neutrally frustrated structure, which represents an intermediate state.
In more physical terms, minimally frustrated regions exhibit well-defined structures while
highly frustrated regions tend to be more flexible [55].

Our analysis revealed a notable degree of minimal frustration within the local en-
vironment of R116 for the WT case, this can be seen in Figure 7a. This feature is more
relevant in the time range below 1 µs (indicated by the vertical dashed line), during which
the substrates maintain a well-positioned orientation in the binding pocket. However,
beyond this timeframe, the local environment exhibits increased flexibility. Conversely,
R116A exhibits a substantial degree of frustration within its local environment as shown in
Figure 7b. Remarkably, even though the structure of R116K fluctuates in a manner similar
to the WT case, as indicated by the RMSF results in Figure 3, its local environment exhibits
a higher degree of frustration than in the WT case (see Figure 7c). Thus, we argue that a
locally frustrated region, in the mutants’ case, results in different local dynamical motions
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that disrupt the coordination of the global dynamical motions of the WT protein structure
(Figure S1). These findings emphasise the influential role played by the local environment
in governing the global dynamics of the enzyme and suggest that the evolutionary process
has finely tuned the local environment of SK to optimise its functionality. Also, because
disruption of interaction networks upon mutations has been observed in other enzymes,
such as AdK [15], we argue that local frustration can be a general phenomenon in enzymes.
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The different local and global dynamics of the mutants can induce different “chewing”
motions on the substrates (including reactant, transition, and product states) than in the
WT case, which can in turn contribute to their reduced catalytic activity. For instance, in the
present study, we found that SK opens faster in the mutants than in the WT, which affects
the product release step. Remarkably, a faster opening event upon mutations was recently
observed in AdK [15]. In addition to this, the “chewing” motions in the mutants can create
non-optimal orientations for residues during catalysis.

As in the apoenzyme case, we found that the choreography of the motions in the WT
holoenzyme is destroyed for the studied mutant cases [5,19].

4. Conclusions

Our analysis of the RMSD curves and RMSF profiles revealed distinct dynamics and
structural differences between the wild-type (WT) Shikimate Kinase (SK) variant and the
R116A and R116K mutants. The WT variant exhibited higher stability throughout the
whole simulation compared to the mutants. The distribution of RMSD values indicated
a bimodal behaviour in the WT variant, suggesting transitions between open and closed
states. In the case of the R116A mutant, the bimodal distribution was shifted towards
higher RMSD values. As for the R116K mutant, the distribution was unimodal and skewed
towards open states. These findings indicate that the dynamics of the WT holoenzyme are
modified when site mutations are introduced, particularly in the R116A variant.

Furthermore, our principal component analysis (PCA) revealed clusters corresponding
to open and closed conformations in the WT enzyme in a narrow conformational space,
while the mutants displayed broader conformational spaces. The analysis of the per-residue
contributions to the largest variance eigenvector showed that similar regions are involved
in the dynamics of all variants, including the SB, 310, and LID regions. However, the major
contributions differed, with the mutants primarily influenced by the LID region and the
WT variant influenced by the region around the 310 helix, including the P-loop.

Additionally, our study employed NRI analysis to investigate higher-order interaction
networks. The WT variant demonstrated extensive interactions, with the SB and LID
domains being the most active and receiving contributions from other domains. In contrast,
the R116A mutation weakened SB interactions while strengthening LID interactions. The
R116K mutation disrupted interdomain interactions, with the CORE III domain becoming
the most interactive region.

Lastly, our analysis of the local environment around residue R116 using frustration
analysis revealed that the WT variant exhibited a high degree of minimal frustration,
indicating well-satisfied local interactions optimised via evolution. In contrast, the R116A
and R116K variants displayed high levels of frustration, suggesting conflicts among local
interactions. We argue that these local conflicts, in the mutants’ case, disrupt crucial contacts
around the mutational site (located at the LID domain), resulting in different local dynamics,
and that this, in turn, causes the difference in the global enzyme dynamics with respect to
the WT case. This highlights the significant role of the local environment in modulating
enzyme dynamics and further emphasises the importance of considering both local and
global factors in understanding enzymatic behaviour.

In conclusion, our analysis of the dynamics and interactions in the WT and mutant
variants of SK provides insights into the structural and functional consequences of specific
mutations. These findings contribute to a deeper understanding of the interplay between
residue dynamics, conformational transitions, and higher-order interactions in SK. We
found that the choreography of these interactions is disrupted for the mutants considered
in this study. The knowledge gained from it can facilitate the design of novel strategies for
modulating enzyme activity and guide future investigations aimed at optimising enzymatic
performance for various applications. For instance, our study suggests that one needs to
consider the dynamics of the enzyme as a major player in enzyme tuning and design.
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and R116K variants in (a–c), respectively.

Funding: This research received no external funding.

Acknowledgments: This research was conducted using the resources of High Performance Comput-
ing Center North (HPC2N). NAMD was developed by the Theoretical and Computational Biophysics
Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at
Urbana-Champaign (http://www.ks.uiuc.edu/Research/namd/, accessed date 1 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Blanco, B.; Prado, V.; Lence, E.; Otero, J.M.; Garcia-Doval, C.; van Raaij, M.J.; Llamas-Saiz, A.L.; Lamb, H.; Hawkins, A.R.;

González-Bello, C. Mycobacterium tuberculosis Shikimate Kinase Inhibitors: Design and Simulation Studies of the Catalytic
Turnover. J. Am. Chem. Soc. 2013, 135, 12366–12376. [CrossRef] [PubMed]

2. Coracini, J.D.; de Azevedo, W.F. Shikimate Kinase, a Protein Target for Drug Design. Curr. Med. Chem. 2014, 21, 592–604.
[CrossRef] [PubMed]

3. Grillo, I.B.; Bachega, J.F.R.; Timmers, L.F.S.M.; Caceres, R.A.; de Souza, O.N.; Field, M.J.; Rocha, G.B. Theoretical Characterization
of the Shikimate 5-Dehydrogenase Reaction from Mycobacterium tuberculosis by Hybrid QC/MM Simulations and Quantum
Chemical Descriptors. J. Mol. Model. 2020, 26, 297. [CrossRef] [PubMed]

4. Nunes, J.E.S.; Duque, M.A.; de Freitas, T.F.; Galina, L.; Timmers, L.F.S.M.; Bizarro, C.V.; Machado, P.; Basso, L.A.; Ducati, R.G.
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules
2020, 25, 1259. [CrossRef]

5. Villali, J.; Kern, D. Choreographing an Enzyme’s Dance. Curr. Opin. Chem. Biol. 2010, 14, 636–643. [CrossRef]
6. Kern, D. From Structure to Mechanism: Skiing the Energy Landscape. Nat. Methods 2021, 18, 435–436. [CrossRef]
7. Wolf-Watz, M.; Thai, V.; Henzler-Wildman, K.; Hadjipavlou, G.; Eisenmesser, E.Z.; Kern, D. Linkage between Dynamics and

Catalysis in a Thermophilic-Mesophilic Enzyme Pair. Nat. Struct. Mol. Biol. 2004, 11, 945–949. [CrossRef]
8. Bae, E.; Phillips, G.N. Roles of Static and Dynamic Domains in Stability and Catalysis of Adenylate Kinase. Proc. Natl. Acad. Sci.

USA 2006, 103, 2132–2137. [CrossRef]
9. Henzler-Wildman, K.A.; Lei, M.; Thai, V.; Kerns, S.J.; Karplus, M.; Kern, D. A Hierarchy of Timescales in Protein Dynamics Is

Linked to Enzyme Catalysis. Nature 2007, 450, 913–916. [CrossRef]
10. Hanson, J.A.; Duderstadt, K.; Watkins, L.P.; Bhattacharyya, S.; Brokaw, J.; Chu, J.-W.; Yang, H. Illuminating the Mechanistic Roles

of Enzyme Conformational Dynamics. Proc. Natl. Acad. Sci. USA 2007, 104, 18055–18060. [CrossRef]
11. Henzler-Wildman, K.A.; Thai, V.; Lei, M.; Ott, M.; Wolf-Watz, M.; Fenn, T.; Pozharski, E.; Wilson, M.A.; Petsko, G.A.; Karplus, M.;

et al. Intrinsic Motions along an Enzymatic Reaction Trajectory. Nature 2007, 450, 838–844. [CrossRef] [PubMed]
12. Agafonov, R.; Kerns, J.; Phung, L.; Kern, D. Energy Landscape of Adenylate Kinase: Phosphoryl Transfer and Conformational

Transitions. Biophys. J. 2011, 100, 17A–18A. [CrossRef]
13. Kerns, S.J.; Agafonov, R.V.; Cho, Y.-J.; Pontiggia, F.; Otten, R.; Pachov, D.V.; Kutter, S.; Phung, L.A.; Murphy, P.N.; Thai, V.; et al.

The Energy Landscape of Adenylate Kinase during Catalysis. Nat. Struct. Mol. Biol. 2015, 22, 124–131. [CrossRef] [PubMed]
14. Kong, J.; Li, J.; Lu, J.; Li, W.; Wang, W. Role of Substrate-Product Frustration on Enzyme Functional Dynamics. Phys. Rev. E 2019,

100, 052409. [CrossRef] [PubMed]
15. Dulko-Smith, B.; Ojeda-May, P.; Ådén, J.; Wolf-Watz, M.; Nam, K. Mechanistic Basis for a Connection between the Catalytic Step

and Slow Opening Dynamics of Adenylate Kinase. J. Chem. Inf. Model. 2023, 63, 1556–1569. [CrossRef]
16. Li, W.; Wang, J.; Zhang, J.; Takada, S.; Wang, W. Overcoming the Bottleneck of the Enzymatic Cycle by Steric Frustration. Phys.

Rev. Lett. 2019, 122, 238102. [CrossRef]
17. Yao, J.; Wang, X.; Luo, H.; Gu, P. Understanding the Catalytic Mechanism and the Nature of the Transition State of an Attractive

Drug-Target Enzyme (Shikimate Kinase) by Quantum Mechanical/Molecular Mechanical (QM/MM) Studies. Chem. Eur. J. 2017,
23, 16380–16387. [CrossRef]

18. Ojeda-May, P. Exploring the Mechanism of Shikimate Kinase through Quantum Mechanical and Molecular Mechanical (QM/MM)
Methods. Biophysica 2021, 1, 334–343. [CrossRef]

19. Ojeda-May, P. Exploring the Dynamics of Shikimate Kinase through Molecular Mechanics. Biophysica 2022, 2, 194–202. [CrossRef]
20. Gu, Y.; Reshetnikova, L.; Li, Y.; Wu, Y.; Yan, H.; Singh, S.; Ji, X. Crystal Structure of Shikimate Kinase from Mycobacterium

tuberculosis Reveals the Dynamic Role of the LID Domain in Catalysis. J. Mol. Biol. 2002, 319, 779–789. [CrossRef]
21. Hartmann, M.D.; Bourenkov, G.P.; Oberschall, A.; Strizhov, N.; Bartunik, H.D. Mechanism of Phosphoryl Transfer Catalyzed by

Shikimate Kinase from Mycobacterium tuberculosis. J. Mol. Biol. 2006, 364, 411–423. [CrossRef] [PubMed]
22. Nam, K.; Wolf-Watz, M. Protein Dynamics: The Future Is Bright and Complicated! Struct. Dyn. 2023, 10, 014301. [CrossRef]

[PubMed]

https://www.mdpi.com/article/10.3390/biophysica3030030/s1
https://www.mdpi.com/article/10.3390/biophysica3030030/s1
http://www.ks.uiuc.edu/Research/namd/
https://doi.org/10.1021/ja405853p
https://www.ncbi.nlm.nih.gov/pubmed/23889343
https://doi.org/10.2174/09298673113206660299
https://www.ncbi.nlm.nih.gov/pubmed/24164195
https://doi.org/10.1007/s00894-020-04536-9
https://www.ncbi.nlm.nih.gov/pubmed/33030705
https://doi.org/10.3390/molecules25061259
https://doi.org/10.1016/j.cbpa.2010.08.007
https://doi.org/10.1038/s41592-021-01140-4
https://doi.org/10.1038/nsmb821
https://doi.org/10.1073/pnas.0507527103
https://doi.org/10.1038/nature06407
https://doi.org/10.1073/pnas.0708600104
https://doi.org/10.1038/nature06410
https://www.ncbi.nlm.nih.gov/pubmed/18026086
https://doi.org/10.1016/j.bpj.2010.12.306
https://doi.org/10.1038/nsmb.2941
https://www.ncbi.nlm.nih.gov/pubmed/25580578
https://doi.org/10.1103/PhysRevE.100.052409
https://www.ncbi.nlm.nih.gov/pubmed/31869999
https://doi.org/10.1021/acs.jcim.2c01629
https://doi.org/10.1103/PhysRevLett.122.238102
https://doi.org/10.1002/chem.201703867
https://doi.org/10.3390/biophysica1030025
https://doi.org/10.3390/biophysica2030020
https://doi.org/10.1016/S0022-2836(02)00339-X
https://doi.org/10.1016/j.jmb.2006.09.001
https://www.ncbi.nlm.nih.gov/pubmed/17020768
https://doi.org/10.1063/4.0000179
https://www.ncbi.nlm.nih.gov/pubmed/36865927


Biophysica 2023, 3 474

23. Cheng, W.-C.; Chen, Y.-F.; Wang, H.-J.; Hsu, K.-C.; Lin, S.-C.; Chen, T.-J.; Yang, J.-M.; Wang, W.-C. Structures of Helicobacter pylori
Shikimate Kinase Reveal a Selective Inhibitor-Induced-Fit Mechanism. PLoS ONE 2012, 7, e33481. [CrossRef] [PubMed]

24. Ferreiro, D.U.; Komives, E.A.; Wolynes, P.G. Frustration in Biomolecules. Q. Rev. Biophys. 2014, 47, 285–363. [CrossRef] [PubMed]
25. Freiberger, M.I.; Guzovsky, A.B.; Wolynes, P.G.; Parra, R.G.; Ferreiro, D.U. Local Frustration around Enzyme Active Sites. Proc.

Natl. Acad. Sci. USA 2019, 116, 4037–4043. [CrossRef]
26. Prado, V.; Lence, E.; Vallejo, J.A.; Beceiro, A.; Thompson, P.; Hawkins, A.R.; González-Bello, C. Study of the Phosphoryl-Transfer

Mechanism of Shikimate Kinase by NMR Spectroscopy. Chem. Eur. J. 2016, 22, 2758–2768. [CrossRef]
27. Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29,

1859–1865. [CrossRef]
28. Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.M.; Mittal, J.; Feig, M.; MacKerell, A.D. Optimization of the Additive CHARMM All-Atom

Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain X1 and X2 Dihedral Angles. J. Chem.
Theory Comput. 2012, 8, 3257–3273. [CrossRef]

29. Mackerell, A.D.; Feig, M.; Brooks, C.L. Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of
Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J.
Comput. Chem. 2004, 25, 1400–1415. [CrossRef]

30. Foloppe, N.; MacKerell, A.D., Jr. All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small
Molecule and Condensed Phase Macromolecular Target Data. J. Comput. Chem. 2000, 21, 86–104. [CrossRef]

31. Brooks, B.R.; Brooks, C.L., III; MacKerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch,
S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614. [CrossRef] [PubMed]

32. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for
Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [CrossRef]

33. Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al.
Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [CrossRef] [PubMed]

34. Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189.
[CrossRef]

35. Shirts, M.R.; Klein, C.; Swails, J.M.; Yin, J.; Gilson, M.K.; Mobley, D.L.; Case, D.A.; Zhong, E.D. Lessons Learned from Comparing
Molecular Dynamics Engines on the SAMPL5 Dataset. J. Comput. Aided Mol. Des. 2017, 31, 147–161. [CrossRef] [PubMed]

36. Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem.
Phys. 1995, 103, 8577–8593. [CrossRef]

37. Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys.
1993, 98, 10089–10092. [CrossRef]

38. Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput.
Chem. 1997, 18, 1463–1472. [CrossRef]

39. Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 116–122.
[CrossRef]

40. Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable
Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [CrossRef]

41. Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al.
GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 2013, 29,
845–854. [CrossRef] [PubMed]

42. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular
Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. [CrossRef]

43. Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling Exascale Software Challenges in Molecular Dynamics
Simulations with GROMACS. In Solving Software Challenges for Exascale; Markidis, S., Laure, E., Eds.; Springer: Cham, Switzerland,
2014; pp. 3–27.

44. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J.
Comput. Chem. 2005, 26, 1701–1718. [CrossRef] [PubMed]

45. Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: A Package for Molecular Simulation and Trajectory Analysis. Mol. Model.
Annu. 2001, 7, 306–317. [CrossRef]

46. Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementa-
tion. Comput. Phys. Commun. 1995, 91, 43–56. [CrossRef]

47. Nosé, S.; Klein, M.L. Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys. 1983, 50, 1055–1076. [CrossRef]
48. Pearson, K. LIII. On Lines and Planes of Closest Fit to Systems of Points in Space. Philos. Mag. Ser. 6 1901, 2, 559–572. [CrossRef]
49. Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [CrossRef]
50. Kipf, T.; Fetaya, E.; Wang, K.-C.; Welling, M.; Zemel, R. Neural Relational Inference for Interacting Systems. In Proceedings of the

35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
51. Zhu, J.; Wang, J.; Han, W.; Xu, D. Neural Relational Inference to Learn Long-Range Allosteric Interactions in Proteins from

Molecular Dynamics Simulations. Nat. Commun. 2022, 13, 1661. [CrossRef]

https://doi.org/10.1371/journal.pone.0033481
https://www.ncbi.nlm.nih.gov/pubmed/22438938
https://doi.org/10.1017/S0033583514000092
https://www.ncbi.nlm.nih.gov/pubmed/25225856
https://doi.org/10.1073/pnas.1819859116
https://doi.org/10.1002/chem.201504438
https://doi.org/10.1002/jcc.20945
https://doi.org/10.1021/ct300400x
https://doi.org/10.1002/jcc.20065
https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2&lt;86::AID-JCC2&gt;3.0.CO;2-G
https://doi.org/10.1002/jcc.21287
https://www.ncbi.nlm.nih.gov/pubmed/19444816
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/5.0014475
https://www.ncbi.nlm.nih.gov/pubmed/32752662
https://doi.org/10.1063/1.467468
https://doi.org/10.1007/s10822-016-9977-1
https://www.ncbi.nlm.nih.gov/pubmed/27787702
https://doi.org/10.1063/1.470117
https://doi.org/10.1063/1.464397
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12&lt;1463::AID-JCC4&gt;3.0.CO;2-H
https://doi.org/10.1021/ct700200b
https://doi.org/10.1021/ct700301q
https://doi.org/10.1093/bioinformatics/btt055
https://www.ncbi.nlm.nih.gov/pubmed/23407358
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/jcc.20291
https://www.ncbi.nlm.nih.gov/pubmed/16211538
https://doi.org/10.1007/s008940100045
https://doi.org/10.1016/0010-4655(95)00042-E
https://doi.org/10.1080/00268978300102851
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1038/s41467-022-29331-3


Biophysica 2023, 3 475

52. Parra, R.G.; Schafer, N.P.; Radusky, L.G.; Tsai, M.-Y.; Guzovsky, A.B.; Wolynes, P.G.; Ferreiro, D.U. Protein Frustratometer 2: A
Tool to Localize Energetic Frustration in Protein Molecules, Now with Electrostatics. Nucleic Acids Res. 2016, 44, W356–W360.
[CrossRef]

53. Rausch, A.O.; Freiberger, M.I.; Leonetti, C.O.; Luna, D.M.; Radusky, L.G.; Wolynes, P.G.; Ferreiro, D.U.; Parra, R.G. FrustratometeR:
An R-Package to Compute Local Frustration in Protein Structures, Point Mutants and MD Simulations. Bioinformatics 2021, 37,
3038–3040. [CrossRef] [PubMed]

54. Ferreiro, D.U.; Hegler, J.A.; Komives, E.A.; Wolynes, P.G. Localizing Frustration in Native Proteins and Protein Assemblies. Proc.
Natl. Acad. Sci. USA 2007, 104, 19819–19824. [CrossRef] [PubMed]

55. Stelzl, L.S.; Mavridou, D.A.; Saridakis, E.; Gonzalez, D.; Baldwin, A.J.; Ferguson, S.J.; Sansom, M.S.; Redfield, C. Local Frustration
Determines Loop Opening during the Catalytic Cycle of an Oxidoreductase. eLife 2020, 9, e54661. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/nar/gkw304
https://doi.org/10.1093/bioinformatics/btab176
https://www.ncbi.nlm.nih.gov/pubmed/33720293
https://doi.org/10.1073/pnas.0709915104
https://www.ncbi.nlm.nih.gov/pubmed/18077414
https://doi.org/10.7554/eLife.54661
https://www.ncbi.nlm.nih.gov/pubmed/32568066

	Introduction 
	Materials and Methods 
	Simulation Setup 
	Analysis 

	Results and Discussion 
	RMSD and RMSF Analysis 
	Principal Component Analysis (PCA) 
	Neural Relational Inference Analysis (NRI) 
	Frustration Analysis 

	Conclusions 
	References

