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Abstract: Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to
advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease
of use, reliability, and high precision analysis when compared with common labeling techniques.
Many different strategies have been used to immobilize the pathogen or host molecules on BLI
biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer.
These strategies can be used in multiple applications and shed light onto the structural and functional
aspects molecules play during pathogen-host interactions. They also provide crucial information on
how to achieve protection. This review summarizes some key BLI strategies used in human vaccine
research and development.
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1. Introduction

Real-time label-free (RT-LF) technologies have greatly contributed to the research, development,
and production of vaccines in recent years. Biosensor technologies based on Surface Plasmon
Resonance (SPR), Surface Plasmon Resonance Imaging (SPRi), and Bio-Layer Interferometry (BLI) have
proven the practicality and effectiveness of monitoring molecular interactions, as binding events can
be monitored in real-time without the requirement of supplementary and costly labeling. These RT-LF
biosensor techniques are very powerful and useful for the characterization of molecular interactions
during most stages of vaccine production and development. Extensive information is available for
multiple platforms of SPR [1]. This review article focuses on the uses of BLI technology and its diversity
of platforms used at various stages of vaccine research and development.

The use of the BLI technology has increased rapidly in the past decade, and this trend is predicted
to continue as the technology continues to gain widespread acceptance and diversifies its application
base. BLI is an optical analytical technique that measures interference patterns from white light
reflected by two surfaces at the tip of a disposable biosensor: (1) a proprietary reference surface
(constant) and (2) a sample or chemistry surface (variable). It monitors in real time the interaction
between two different molecules with one—the ligand—immobilized onto the biosensor surface,
while the other—the analyte—is kept in solution. Biosensors are coated with and are covalently
or non-covalently linked with different biological molecules that allow for kinetics or quantitation
measurements of the molecules bound to the tip [2,3].

Molecular interaction information, like kinetic rate constants, affinity binding constants, and
specific molecule quantitation are some of the main characterization information that can be deducted
from a BLI platform. Such information is necessary when characterizing and studying molecular
interactions and is important for complementing other technologies when providing functional
information of a molecule. In a typical BLI binding kinetics experiment, the assay begins with
an initial baseline using an assay buffer, followed by a ligand molecule immobilization on the surface
of the biosensor (loading), followed by another baseline step and association or analyte binding step,
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then finalized with dissociation in the presence of buffer only. The binding response is measured
and reported in real time in the form of a sensorgram trace, which is then fitted using specified
algorithms based on known binding models [2]. Kinetics measures how fast an interaction occurs and
is depicted by the relationship between association rate constant (ka) and dissociation rate constant
(kd). These constants are expressed as ka, M−1 s−1 and kd, s−1. Affinity measures how strong the
interaction is and is depicted when binding reaches an equilibrium. It is usually referred as affinity
constant (KD) or dissociation equilibrium constant, which is expressed in molar as the concentration of
analyte required to occupy 50% of the surface ligand sites at equilibrium. These constants are readily
calculated during software data analysis. For quantitation experiments, the molecule(s) bound to the
biosensor are quantified in relation to a set of standards of similar characteristics. Software algorithms
based on known curve equations deliver quantitation and CV% information [2,3].

Traditional assays, like equilibrium binding assays and endpoint assays, are cumbersome and
fail to provide complete information about the interaction. Other traditional technologies, like
enzyme-linked immunosorbent assays (ELISAs), high performance liquid chromatography (HPLC),
native-PAGE gels, capillary electrophoresis, and single radial immunodiffusion (SRID) are encumbered
by drawbacks that include long assay times, extensive hands-on labeling, and low throughput in
some cases. In addition, techniques such as ELISA and SRID can exhibit high variability, resulting in
lower accuracy and poor precision. Bio-Layer Interferometry (BLI) combines the high-throughput
characteristics of a 96-well or 384-well plate format, with improved precision, reproducibility, and
ease of use. For higher throughput, BLI technology can be combined with a robotic platform [4].
Other biosensor technologies like SPR require extensive instrument maintenance, buffer/sample
treatments, and microfluidics maintenance that add time and cost of operations.

Accurate label free kinetics and quantitation of molecules is fundamental in vaccine studies
as it allows scientists to better understand the mechanisms of the molecular interactions without
the need to label molecules, which can be time consuming and may interfere with the molecules’
biological activity. The global vaccine market is ever more demanding as populations grow and
microbe adaptability increases, thus there is pressing needs for technological advances to keep up with
the demand. A growing number of vaccine manufacturers are opting to work with new, well-defined
materials such as purified protein antigens isolated from a natural or recombinant vector, specific
polysaccharides, oligosaccharide protein conjugates, and nucleic acid constructs. These advances and
strategical diversities are well suited to work with the BLI biosensor technology due to the label free
and real-time aspects of the technology and their incredibly high throughput and reliability.

2. BLI Applications on Vaccine Research and Development

BLI is an established technology that has already played a role in a number of vaccine studies.
Because BLI technology can be used for kinetics and affinity determination as well as specific
quantitation of molecules bound to the tip of the biosensors, it provides a vast array of applications
and uses. BLI can assist in vaccine research and development in many ways, including epitope design,
characterization and recognition studies, pathogen diversity and distribution, antibody affinity and
development, host immune response characterization, diversity and distribution, nucleic acid and
molecular pathogen-host interaction studies, and therapeutics and clinical studies. More applications
are still to be discovered. At present, BLI technology has already contributed to a wide range of vaccine
studies, and a short summary enlisting different diseases is presented on Table A1 (Appendix A).

The incredible diversity of microbes and their ability to adapt require constant investigation of
the molecular interactions and modes of action of diseases. BLI technology has proven to work with
a multitude of strategies involved in understanding the disease mechanism of action and possible
modifications that allow for improved vaccine potency. The following examples show different
applications and strategies employing BLI technology in the field of vaccine studies.
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3. Epitope Design and Epitope Capture Approaches

Understanding the interaction between microbes and their host is a big step in improving or
developing new vaccines. Epitope design and epitope capture approaches focus on the microbial
molecular structure and how different epitopes may have different potency, functions, and targets that
ultimately impact vaccines. The following examples show strategies that employ BLI and how they
contribute to the understanding and characterization of epitope design toward vaccine development
and improvements.

3.1. Site-Directed Mutagenesis of Epitopes

Even though a vaccine against small pox is well established and was one of the first vaccines to
be developed, orthologous strains are now a concern [5]. Since large-scale vaccination efforts against
smallpox ended, the general population may no longer be protected against orthopoxviruses, which
include monkeypox virus and various strains of cowpox viruses. BLI technology is being used as a tool
to help in the search of cross-species neutralizers and to help with vaccine design and development
against the vaccinia virus. A well-orchestrated BLI strategy is summarized and illustrated on Figure 1,
in which the authors studied the L1 epitopes to understand the protective mechanism of the anti-L1
antibody, as the L1 antibody is an important target for viral neutralization [6]. L1 residues N27, Q31,
and D35 were subjected to single-alanine substitution using site-directed mutagenesis, and the mutated
recombinant L1 proteins were immobilized onto Ni-NTA biosensors via its C-terminal hexahistamine
tag, and anti-L1 mAbs used as analyte. By measuring the affinity constant (KD), association rate
constant (ka) and dissociation rate constant (kd) using 1:1 binding model, the authors compared the
binding kinetics of WT-L1 (wild type), N27A, Q31A, and D35A against mAbs [6]. As a result, they
found no binding of D35A against M12B9-Fabs, while no significant difference was observed between
wild type and N27A and Q31A (Figure 1, table). No significant effect on binding affinity was observed
with other L1 mAbs studied. These results show that M12B9 binds with L1 protein with high affinity,
but a single D35A substitution in L1 abolishes the binding, which proves that D35 side chain is essential
for binding a group of potent neutralizing antibodies.

This study shows how BLI can greatly contribute to the understanding of functional studies of
proteins involved in viral recognition, which can lead to improved vaccine efficacy in the future.

In this case scenario, the epitope is immobilized to the biosensor first, and the mAb antibodies
in solution are allowed to bind to the epitopes. This approach is useful for site-directed mutagenesis
research because BLI assists in testing the modified peptides for their affinity and binding
characteristics, providing real-time functional answers. Site-directed mutagenesis, gene knock-out or
knock-in, and insertions and deletions are used for genetic manipulation. Recently, the understanding
of the mechanisms involved in the clustered regularly interspaced short palindromic repeats
(CRISPR-Cas) system has brought great advancements because it enables precise gene modifications [7].
Label-free biosensors are useful for bridging the gap between gene manipulation and biological
function by providing more refined molecular characterization, such as quantitation data, kinetics, or
affinity information of protein-protein interactions as well as RNA-protein or DNA-protein interactions.
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Figure 1. Schematics of bio-layer interferometry (BLI) strategy using a nickel-charged tris-nitrilotriacetic
(NTA) biosensor for the identification of viral L1 residues that are most active during vaccinia infection.
Site-directed mutagenesis was used to alter L1 residues, and BLI was used to test their affinity to
anti-L1 mAbs. Table shows binding constant results of M12B9-Fab versus wild-type, N27A, Q31A, and
D35A. KD is affinity constant, ka is association constant, and kd is dissociation constant. Table data was
derived from published data [6] with author consent.

3.2. Epitope Scaffolding

Epitope scaffolding makes use of computational design for grafting of an epitope of interest onto a
heterologous protein scaffold [8,9]. This epitope-focused vaccine design strategy can be very successful
in improving vaccine potency or finding an effective vaccine target. In the following example, BLI
was used to test HCV epitope scaffolds’ affinity to neutralizing antibodies. Contrary to smallpox,
there are no vaccines against hepatitis C virus (HCV). The development of a prophylactic vaccine
against HCV has been hindered due to the great diversity in the viral structure and host immune
response. He et al. [10] designed HCV epitope scaffolds from the antigenic sites of glycoproteins E1
and E2. The authors searched and filtered potential scaffolds using a matrix meta-server method
composed of six different databases: TM-align(F), TM-align(C), SPalign, CLICK, FAST, and Mammoth.
Then, the authors used MD simulations to study the dynamics of potential epitope scaffolds in
solution. The selected epitope scaffolds were his-tagged, transiently expressed in cells, purified, and
their affinities tested on an BLI Octet instrument. Such multi-scale scaffolding is promising for such
complex pathogen-host interactions. Structural modeling and computational designs can be tested
experimentally for activity and affinity using the different platforms of BLI, transforming theory into
reality. In their research, the authors used a BLI instrument—an Octet RED96—to show binding affinity
between HCV epitope scaffolds to the neutralizing antibodies, which helped to characterize and select
most efficient scaffolds (Figure 2) [10].

In this case scenario, the antibodies are bound to a preexisting IgG on the surface of the biosensor
and the epitope scaffolds in solution are allowed to bind to the secondary antibody. The use of label-free
biosensors like BLI and SPR for the biochemical characterization of epitope scaffolds has contributed
to several case studies reported for influenza [11], RSV [12], and HIV [13]. Biosensor technologies
provide affinity and kinetics binding information that is crucial for characterization studies. Like SPR,
BLI can provide the on and off rate constants of antibody binding to the antigen by fitting a model
function to the binding data, therefore providing the affinity of the interaction.
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Figure 2. Schematics of BLI strategy using anti-human IgG Fc (AHC) biosensor for the characterization 
of Hepatitis C viral (HCV) epitope scaffolds (magenta) generated from antigenic sites of the HCV 
envelope glycoproteins E1 and E2. (A) Scaffold models and corresponding BLI sensorgrams showing 
fast on/fast off binding kinetics of E1 peptide and epitope scaffolds (2F60_K_ES and 1VQO_U_ES) to 
IGH526 antibodies; (B) Scaffold models and corresponding BLI sensorgrams showing fast on/slow off 
binding kinetics of E2 peptide and epitope scaffolds (3S7R_A_ES and 1T07_A_ES). All sensorgrams and 
epitope scaffolds reprinted from He et al. 2015 [10] with author permission.  
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Epitope binning has been used for a number of years as a way to characterize and sort a library 
of antibodies into bins that bind distinct epitopes on the specific antigen. In this next strategy, BLI is 
demonstrated to be an ideal tool to expedite epitope binning toward vaccine development. In this 
case, the focus of study was antibiotic-resistant bacteria, which have been causing increasing public 
health concerns. Wang et al. [14] explored an antibody-based therapy for possible protection against 
Klebsiella pneumoniae bacteria, which is known to cause nosocomial infections. They focused on the 
protein antigen MrkA, which is involved in biofilm formation and early onset infection. In their 
study, the authors screened and characterized epitopes by panning single-chain variable fragment 
(scFv) antibody phage libraries against the recombinant MrkA protein. They started with more than 
4000 colonies and narrowed down to four clones by utilizing a series of methodologies:  
(a) binding specificity via dual expression vector pSplice.V5; (b) followed by bacterial scFv.Fc 
expression and Opsonophagocytic killing (OPK) in vivo activity assessment; (c) scFv sequencing,  
(d) BLI epitope binning, and final screening for clone assessment they did binding ELISA, OPK 
affinity assays, and BLI epitope binning. The resulting four clones were further characterized using 
BLI technology. For the characterization of the four remaining clones, the authors used a biotinylated 
antigen captured on the BLI streptavidin biosensors and allowed the protein to bind to an antibody 
bin. Two of the remaining clones showed similar binding profile as a previously characterized KP3 
antibody. Figure 3 shows a diagram of one of these clones and the BLI approach used.  

Figure 2. Schematics of BLI strategy using anti-human IgG Fc (AHC) biosensor for the characterization
of Hepatitis C viral (HCV) epitope scaffolds (magenta) generated from antigenic sites of the HCV
envelope glycoproteins E1 and E2. (A) Scaffold models and corresponding BLI sensorgrams showing
fast on/fast off binding kinetics of E1 peptide and epitope scaffolds (2F60_K_ES and 1VQO_U_ES) to
IGH526 antibodies; (B) Scaffold models and corresponding BLI sensorgrams showing fast on/slow off
binding kinetics of E2 peptide and epitope scaffolds (3S7R_A_ES and 1T07_A_ES). All sensorgrams
and epitope scaffolds reprinted from He et al. 2015 [10] with author permission.

3.3. Epitope Binning

Epitope binning has been used for a number of years as a way to characterize and sort a library
of antibodies into bins that bind distinct epitopes on the specific antigen. In this next strategy, BLI is
demonstrated to be an ideal tool to expedite epitope binning toward vaccine development. In this
case, the focus of study was antibiotic-resistant bacteria, which have been causing increasing public
health concerns. Wang et al. [14] explored an antibody-based therapy for possible protection against
Klebsiella pneumoniae bacteria, which is known to cause nosocomial infections. They focused on the
protein antigen MrkA, which is involved in biofilm formation and early onset infection. In their
study, the authors screened and characterized epitopes by panning single-chain variable fragment
(scFv) antibody phage libraries against the recombinant MrkA protein. They started with more than
4000 colonies and narrowed down to four clones by utilizing a series of methodologies: (a) binding
specificity via dual expression vector pSplice.V5; (b) followed by bacterial scFv.Fc expression and
Opsonophagocytic killing (OPK) in vivo activity assessment; (c) scFv sequencing, (d) BLI epitope
binning, and final screening for clone assessment they did binding ELISA, OPK affinity assays, and BLI
epitope binning. The resulting four clones were further characterized using BLI technology. For the
characterization of the four remaining clones, the authors used a biotinylated antigen captured on the
BLI streptavidin biosensors and allowed the protein to bind to an antibody bin. Two of the remaining
clones showed similar binding profile as a previously characterized KP3 antibody. Figure 3 shows a
diagram of one of these clones and the BLI approach used.
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Figure 3. Schematic drawing showing in-tandem epitope binning strategy using a biofilm formation
protein from Klebsiella pneumoniae. Diagram depicts biotinylated MrkA antigen immobilized on
a streptavidin (SA) biosensor and exposed to competing antibody clones, which interact with
corresponding epitopes. Sensorgram, adapted from Wang et al. 2017 [14] with permission, shows
binding curve of different clones; buffer and clone 4 (binding site not available) are controls.

This strategy shows use for finding anti-MrkA antibodies that have strong affinity for the MrkA
epitope. BLI Octet instruments are accepted as a complimentary tool for epitope binning because
of their versatility as they enable the parallel analysis of 96 independent analyte/ligand pairs [15].
Biosensor platforms can assist with different types of binning assay formats—in-tandem, premix, and
classical sandwich epitope binning—due to their label-free, real-time capabilities. Usually, classical
sandwich and in-tandem formats are used for crude monoclonal antibody (mAb) supernatants, while
premix assays are used with purified mAbs for quantitation assays [16,17]. BLI works with all the
binning formats. For crude samples, SPR and SPRi technologies are not ideal because the more
complex samples can cause clogs and blockages on the microfluidics systems [18]. BLI also offers
many advantages over traditional technologies such as ELISA for epitope binning because it provides
real-time information and label-free experimental design. ELISA, on the other hand, may distort
molecule conformation, miss information on low affinity antibody pairs, and limit the ability to
troubleshoot the assay due to its limited end-point, label-dependent technology [19]. In the example
described above, ELISA is useful as a complementary technology and can be used in combination with
BLI and other technologies. Although difficult to use for in-tandem assays, ELISA is traditionally used
for sandwich and premix assays.

BLI-delivered epitope clustering using the in-tandem strategy was developed for therapeutic
antibody discovery to study a glucose-dependent insulinotropic polypeptide (GIP) receptor with the
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purpose of possible diabetes and obesity treatment [20]. The flexibility of BLI is useful for a variety of
epitope studies and mAb selection.

For primary screening of large libraries of unpurified mAbs expressed in crude conditioned
media, kinetics screening using RT-LF biosensor technologies provide rapid selection of potential
candidates delivering rapid screening of more than 2000 mAb clones. BLI Octet technology, such as the
HTX, can reliably measure kinetics of mAb-antigen interactions for a wide range of binding affinities.
Data generated using titration kinetics (TK) and single cycle kinetics (SCK) assays were comparable
when using BLI HTX, Biacore 4000 (SPR), and Mass-1 (SPRi) biosensors [21]. Greater advantage of
BLI over other RT-LF biosensor technologies include reduced hands-on time, reduced assay time, and
higher throughput, as well as sample recovery after the end of the experiment [21].

4. Antibody Design and Antibody Capture Strategies

4.1. High-Throughput Antibody Screening

High-throughput capability is very important for vaccine development in many ways.
From epitope screening to antibody screening, the ability to test a multitude of targets to funnel
toward the few molecules that provide highest potency is a crucial aspect of immunotherapeutics and
vaccine development. Immunotherapeutic ZMappTM is currently used for EBOV treatment, which
targets the Ebola virus surface glycoprotein (EBOV GP) [22,23]. However, very little is known about
the actual interaction of mAbs and the virus. This understanding is crucial for the future development
of a potent and effective Ebola vaccine. In an attempt to better understand the biological interaction
between virus and host, the Fortebio Octet HTX system, in conjunction with an anti-human IgG Fc
(AHQ) biosensor, was used to map the antigenic binding specificities between GP (glycoprotein)
variants against a population of over 300 GP-specific mAbs (monoclonal antibodies) isolated from
a donor survivor to the Zaire outbreak (Figure 4) [24]. This initial high-throughput screening was
important in narrowing down a potent target. Bornholdt et al. [24] were able to identify a mAb targeting
the GP1/GP2 interface and GP stalk region, demonstrating great progress in the identification of mAbs
for the next generation of EBOV immunotherapeutics.
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Figure 4. Schematic drawing showing the high-throughput strategy used for screening and mapping
antibodies in relation to corresponding Ebola viral GP antigen variants. In this case, an anti-human IgG
Fc antibody that coats the AHQ biosensor was used to capture the antibodies from Ebola survivors [24].

The approach used in this case takes advantage of a preexisting antihuman IgG bound to the
AHQ biosensor to immobilize the human IgGs in large quantities and bind to them to the epitope
variants in solution. This approach shows the versatility of BLI in delivering fast and high-throughput
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results, allowing one to rapidly make kinetics analysis and bin neutralizing mAbs into competition
groups in order to build potent immunotherapeutics.

The reliability and high-throughput of BLI platforms can assist in a multitude of vaccine research
and immunotherapeutics applications. Recently, Li et al. [25] found its use for serologic surveys and
seroepidemiologic investigations for the identification of influenza hemagglutinin (HA) subtypes
specific antibody responses. The influenza A virus HA glycoprotein is important during initial stages
of infection, in which it is responsible for binding the virus to sialic acid present on the host cell
membrane [26]. The serosurveys utilize the HA protein to evaluate and estimate the potential disease
severity. Traditional serological surveys are performed by hemagglutination inhibition (HI) and virus
microneutralization (MN) assays [27,28]. When evaluating potential new technologies, Li et al. [25]
found that BLI presents high sensitivity and expected specificity for human sera from patients exposed
or unexposed to heterologous subtype influenza HA.

4.2. Bispecific Antibody Capture

Antibodies can be designed and manipulated to serve a variety of applications in medicine and
science. In the past few decades, bispecific antibodies have greatly contributed to diagnostic and
therapeutic industries, including vaccine research and development. Corroborating with advances in
bispecific antibody research, BLI technology has proven to assist in the characterization of bispecific
antibodies. In this next example, Asokan et al. [29] characterized bispecific antibodies targeting
different epitopes of the HIV1 envelope protein. The authors developed four different bispecific
antibodies combinations, which demonstrated various levels of neutralization. Increased broad and
potent neutralization was observed with a bispecific antibody containing arms that bind to the different
regions of HIV virus and the CD4 and V1V2 antigens (Figure 5).
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Figure 5. Diagram showing how BLI can be used for characterization of bispecific antibodies. In this
example, bi-specific antibodies were generated to harbor Fc regions of both VRC07 and PG9-16
neutralizing arms against HIV virus. The VRC07 arm was bound to the streptavidin (SA) biosensor
containing its target CD4 antigen, then the second arm PG9-16 allowed to bind to its V1V2 antigen,
in a classic sandwich approach. Sensorgram, reprinted with permission [29], shows VRC07 + PG9-16
bispecific antibody (red line) versus VRC07 (green line) and no antibody (Ab) (dark blue line) control
binding profiles.
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In this case scenario, one arm of the bi-specific antibody was captured by the antigen that was
bound to the SA biosensor. The second arm of the bispecific antibody bound to the second antigen.
This way the bi-specific antibody has augmented neutralizing abilities because it recognizes two
different sites of the HIV virus.

5. Virus Capture Strategies

5.1. VLP (Virus-Like Particles) Capture

Another interesting example of the usage of BLI is its use with virus-like particles (VLPs).
The Chikungunya virus (CHIKV) is an alphavirus that causes debilitating arthritic disease infecting
millions of people worldwide. Studies are underway to develop a vaccine to improve therapeutic
efficacy against this virus. Selvarajah et al. [30] performed experiments using VLPs to isolate a panel
of human mAbs. The authors used an Octet RED system with an amine reactive biosensor (AR2G) to
show binding specificity of one mAb (IM-CKV063) to the immobilized viral envelope glycoproteins
E2 and E1. For these studies the authors used human mAb against CHIKV immobilized on an AR2G
biosensor and then used purified CHIKV VLPs to bind to the mAbs (Figure 6). The ability of BLI
technology to work with large particles like VLPs can greatly contribute to the study of vaccines.

In this strategy, the authors were able to capture the entire chikungunya VLP on the biosensor tip
and study its interaction with mAbs.
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5.2. Whole Virus Capture

In a brilliant example, whole influenza virus was captured onto the streptavidin (SA) biosensor
by means of biotinylated sialic acid [31]. In an attempt to better understand human H7N9 and
avian H7N3 virus diversity and receptor binding interactions, the authors bound biotinylated sialyl
lactosamine polymers to SA biosensors and allowed the viruses to bind to the polymers (Figure 7).
The authors calculated the relative amount of virus bound to the biosensor at different sugar loadings.
The normalized virus binding response curves were in relation to the fractional saturation of the sensor
surface and data fitting was improved by a variant of the Hill equation. The fractional saturation of
the sensor surface (ƒ) was then related to the apparent equilibrium of the dissociation constant for
virus binding. The Kd(virus) was then calculated as a function of the relative sugar loading for ƒ values
ranging 0.05 to 0.95 [31].
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The dip-and-read capability of BLI tends to favor whole virus and VLP applications over
SPR instrumentations because BLI is not prone to some SPR-specific limitations. Some of
the SPR specific-limitations include mass-transport limitations and artifacts caused by chemical
microheterogeneity of the surface of the biosensor [32]. While usually compared to SPR technology,
BLI has intrinsic characteristics that tend to favor multiple applications, which is mostly due to the
ability to dip the disposable biosensor onto a solution containing samples and reagents, which tends
to prevent artifacts from depositing on the biosensor and prevents fluidics limitations.

Immobilization of viruses and VLPs for real-time, label-free kinetics and quantitative
characterization unlocks many potentials for vaccine studies.
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6. Nucleic Acid Capture

The use of nucleic acids in vaccine development strategies have only grown in the past few
years as novel approaches and proven efficacy continue to flourish. The next example shows the use
of genomic RNA binding affinity to the eukaryotic translation elongation factor 1A (eEF1A), which
is involved in the replication of HIV-1. Li et al. [33] used biotinylated 5′UTR, RT, and luciferase
RNAs individually to test their binding affinity to eEF1A (Figure 8). The authors found that 5′UTR
RNA strongly bound with eEF1A, while RT RNA showed week binding, and luciferase RNA had no
binding. Similarly, no binding was shown when the authors used eEF1G translational factor, indicating
specificity of 5′UTR RNA to eEF1A.
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This approach shows use of BLI for studies involving nucleic acids and is quite promising for
the understanding of viral/host interaction during vaccine development. BLI platforms are attractive
for such application because of the lower sample volume requirements, non-destructive, non-dilution
nature of the assays, and biosensor tips can be regenerated for the most part, allowing multi-use of the
biosensor tip.

For nucleic acids applications, BLI has the added advantage that it can detect mechanistic
structural nucleic acids changes upon binding. For example, Bruno [34] noticed that when they
used long (200 base pair) aptamers for binding to peptide based biomarkers, the aptamer contracted,
resulting into a smaller molecule that exhibited negative response signals upon binding to the peptide.
Friedman et al. [35] found BLI to be invaluable for the characterization of aptamer pool enrichment,
which is traditionally accessed by radio-labeling aptamers with either ATP [α− 32P] for in vitro
transcription or ATP [γ− 32P] for 5′ end labeling. The authors found that radiolabeling disrupted
aptamer function, while the RT-LF BLI biosensor technology provided fast high-throughput and
reliable affinity information that could be tested in parallel for comparison of samples from different
selection rounds [35]. In addition, radiolabeling is a cumbersome technique that requires careful
manipulation and extra waste disposal costs. Aptamers are useful for vaccine and immunotherapeutic
initiatives because highly specific aptamers can bind to viral proteins to inhibit or block fusion,
penetration, or replication [34,36].

These examples clearly demonstrate the importance of understanding binding affinity, mAb
specificity, host response, epitope specificity, and screening toward the development of a vaccine.
Thus, the surge of BLI as an emerging method in the field of vaccine and immunotherapeutics that
attracts labs worldwide and summons new application possibilities.

7. Conclusions

BLI technology has greatly assisted with vaccine research and development in recent years.
With the various label-free BLI platforms and biosensors, it is possible to obtain detailed information
from binding kinetics, specificity/affinity, immune responses, epitope mapping, and vaccine titer and
concentration. This makes BLI a very powerful technique to be adopted in any laboratory involved in
the development and production of vaccines and where scientists are trying to prevent or remediate
pathogenic attack for the ultimate goal of protecting the population.
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Appendix A

Table A1. Citations using BLI technology toward vaccine research and development. Sources are
peer-reviewed publications identified through Science Direct and Google Scholar.

Disease Organism Citation n# Selected Reference

HIV Lentivirus, virus 53 [29]
Flu/Influenza Orthomyxoviridae, virus 36 [25]
Ebola virus Filoviridae, virus 8 [24]
Dengue Flavivirus, virus 6 [37]
Smallpox, variola Vaccinia virus (VACV) orthopoxvirus, virus 6 [6]
Staph infection Staphylococcus aureus, bacteria 5 [38]
Malaria Plasmodium falciparum, protozoa 4 [39]
Chikungunya infection Chikungunya (CHIKV), virus 3 [30]
Tuberculosis Mycobacterium tuberculosis, bacteria 2 [40]
Middle East Respiratory syndrome MERS-CoV coronavirus, virus 2 [41]
Hepatitis C (HCV) Hepacivirus, virus 2
Anthrax toxin Bacillus anthracis, bacteria 2 [42]
Zika Flavivirus, virus 2 [43]
Herpes Herpesviridae, virus 2 [44]
Respiratory infection Syncytial virus (RSV), virus 1 [45]
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Table A1. Cont.

Disease Organism Citation n# Selected Reference

Hand, foot and mouth disease (HFMD) Enterovirus 71 (EV71), virus 1 [46]
HMPV Metapneumovirus, virus 1 [47]
Schistosomiasis Schistosoma japonicum, Trematoda worm 1 [48]
CMV infection, congenital infections cytomegalovirus (HCMV), virus 1 [49]
Whooping cough Bordetella pertussis, bacillus 1 [50]
Clostridium difficile infection (CDI) Clostridium difficile, bacteria 1 [51]
Marburg virus disease Marburg filoviridae, virus 1 [52]
Diphtheria Corynebacterium diphtheria, bacteria 1 [53]
Gastroenteritis, urinary infections, neonatal
meningitis Escherichia coli, bacteria 1 [54]

Listeriosis Listeria monocytogenes, bacteria 1 [55]
Lung infection, opportunistic pathogen Pseudomonas aeruginosa, bacteria 1 [56]
Otitis, pulmonary infections Moraxella catarrhalis, bacteria 1 [57]
Vaginitis Trichomonas vaginalis, protozoan 1 [58]
Chlamydia infection Chlamydia trachomatis, bacteria 1 [59]
Pulmonary, urinary infections Klebsiella pneumoniae, bacteria 1 [14]
Encephalitis Japanese encephalitis virus (JEV), virus 1 [60]
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