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Abstract: The olfactory receptor neurons of insects and vertebrates are gated by odorant receptor (OR)
proteins of which several members have been shown to exhibit remarkable sensitivity and selectivity
towards volatile organic compounds of significant importance in the fields of medicine, agriculture
and public health. Insect ORs offer intrinsic amplification where a single binding event is transduced
into a measurable ionic current. Consequently, insect ORs have great potential as biorecognition
elements in many sensor configurations. However, integrating these sensing components onto
electronic transducers for the development of biosensors has been marginal due to several drawbacks,
including their lipophilic nature, signal transduction mechanism and the limited number of known
cognate receptor-ligand pairs. We review the current state of research in this emerging field and
highlight the use of a group of indole-sensitive ORs (indolORs) from unexpected sources for the
development of biosensors.

Keywords: odorant receptor (OR); volatile organic compound (VOC); biosensor; carbon nanotube
field-effect transistor (CNT-FET); indole; skatole; bioelectronic nose

1. Introduction

In the recent decade, natural volatile organic compounds (VOCs) have been increasingly recognized
as valuable diagnostic markers. Detection of VOCs was demonstrated in a wide range of applications
with early reports focusing on environmental exogenous VOCs [1] due to their adverse effects on
human health [2–4]. The possibility of using bacterial VOC biomarkers as a diagnostic approach
has drawn much attention lately [5] since different pathogenic species produce a characteristic VOC
profile [6,7]. These “bacterial signatures” have been studied using different separation techniques
coupled with mass spectrometry [8–10].

Analytical chemical tools and particularly mass spectrometry are considered the “gold standard”
in this field, largely contributing to the identification of characteristic VOC biomarkers, including
specific VOCs of common foodborne pathogens [11]. These methods, however, require cumbersome
(and expensive) equipment, labor-intensive preparation steps and trained personnel, and are therefore
not suitable for field use. Medical diagnosis has been the primary goal of most VOC detection schemes.
Diagnostic devices have been developed for the detection of infectious diseases [12,13], volatile cancer
biomarkers [14–16] and various metabolic disorders [13]. Analytical assays and diagnostic outputs
are required, nowadays, in almost every field of life, necessitating the use of numerous optical and
physicochemical methods, applied by different devices. The current trend, however, is geared towards
high-throughput, user-friendly and inexpensive small form factor high sensitivity odorant sensors.

Diagnostic devices still heavily rely on optical transducers that apply various methods
such as fluorescence, absorbance, surface plasmon resonance, waveguide light spectroscopy, etc.
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These powerful methods have yielded a wealth of bioanalytic information due to their sensitivity,
specificity and relative ease of use. Among all non-optic-based methods that apply rapid and
non-invasive on-site analysis, “E-noses” are considered particularly suited due to their sensitivity,
low cost of manufacture and ease of use. “E-nose” technologies generally include devices based on
conducting polymers, surface acoustic waves, quartz crystal microbalance, metal oxide semiconductor
and others [17]. Some graphene-based E-noses have reportedly demonstrated low parts per trillion
(ppt) detection limits for nitric oxide (NO) [18], while other field-effect transistor (FET)-based sensors
have shown a detection limit in the low parts per billion (ppb) range for xylene [19]. The cost of
E-noses dropped, within a decade from thousands of dollars to less than $200 [20], and it is expected to
further drop in the near future. There are many examples of successful proofs-of-concept, including
devices for an early detection of infectious diseases [21]. The main drawbacks of the “E-nose” are
low specificity, inability to distinguish between analytes in a complex mixture, sensitivity to ambient
conditions namely moisture and a challenging data analysis. New methods and technologies for the
detection of VOCs have made tremendous progress but are still far from exploiting the full potential of
micro and nanoelectronics.

An exciting biomimetic strategy, the so-called “bioelectronic nose” offers to combine biological
odorant receptors (ORs) with solid-state electronic transducers to produce a hybrid bioelectronic
sensor that enables the detection of odorants and the transduction of the chemical signal into an
electronic readout. The successful development of small form factor OR-based or -inspired VOC
biosensor technology would find uses in a wide range of process manufacturing industries (Figure 1).
In an attempt to encompass all of the required disciplines involved in bioelectronic noses, several
papers have reviewed lipid-bilayer-based sensors (including nanopores) and cell-based sensors [22],
while some have focused on OR-based biosensors [23]. Among the various aspects associated with
bioelectronic OR-based sensor development, the integration of solid-state transducers with insect ORs
and the transduction of ligand binding into electronic signal are the main focus of this minireview.
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Figure 1. Odorant receptor (OR)-based biosensors and their applications. ORs have great potential
as biorecognition elements in many sensor configurations. In particular, the integration of ORs and
electronic transducers combines the selectivity of the OR with the intrinsic sensitivity of nanoscale
solid-state platforms, enabling direct transduction of ligand binding into electronic current. Bioelectronic
noses may be applied as accurate, affordable and easy to use diagnostic devices in many fields ranging
from agro-food sectors to the clinical arena.

2. Development of Bioelectronic Sensing

2.1. Bioelectronic VOC Sensing

Bioelectronic sensors comprising an electronic (e.g., transistors) or electrochemical transducer
functionalized with a bio-recognition element are uniquely suited for modern on-site diagnostic
devices. The major advantage is the direct electronic transduction of specific binding into electrons.
Direct electronic transduction avoids the use of optics and light sources and allows low-form-factor
devices as well as delivers signal levels that are orders of magnitude higher than those achieved
with optical sensors. Devices based on electronic platforms are attractive since they are amenable to
miniaturization and can be manufactured using conventional microelectronic fabrication techniques.
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The biorecognition elements available for bioelectronic noses are: (i) whole cells (or even tissue such as
insect antenna), (ii) olfactory receptors or odorant-binding proteins, and (iii) synthetic peptides [24].

2.2. Cell-Based Bioelectronic Nose

One of the most studied approaches uses cells as the sensing element. In such a case, the original
cilia-derived cells are incorporated within the sensor or alternatively, ORs are heterologously expressed
in routinely employed expression systems such as yeast, the moth S. frugiperda (sf cells) or Xenopus
laevis oocytes. Whole cells containing the desired olfactory receptors were among the first bioelectronic
nose examples using crude bullfrog cilia preparation immobilized on a piezoelectric transducer [25].
Other frequently used bionic hybrid systems include human embryonic kidney cells (HEK) expressing
the OR of interest. Rat olfactory receptors expressed by HEK cells were integrated with several
different transducers such as quartz crystal microbalance (QCM), microelectrodes and surface plasmon
resonance [26–28]. Human ORs have also been expressed in whole cell-based bioelectronic noses
employing HEK cells as vectors [29] or yeast cells attached to gold microelectrodes [30]. The advantages
of using cell and even tissue-based bioelectronic sensors are directly related to the complex signal
transduction associated with olfaction. By using the OR in its natural environment both the structural
connections and coupled cellular downstream elements are preserved [23]. In order to overcome the
cumbersome setup of cell-based sensors, portable fluidic devices have been developed [31] and the
cell transducer interface has been studied resulting in increased adherence [32]. Recently, a cell-based
odorant sensor array has demonstrated prolonged lifespan by using a specific biocompatible membrane
anchoring reagent patterned on Polydimethylsiloxane (PDMS) [33]. The feasibility of the detection of
multiple odorants was demonstrated by patterning different sf21 cell lines expressing various insect ORs
spatially separated and fluorescently tagged (with a fluorescent calcium indicator). The odorant specific
response pattern exhibited high sensitivity in the detection of 1-octen-3-ol, geosmin, bombykal and
bombykol. Nevertheless, cell-based bioelectronic platforms suffer from additional obvious limitations
pertaining to cell viability and reproducibility in measurements, inherently low signal-to-noise ratio
and manufacturability.

2.3. OR-Based Bioelectronic Nose

Bioelectronic OR-based sensors generally utilize an OR embedded in natural (nanovesicles,
nanosomes [34,35]) or artificial (nanodiscs [36]) membranes (Table 1). Utilizing partially purified or
reconstituted ORs as the biorecognition element offers many advantages over whole-cell systems.
Such an approach enables the scaling down of devices and a direct interface with micro and
nanoelectronics. Furthermore, maintaining the functionality of single proteins or even protein
complexes is less challenging than whole cells in which the receptor functionality is dependent on
cell integrity. The ideal choice for biorecognition elements is, therefore, olfactory receptors and
odorant-binding proteins (OBPs).

While most published studies have utilized mammalian ORs, either purified and reconstituted
or heterologously expressed, as described above, only a few examples in the literature describe the
use of insect ORs as the sensing elements in an OR-based biosensor (Table 1). As opposed to the G
protein-coupled mammalian ORs that are indirectly linked with ion channels, insect ORs act primarily
as ionotropic receptors, which is arguably favorable for sensing applications due to the direct linkage
between receptor activation and channel opening [37]. For example, sf21 cells expressing Drosophila
OR13a were attached to an exposed gate FET sensor [38]. The cells, immobilized on an Al2O3 extended
gate of CMOS integrated devices, were exposed to the odorants bombykol, bombykal and 1-octen-3-ol
and the induced ion influx modulated the recorded drain current. In different studies, microelectrodes
were used to record signals from olfactory receptor neurons of blowfly in a setup similar to patch clamp
electrophysiological measurements [39]. Vertebrates and insect OBPs consist of two distinct families of
structurally compact proteins that carry hydrophobic odorant molecules from the gas phase to the
respective membrane-bound receptor across an aqueous environment [40]. The use of OBPs as soluble
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tethered biorecognition elements has also been demonstrated. Mammalian OBPs are presumably
tuned to pheromones, which limits their application in bioelectronic sensors [41]. Insect OBPs, which
exhibit superior stability, are assumed to have a broad molecular receptive range [42] and genetic
modification has been suggested to improve their binding affinities [43]. Further description of OBPs
biotechnology applications and specifically biosensing can be found in the literature [44,45].

Table 1. Summary of OR-based biosensors. hOR, human odorant receptor; DmelOR, Drosophila melanogaster
odorant receptor; MDL, minimum detection limit. Data cited from: Jin et al. [35]; Goldsmith et al. [36];
Yang et al. [46]; Lee et al. [47]; Murugathas et al. [48]; Khadka et al. [49]; Sung et al. [50]; Lim et al. [51];
Oh et al. [52]; Park et al. [53]; and Ahn et al. [54].

OR | VOC Application Dynamic
Range or MDL Device References

ODR-10 Diacetyl Food & beverages 10−12–10−5 M
Quartz crystal
microbalance [50]

mOR174-9 Eugenol Fragrance
development 2 ppm Nanodisc packaged

OR-CNT-FETs
[36]

mOR256-17 Cyclohexanone Process manufacturing 2250 ppm

hOR 2AG1 Amylbutyrate Food screening &
medical diagnostics 10−12–10−3 M

Nanovesicle-based
OR-CNT-FETs [35]

hOR 2AG1 Amylbutyrate

Disease diagnostics
food safety &

environmental
monitoring

10−15–10−12 M Graphene-based FET [53]

OR-derived
peptide Trimethylamine Food screening 10−15–10−4 M

Nanovesicle-based
OR-CNT-FETs [51]

hOR3A1 Helional Process manufacturing 10−7–10−3 M
Liposome-based

OR-SPR [52]

hOR8H2 1-octen-3-ol Food screening 10−15–10−9 M
Nanovesicle-based

OR-CNT-FETs [54]

TAAR13c Cadaverine food safety 10−12–10−6 M
Nanodisc packaged

OR-CNT-FETs [46]

hOR1A2 Geraniol Fragrance
development 10−15–10−3 M

Nanodisc packaged
OR-CNT-FETs [47]

DmelOR10a Methyl salicylate

Food screening

10−15–10−4 M
OR/liposome
gold sensor

[49]DmelOR22a Methyl hexanoate 10−15–10−4 M

DmelOR71a 4-Ethylguaiacol 10−16–10−4 M

DmelOR10a Methyl salicylate

Food screening 10−15–10−12 M
Nanodisc packaged

OR-CNT-FETs
[48]DmelOR22a Methyl hexanoate

DmelOR35a trans-2-Hexen1-al
DmelOR71a 4-Ethylguaiacol

2.4. The Advantages of Insect ORs as Biorecognition Elements

Heavily dependent on chemical cues, insects have evolved a powerful sense of smell exhibiting
remarkable sensitivities and the ability to detect a vast number of volatile molecules. Recently,
electrophysiological whole-cell measurements have demonstrated the remarkable selectivity and
sensitivity of mosquito receptors exhibiting fast responses to the markers indole and skatole in the
parts-per-trillion (ppt) range, as shown in Figure 2 [55]. Insect ORs are heteromeric ligand-gated cation
channels composed of two transmembrane heptahelical subunits: a highly conserved OR co-receptor
(Orco), operating as a non-selective cation channel and ORx, a highly divergent ligand-sensing
subunit [56]. Chemo-electrical transduction occurs at the olfactory sensory neurons located in the
insect sensillum and involves some other factors, such as OBPs, which are responsible for odorant
transfer from air into the aqueous medium and the ORs. Studies of ORs have been fueled, in part, by
the need to develop behavior-modifying drugs (e.g., attractants and repellents) and to understand
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their pharmacology [57–59]. Recently, a cryogenic electron microscopy (cryo-EM) structure of Orco
homomer at a 3.5 Å resolution was published [60]. The ion conduction pathway generated by the Orco
homotetramer exhibits a complex branched structure where a narrow pore leads to a large vestibule
followed by a quadrivial architecture of four lateral conduits diverging from the central pathway and
allowing the passage of cations (Figure 2a). The distribution of conserved sequences of both Orco and
OR along the membrane axis provides insights into the remarkably modular assemblies of Orco with
the highly variable OR. More importantly, this structural study emphasizes the vital role of the receptor
environment that supports lipid-sequestered, loose transmembrane domains with only a single helix
contributed by each subunit to form the central pore. Similarly, the extracellular loops are formed by
loose packing of six helices responsible for a large diversity of binding sites. In contrast, densely packed
helices form the cytosolic anchor domain. The potential use of insect ORs as biorecognition elements
in a sensor faces major challenges, such as: maintaining the conformational behavior involved in the
activation of this ion channel, efficiently transducing a binding event into an electronic signal and
retaining the binding affinity while the receptor operates outside its natural environment.
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pathway of the Orco homotetramer (two lateral conduits are shown). (b) The novel mosquito skatole
receptor (OR9) exhibit fast and robust responses to skatole. (c) OR9 detects skatole in the ppt (parts
per trillion) range. (d) OR9 is highly selective to skatole in the low ppb (parts per billion) range.
See Ruel et al., 2019 [55] for additional information.

3. OR-Based Biosensors

3.1. Solid-State—OR Interfacing

The integration of solid-state materials and biological systems is still challenging due to their largely
dissimilar physical and mechanical properties. Advances in material sciences and microelectronics
have enabled fabrication of such integrated devices either by using nanoscale transducers, thus
circumventing the “form-factor mismatch” between biomolecules and solid-state or alternatively,
by using biocompatible materials. Solid-phase assays such as microarrays have traditionally employed
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binding proteins or nucleic acids covalently attached to a chemically modified surface and operating
in an aqueous environment. Despite altered binding kinetics, surface-immobilized biomolecules
retain their residual activities and have been used widely in many diagnostic devices, including such
that employ matrix-embedded dried biomolecules. Interfacing membrane proteins with solid-state
transducers, on the other hand, presents difficulties that are yet to be fully resolved. The challenging
task of protein expression and reconstitution is not trivial as most OR expression systems have a rather
low yield. In addition, ORs are membrane proteins and as such, depend on a lipid bilayer environment
to maintain structural stability and functionality. Various strategies have been developed to facilitate
the incorporation of ORs in sensors while retaining their stability and conformational dynamics.

3.2. Nanodiscs

Nanodiscs are self-assembled phospholipid bilayer structures surrounded by membrane scaffold
proteins. This technology, recently developed by Silgar and co-workers [61,62], has been proposed for
the study of lipid bilayer-based nanodevices or membrane protein reconstitution and is considered an
attractive approach for interfacing ORs and micro/nano-electronic measurement platforms. Nanodiscs
are generally comprised of artificial discoidal phospholipid bilayers that are similar to high-density
lipoproteins encapsulated by one of many available constructs of membrane scaffold proteins (MSP) [63].
A major advantage is the ability to control the size and uniformity of nanodiscs by tuning the
lipid-protein molar ratio and by incorporating specific phospholipids and MSP with the appropriate
length. The diameter of bare nanodiscs (not containing proteins of interest) can be tuned between
9.5 to 17 nm. Different methods have been used to characterize membrane protein-containing
nanodiscs, such as dynamic light scattering, measurement of sedimentation velocity and analytical
ultracentrifugation [64]. These characterizations are generally followed by functional studies of the
receptor or other membrane proteins. Nanodisc preparation methods including detailed protocols
of membrane protein assembly have been published [65]. OR-embedded nanodiscs were previously
interfaced with electronic transducers functioning as bioelectronic sensors. The resulting devices
have demonstrated enhanced stability and longevity. In particular, different mouse ORs were
incorporated in nanodiscs and covalently bound to carbon nanotubes (CNTs) functioning as conducting
channels in a FET configuration. The transduction of odorant binding into electronic readout
(i.e., conductance changes) has shown reproducible responses over long periods of days and remarkably,
even weeks [36]. In another example, researchers fabricated nanodiscs containing the TAAR13c
G-protein coupled receptor (GPCR) from zebrafish, which functions as a highly selective OR for
cadaverine [46]. The nanodiscs were immobilized on floating electrodes of a CNT-FET and the resulting
bioelectronic nose exhibited a dose-dependent response in the form of increased conductance following
repeated exposure to cadaverine concentrations as low as 10 pM. The response was measured as a
percent change in transconductance compared with the baseline, and although subtle, the changes were
reproducible and clearly specific. Application of the device in food spoilage was also demonstrated,
as shown in Figure 3. In a recent publication by the same group, a human OR was used for the
electronic detection of a rose scent with a reported sensitivity in the fM range [47]. Biosensing with
nanodisc-embedded insect ORs was recently demonstrated using multiple Drosophila melanogaster
(fruit fly) ORs: OR10a, OR22a, OR35a, and OR71a. The nanodiscs were immobilized onto CNT-FET
via physical adsorption and challenged with the cognate ligands: methyl salicylate, methyl hexanoate,
trans-2-hexen-1-al, and 4-ethylguaiacol. Ligand concentrations of 1 fM were detected [48].
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3.3. Nanovesicles

Cell membranes containing the OR of interest can be processed into nanoscale vesicles that,
depending on their size, maintain planar configuration. Nanovesicles are considered an attractive
strategy since they retain the original, natural environment of the receptor. The directed attachment
of these small membrane fragments to the transducer largely depends on the membrane’s planar
configuration. It is therefore paramount to understand the conditions allowing for a bilayer membrane
fragment to maintain planar configuration in solution. The dynamics of lipid bilayer vesicles has been
extensively studied using suspended lipid bilayers (SLB) as a model [66]. Vesiculation or planarization
of a bilayer membrane is dependent on the free energy of each state, which is in turn, dependent on the
entropy of closure and the membrane bending and contour (edge tension) free energies. The bending
energy per unit area is given by: eb =

1
2κ(c1 + c2)

2 + κ(c1c2) where κ is the bending rigidity and κ is
the bending modulus [67], which indicates the membrane malleability. The principal curvatures, c1+c2

are the eigenvalues of a curvature tensor that describes the local shape of the membrane. The structural
origin of edge tension (γ, the contour energy per unit length) arises from the deformation of the lipids
that occupy the edge [68]. It has been suggested that the stability of a planar or a spherical lipid

bilayer can be described by [69]: α = (
γ
κb
)(A
π )

0.5
, where γ is the edge tension, κb = 2κ+ κ describes

the bending free energy and A is the area of the membrane. Using empirical values of κb~5-25 kbT
(kb is Boltzmann constant) and γ=1-2 kbT/l (l is length), it follows that planar lipid bilayers < 50 nm are
sufficiently stable. In addition, incubation of the membrane fragments with the transducer above their
transition temperature may further facilitate their correct orientation [70]. Generation of uniform and
controlled nanovesicles was previously demonstrated using a silicon cell-slicing device comprised of
silicon nitride cantilever blades and microfluidic channels. Nanovesicles containing human ORs were
produced and characterized prior to immobilization on sensor chips [71]. The reported homogenization
method produced nanovesicles of ~100 nm in diameter, as shown in Figure 4, carrying but a few ORs
per nanovesicles.
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3.4. Suspended Lipid Bilayers

Artificial lipid bilayers have long been employed in ion-channel recordings [72] and nanopore
applications [22]. Biosensing platforms comprised of hybrid SLB and CNT-FET devices have been
considered attractive [73]. Studies of SLB-CNT hybrids [74–76] have shown promise in electrical
detection of target binding. The shift in the transistor threshold (∆Ve), due to additional charges, was
shown to be related to its charge density by: σ = 2 ∆Veεwε0/λd where εw is the dielectric constant of
water and λd is the Debye length [77]. The detection of VOC using a nanopore sensor based on SLB has
been demonstrated. The reported device utilized the “traditional” cis-trans chamber configuration with
an α-hemolysin nanopore embedded in an SLB separating between them. Using agarose in the cis side,
which facilitated the dissolution of the volatile pesticide omethoate, and specific aptamers, blocking
currents were recorded that corresponded to omethoate concentrations in the ppb range [78]. Insect
ORs are attractive candidates for SLB-based nanopore sensors since they function as ligand-gated ion
channels with a wide range of ligands [79]. The incorporation of ion channels is generally preferable in
biosensing since they allow for low detection limits. Controlling the orientation of OR within the SLB,
however, is still considered a challenge [80].

3.5. Immobilization Methods

Since bioelectronic sensing requires intimate contact between the biorecognition element and
the transducer, the immobilization strategy becomes a fundamental part of the biosensor design.
Bio-functionalization can generally be categorized into physisorption or chemisorption based methods.
The flexibility and ease of bio-functionalization attained by the adsorption of biorecognition elements
is advantageous in sensor design. Furthermore, no potentially damaging chemical modifications are
needed. Adsorbed molecules, however, are less stable and in certain cases, negatively affect signal
transduction. An example is the biofunctionalization of a CNT-FET. Different versions of CNT-FET
sensors have attempted to detect biomolecules adsorbed onto pristine and coated CNTs [81]. Transient
non-covalent attachment has been pursued using pyrenes or porphyrins exploiting π-π stacking
of these molecules with the CNT carbon lattice [82]. Covalent modification imparts a measurable
resistance change in the device by converting carbon bonding from sp2 to sp3 orientation. The major
advantages of this functionalization strategy are: (i) locating the interrogated biomolecule in intimate
contact with the charge-sensitive region, (ii) locating the biomolecule within a Debye sphere around
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the CNT sidewall (the requisite proximity scales with a Debye screening length [83]) thus enabling
electrostatic modulation of OR binding and conformational changes, (iii) ensuring optimal orientation
of the OR construct with the CNT sidewall, perpendicular to the cation flow in the channel, and (iv)
enabling a non-transient, stable OR-CNT hybrid for prolonged measurements.

3.6. Chemo-Electronic Signal Transduction

The mechanisms by which OR-based bioelectronic sensors convert chemical signals into
measurable readout generally rely on piezoelectric, electrochemical or electronic transduction. QCM
has been used extensively in the development of bioelectronic noses [23,84]. Different constructs
ranging from OBPs to whole cells were coated on the surface of modified QCM and subsequent binding
of odorants induced a change in the resonant frequency of the crystal following: ∆F = −F∆m/Art,
where ∆F is the change in resonant frequency, F the initial crystal frequency, A is the total surface area,
r is the density crystal, t is the thickness of the crystal, and ∆m is the change in mass [25]. C. elegans
ORs (Odr-10) were immobilized onto the surface of gold QCM by aptamer-assisted immobilization
and the response to a diacetyl ligand was recorded [85]. In another study, the rat-derived OR17 was
expressed on a gold QCM and the response to octanal was recorded [26].

Electrochemical detection using microelectrodes was reported by several studies. Microelectrode
array is advantageous since it enables high-throughput measurements. Most studies, however,
utilized microelectrode array for whole-cell measurements [39,86,87]. Another strategy, well-known
for its superior sensitivity, is electrochemical impedance spectroscopy. In electrochemical impedance
spectroscopy, the ORs are generally immobilized onto a working electrode in three-electrode
configuration while impedance spectroscopy is measured in the presence of target odorants. Specific
odorants (heptanal and octanal) have demonstrated distinct effects on the impedance response of
an electrode modified with the rat-derived OR17 compared with an analogous human-derived OR.
A model was suggested to interpret a single protein impedance result [88,89]. A single protein was
mapped into a network of impedances with N nodes, representing each amino acid and a cut off value
of Rc representing the linking distance between each pair. When elemental impedance is attributed to
each link the protein topology network becomes an impedance network. The elemental impedance

between i-jth nodes was given by: Zi, j =
li, j
Ai, j

1
ρ−1+iεi jε0ω

, where Ai, j = π(R2
C −

l2i, j
4 ) is the cross-sectional

spheres of radius RC centered on the i-th and j-th node respectively, li,j is the distance between centers,
ρ is the resistivity (value of = 1010 Ωm), i =

√
−1 is the imaginary unit, ε0 is the vacuum permittivity,

ω is the circular frequency of the applied voltage. By constructing this network, the authors have
compared both receptor-induced responses [90].

Functionalization of gold electrodes with liposome-embedded insect ORs (OR10a, OR22a, and
OR71a) was also demonstrated in the detection of the target odorants methyl salicylate, methyl
hexanoate, and 4-ethylguaiacol, respectively [49]. The electrode impedance response, as reflected by
an obtained Nyquist plot, indicated high selectivity and femtomolar sensitivity.

Field-effect transistors have been the most commonly used transducers in bioelectronic noses.
In particular, nanoscale FETs incorporating nanotubes as the conducting channel have been studied
within the context of bioelectronic sensing. Human ORs (hOR2AG1) were immobilized onto polypyrrole
nanotubes and assembled in a FET configuration. The described sensors exhibited high specificity
towards amyl butyrate, a common fruit flavor reagent [91]. Graphene is one of the most extensively
studied transistor channel materials in bioelectronic sensors owing to unique properties such as high
charge mobility, structural stability, and flexibility. Graphene FETs were functionalized with multiple
human ORs embedded in membrane fractions allowing for the detection of helional and amyl butyrate
with high sensitivity [92]. The normalized sensitivity (∆I/I0) was calculated according to the following
dependence: N = C

1
K +C

, where C indicates the odorant concentration. Thus, K values can be extracted

from curve fitting.
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Particularly promising are carbon nanotube field-effect devices due to their extraordinary
properties making them excellent candidates for exposed gate biosensors [93,94]. CNTs readily form the
conducting channel in FET configuration exhibiting an exceptionally high charge carrier mobility and
an extremely stable lattice. Most importantly, the density of charge carriers in these one-dimensional
(1D) materials are sensitive to charges in the environment, and therefore the conductance can be
modulated by adsorbed molecules. In addition to their biocompatible all-carbon composition, their
dimensions are comparable to the size of single biomolecules thus solving the typical problem of “form
factor mismatch” between biology and solid-state interfaces [95,96]. Finally, CNT-FET devices are
attractive since they are manufactured using traditional microelectronic fabrication techniques [97].
The feasibility of CNT-FET biosensors was demonstrated in the detection of nucleic acids [98–101]
and various protein biomarkers [102] and they are considered the next generation bioelectronic-based
biosensors. Detection of VOCs with CNT-FET devices that were bio-functionalized with ORs for
specificity is less common [48]. Human ORs were immobilized on a network of single-walled CNT
in a FET configuration and the drain current was measured as a function of time. Changes in CNT
conductance were observed in response to odorant exposure at various concentrations. The authors
suggested that the signal transduction mechanism is related to the electrostatic effect of cysteine residue
electrical charge, which changes upon odorant binding [103]. Nanodisc-embedded mouse ORs were
immobilized to a CNT-FET and both current response and threshold potential were measured in
response to multiple odorants [36]. A different design utilized OBP or alternatively, synthetic peptides
conjugated to the FET transducer. One example was the reported use of peptides extracted from the
sequence of a Drosophila OBP sensitive to alcohols. The peptides were immobilized on a CNT-FET
and exhibited a highly selective response towards 3-methyl-1-butanol, the main VOC released from
Salmonella-contaminated meat [104].

In a single-walled CNT-FET, the ligand binding kinetics are dependent on D, diffusion coefficient
and µ, electrophoretic mobility. µ is determined by V(r), the electric field at a distance r from the
nanotube. For electrolytically-gated CNT-FETs, V(r) is determined by the Debye–Huckel model [83]
for a point charge Q as V(r) = Q

4πε0
1
r e−r/λd , where ε0 is the permeability of free space and λd is the

Debye length given by λD = 1√
4πlB

∑
i ρiz2

i

. lB is the Bjerrum length, ρi is the ion density, and zi is the

valence of ion species i. V(r) decreases exponentially with distance over a length scale determined by
the Debye length. It follows that lower salt (electrolyte) concentrations will increase the effect of the
electric field. Lower water salt content also affects the solubility of a volatile molecule, which is an
important consideration in the design of bioelectronic noses, as discussed below.

3.7. Phase Transfer in the Electrical Detection of VOCs

Most studies reporting bioelectronic VOC sensing are utilizing a soluble version of the volatile
molecule. In nature, the role of transferring VOCs from air to the OR through a mucus layer is
accomplished by odorant-binding proteins, which have a high affinity to both ORs and hydrophobic
molecules. Incorporation of biorecognition elements within a bioelectronic device inevitably implies an
aqueous environment. It should be noted that even in the case of devices that operate in dry conditions
there is still a hydration layer that depends on the humidity as well as structural water that is crucial to
a protein native conformation. Consequently, several factors need to be considered when designing a
device for biosensing volatile molecules.

The diffusion coefficient of VOCs in air is larger by orders of magnitude compared to water. Mass
transfer of a VOC across the air–water interface is dependent on its dissolution rate constant (kd), surface
area of the air-water interface (Aaw), the maximal solubility of the VOC (Cwmax), and the water volume

(Vw) such that [105]: ln
(

Sw−Cw(t)
Sw

)
= −

Aawkdt
Vw

, where Sw = Cwmax = Camax/Hc, where Camax is maximal

VOC concentration in the air phase and Hc is Henry’s solubility constant. The VOC dissolution rate
constant kd can hence be estimated from the slope of a ln(Sw-Cw/Sw) versus t plot. Hydrophobicity
further hinders the partitioning into water of many VOCs. The rather slow VOC dissolution kinetics
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may pose an obvious limitation on the sensitivity of such sensors. It should be noted that certain types
of bioelectronic sensors, such as CNT-FET, have shown the feasibility of detecting single charges and
should, therefore, be capable of detecting low concentrations of solubilized VOCs [100]. Issues of poor
solubility and high vapor pressure may additionally be alleviated by modifications of the measurement
matrix. Various methods of hydrophobic modifications [106] or simply the use of aqueous solutions of
organic solvents have been proposed. Such modifications are intended to mimic the role of the OBP
(odorant-binding proteins) by increasing the VOC mass transfer as opposed to OBP active transport.

4. Indole-Sensitive ORs (“IndolORs”)

4.1. Chemical Description of Indole and Skatole

Indole (IUPAC name 1H-indole) with its bicyclic and aromatic structure is the simplest and
most ubiquitous representative of its chemical class. It is composed of a six-membered benzene ring
fused to a five-membered nitrogen-containing pyrrole ring (Figure 5a). This core scaffold is the basis
of a large variety of natural compounds, such as hormones and synthetic molecules of biomedical
importance [107]. Due to its predominantly hydrophobic aromatic system, indole (and skatole) is
sparingly soluble in water [108]. It exhibits a broad range of biological activities across the animal
kingdom and acts as a major interspecies signaling molecule [109]. It is synthesized from tryptophan
by bacteria, fungi, yeast, and plants, and depending on its concentration, has a flowery, mothballs,
or fecal smell. Indole and its methylated analog, skatole (IUPAC name 3-methyl-1H-indole, Figure 5a),
are widespread in our everyday life. They are released by wine, meat, dairy products, coffee, seafood,
and many other foodstuffs (Figure 5a).

4.2. Diagnostic Significance of Indole and Skatole

Detection of indole and its derivative skatole are of paramount importance and their diagnostic
value is evident across the agro-food chain, process manufacturing sectors and the clinical arena.

The organoleptic properties of food depend in part on the presence and respective concentrations
of indoles. Our strong attraction to these compounds has promoted their use as additives in personal
care products and flavoring agents (e.g., chocolate, coffee, ice-cream, cigarettes and candies, Figure 5b).
Indole is a common reagent for the manufacture of perfume, drugs and pesticides. Detecting these
compounds is paramount for safety and quality assurance purposes in process manufacturing.

Ensuring food safety and quality is crucial to public health and for limiting food spoilage,
respectively. As indicators of decomposition and microbial contamination, indole and skatole have
been proposed as quality indicators in marine foodstuff such as crustaceans [110], fish [111], and
oyster [112–114]. Similarly, indole and skatole may be used as markers of fecal contamination of
food [115].

Pork is one of the fastest growing livestock subsectors and demand is rising steeply, particularly
in Brazil and China. The presence of the unpleasant odor, the so-called boar taint in pig meat, poses a
great risk to the pork supply chain and consumer acceptance is directly dependent on the degree to
which it permeates pork meat. Boar taint is perceived as a penetrating “animal-”, “urine-”, “fecal-”,
or “sweat-” like unpleasant odor. Indole, skatole, and androstenone are the main contributors to this
malodor [116]. Despite the use of chemical analysis tools and sensory panels to detect some of these
compounds [117], there are currently no satisfying solutions to detect boar taint in the slaughter line
that meet the industry speed, sensitivity, and selectivity requirements [118].
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Figure 5. Biogenic origins and occurrence of indole and skatole. (a) Indole and skatole are synthesized
by the shikimate pathway in plants and by bacterial tryptophan catabolism. These two indolics exhibit
a dominant hydrophobic ring system and carbon-hydrogen bonds over a hydrophilic center (N atom).
These compounds are naturally occurring in a wide variety of food items (e.g., cheese, meat wine, coffee,
grape, apricot, beer, shrimp, mushroom). (b) Indole and skatole are used in flavor (e.g., fruity-flavored
candies, chocolate) and perfume compositions.

Industrial livestock production is a source of environmental odors, which can be detrimental to
animals, workers, and nearby human populations [119]. Skatole has been associated with a variety
of health conditions. At high doses, skatole is a pneumotoxin, causing acute pulmonary edema and
emphysema in ruminants [120] and damages the lungs and livers of animals and humans [121]. It is
also considered a neurotoxic agent, inducing the degeneration of the olfactory epithelium, leading
to reversible anosmia in rats [122]. Therefore, skatole may be used as an environmental indicator
in farming, in industries relying heavily on this compound, such as perfumery, or in wastewater
treatment plants [123].

Human, animal, and agricultural uses of water are increasing globally. Ensuring that water
supplies remain safe for consumption and irrigation purposes is a priority that requires the monitoring
of indicator organisms such as coliform bacteria, fecal bacteria, salmonella, or Vibrio cholerae. These
indole-producing organisms can, therefore, be monitored using indole and skatole as biomarkers [124].
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Indole and skatole, along with volatile sulfur compounds, are major components of breath
odor [125] and halitosis [126] and may be used as clinical markers for the diagnosis of halitosis and
underlying etiologies, including metabolic diseases and oral inflammations [127]. Patients with bowel
cancer have higher fecal skatole content than healthy individuals [128], suggesting that skatole may be
a valuable biomedical marker in this context as well.

In conclusion, the ability to detect indole and skatole with high sensitivity and selectivity offers
wide-ranging applications (Figure 1). Such desirable characteristics are only offered by biological
systems and currently, the mosquito indolORs are promising candidates for fulfilling these tasks.

4.3. Discovery and Pharmacological Properties of IndolORs

The last twenty years have witnessed the discovery of insect receptors beginning with those
initially described in Drosophila melanogaster [129–131] followed by those from several mosquito
species [132,133]. Since then, hundreds of insect genomes and several thousand OR genes have
been annotated representing an unlimited and untapped source of potential biorecognition elements.
However, the vast majority of these receptors remain orphan and have no foreseeable use in biosensing.
Deorphanized ORs from D. melanogaster exhibit various degrees of promiscuity [134] towards high
concentrations of compounds of limited interest in biosensing.

The first large-scale deorphanization efforts of mosquito ORs [135,136] led to the identification
of the indole receptor named OR2. The closely related paralog OR10 is a skatole receptor in several
mosquito species [57,137,138]. OR9, a third member of this gene subgroup [133] was also shown to
act as a skatole receptor [55]. Interestingly OR2 and OR9/OR10 exhibit reverse selectivity for the two
closely chemical analogs indole and skatole at concentrations that can reach the upper picomolar
range based on cell-based assays. These pharmacological features are equivalent or better than those
of pheromone receptors [139], which are the epitome of odorant receptor sensitivity and selectivity.
The advantage of indolORs, as opposed to pheromone receptors, is their selective and sometime
specific relationship to indole and skatole, two compounds of significant interest in many research
fields and industries.

4.4. IndolOR-Based Biosensor

The mosquito-derived indolergic receptor OR9, the most sensitive odorant receptor discovered so
far, may be incorporated with a CNT-FET device to produce an indole- and skatole-specific bioelectronic
nose. By utilizing well-established protocols for heterologous expression, OR9 can be expressed in
conjunction with the OR co-receptor (Orco), or alternatively, as a single transmembrane receptor
(Figure 6). Purification of OR9-containing small membrane fragments and further immobilization to
the sidewall of a CNT transistor channel, via covalent modification, would result in an OR9-based
CNT-FET bioelectronic nose.

The immobilization of OR9 versus Orco-OR9 should directly affect the signal transduction
mechanism and ultimately the final readout. The inclusion of Orco as an integral part of the described
CNT-FET device is expected to result in an overall improved performance (Figure 6b). Orco is a
dedicated cation channel and should effectively transduce ligand binding. When using a small
band-gap semiconducting CNTs, it is expected that the ligand-induced cation current will increase the
CNT conductance at positive gate voltage (when electrons are the dominant charge carriers). Cationic
charges generally reduce CNT resistance by creating a lower resistance path for electrons. Similarly, a
shift in the threshold gate voltage for conduction is expected to be observed during a current-gate
voltage sweep. Such a shift reflects a local gating effect due to charges in proximity to the CNT
sidewall. Interestingly, by using an OR-functionalized electrochemical impedance spectroscopy (EIS)
biosensor, Khadka et al have shown a synergistic enhancement in the obtained signal and two orders
of magnitude improvement in detection range due to Orco/ORx combination versus Orx [140].

The presence of Orco, however, is not strictly required for bioelectronic sensing [55]. Ligand
binding-induced conformational changes of OR9 may be sufficient to affect local electric fields in the
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vicinity of the CNT sidewall resulting in altered conductance (Figure 6c). Such sensitivity is attributed
to the CNT 1D channel transport kinetics. The different indolOR-based CNT-FET configurations are
presented in Figure 6.
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Figure 6. IndolOR-based biosensor. (a) Diagram of a bioelectronic sensor showing carbon nanotube
field-effect transistor devices. Membrane-enriched OR9 are covalently conjugated to the carbon
nanotube sidewall via a phospholipid linker. (b) Skatole binding-induced opening of the cation ion
channel generates a cation influx transiently locating positive charges near the sidewall, resulting in
a significant electric field-effect. (c) Conformational changes of OR9 following skatole binding alter
charge distribution near the sidewall, which in turn affect the local electric field, resulting in modulated
conductance of the CNT.

5. Discussion

Modern diagnostics are facing imminent challenges. The increasing population growth rate,
socio-demographic changes in developing economies, and accessibility to information are all setting
a high bar for clinical, agricultural, and environmental diagnostic throughputs. The increased
productivity in many sectors is not accompanied by proper quality assessment. These societal changes
call for the development of a new “diagnostic toolbox” that would enable high-throughput and
cost-effective diagnostics, available to different end clients from various sectors. There is a huge
potential in biochip-based biosensors that converge biological recognition with microelectronics.
In particular, bioelectronic assay platforms are promising tools capable of delivering measurable
electric signals in response to ultra-low analyte concentrations. Efforts to develop bioelectronic assays
aimed at detecting volatiles were fueled by the enormous diagnostic value of volatile markers. Various
conducting materials that change their electrical properties following volatiles adsorption have been
extensively studied and were applied as transducers in “E-noses” over a decade ago. Despite the
relative commercial success of E-noses, they still have fundamental limitations, namely, low specificity
and sensitivity to ambient conditions. These limitations have motivated scientists to seek inspiration
in nature and consequently led to bio-inspired engineering.

The natural responses to chemical stimuli can range from chemotaxis to complex behavior
patterns but the remarkable selectivity is a common characteristic that evolved across all life kingdoms.
In animals, this selectivity is governed by specific biomolecular interactions of designated receptors
located in sensory neurons. Chemical sensing in animals can, therefore, be described simply
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as chemo-electronic signal transduction. Similarly, in order to confer ultrahigh specificity on an
electronic sensor, a bio-recognition element needs to be incorporated with the transducer. Bioelectronic
sensors based on direct transduction of biomolecular binding into electrons have been developed.
Olfactory receptors, mostly mammalian, were utilized as biorecognition elements integrated with
different transducers such as quartz crystal microbalance, microelectrodes, and field-effect transistors.
As opposed to cell-based sensors, the use of OR enables miniaturization allowing for multiplexing and
high-throughput. Once integrated with CMOS technology, thousands of bio-functionalized nanoscale
transistors can be embedded in one chip [141]. The biofunctionalization of electronic transducers
can be quite challenging as ORs are membrane proteins. Different strategies have been proposed
but a standardized methodology offering reproducibility and high signal-to-noise ratio as well as
maintaining the receptor functionality and stability is yet to be developed.

The use of mammalian ORs, requires the integration of additional molecular factors, since the
activation of mammalian G protein-coupled receptors (GPCRs)-type ORs depend on downstream
elements. As an alternative for such a complex biofunctionalization scheme, insect ORs offer a simpler
transduction mechanism and are thus better suited for bioelectronic sensors. Research in insect
OR-based bioelectronic sensors is beginning to emerge as several insect ORs have been shown to be
sensitive and specific to environmentally significant VOCs, such as the mosquito octenol receptor [142]
or the fly geosmin receptor [143]. It should be noted that only a few insect ORs have been deorphanized,
enabling their use as biorecognition elements. The development of sensors incorporating other
insect ORs likely involves orthogonal studies, such as electrical physiology aimed at recognizing
receptor-ligand pairs.

Despite the obvious challenges, it should be noted that the tremendous progress in the development
of these unique devices is attributed to interdisciplinary bioengineering efforts. These efforts are
largely fueled by new nano and microfabrication technologies, better understanding of molecular
electronics, improved protocols for biofunctionalization, and incorporation of biomaterials and solid
state. Furthermore, recently acquired knowledge of odorant receptors’ biochemistry has significantly
contributed to this exciting field.

Although the results are promising it is clear that this field of research is in its infancy with many
challenges ahead. Looking forward, insect OR-based bioelectronic sensors represent a multidisciplinary
solution to some of the major bottlenecks and may pave the way towards a whole new class of
diagnostic devices.
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